llvm-project/llvm/lib/Target/R600/AMDGPUISelDAGToDAG.cpp

1169 lines
41 KiB
C++
Raw Normal View History

//===-- AMDILISelDAGToDAG.cpp - A dag to dag inst selector for AMDIL ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//==-----------------------------------------------------------------------===//
//
/// \file
/// \brief Defines an instruction selector for the AMDGPU target.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUInstrInfo.h"
#include "AMDGPUISelLowering.h" // For AMDGPUISD
#include "AMDGPURegisterInfo.h"
#include "AMDGPUSubtarget.h"
#include "R600InstrInfo.h"
#include "SIDefines.h"
#include "SIISelLowering.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/Function.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//
namespace {
/// AMDGPU specific code to select AMDGPU machine instructions for
/// SelectionDAG operations.
class AMDGPUDAGToDAGISel : public SelectionDAGISel {
// Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
// make the right decision when generating code for different targets.
const AMDGPUSubtarget &Subtarget;
public:
AMDGPUDAGToDAGISel(TargetMachine &TM);
virtual ~AMDGPUDAGToDAGISel();
SDNode *Select(SDNode *N) override;
const char *getPassName() const override;
void PostprocessISelDAG() override;
private:
bool isInlineImmediate(SDNode *N) const;
inline SDValue getSmallIPtrImm(unsigned Imm);
bool FoldOperand(SDValue &Src, SDValue &Sel, SDValue &Neg, SDValue &Abs,
const R600InstrInfo *TII);
bool FoldOperands(unsigned, const R600InstrInfo *, std::vector<SDValue> &);
bool FoldDotOperands(unsigned, const R600InstrInfo *, std::vector<SDValue> &);
// Complex pattern selectors
bool SelectADDRParam(SDValue Addr, SDValue& R1, SDValue& R2);
bool SelectADDR(SDValue N, SDValue &R1, SDValue &R2);
bool SelectADDR64(SDValue N, SDValue &R1, SDValue &R2);
static bool checkType(const Value *ptr, unsigned int addrspace);
static bool checkPrivateAddress(const MachineMemOperand *Op);
static bool isGlobalStore(const StoreSDNode *N);
static bool isFlatStore(const StoreSDNode *N);
static bool isPrivateStore(const StoreSDNode *N);
static bool isLocalStore(const StoreSDNode *N);
static bool isRegionStore(const StoreSDNode *N);
bool isCPLoad(const LoadSDNode *N) const;
bool isConstantLoad(const LoadSDNode *N, int cbID) const;
bool isGlobalLoad(const LoadSDNode *N) const;
bool isFlatLoad(const LoadSDNode *N) const;
bool isParamLoad(const LoadSDNode *N) const;
bool isPrivateLoad(const LoadSDNode *N) const;
bool isLocalLoad(const LoadSDNode *N) const;
bool isRegionLoad(const LoadSDNode *N) const;
const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
SDValue& Offset);
bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
bool isDSOffsetLegal(const SDValue &Base, unsigned Offset,
unsigned OffsetBits) const;
bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
SDValue &Offset1) const;
void SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
SDValue &SOffset, SDValue &Offset, SDValue &Offen,
SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
SDValue &TFE) const;
bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
SDValue &Offset) const;
bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
SDValue &VAddr, SDValue &Offset,
SDValue &SLC) const;
bool SelectMUBUFScratch(SDValue Addr, SDValue &RSrc, SDValue &VAddr,
SDValue &SOffset, SDValue &ImmOffset) const;
bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
SDValue &Offset, SDValue &GLC, SDValue &SLC,
SDValue &TFE) const;
bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
SDValue &Offset, SDValue &GLC) const;
SDNode *SelectAddrSpaceCast(SDNode *N);
bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
SDValue &Clamp, SDValue &Omod) const;
bool SelectVOP3Mods0Clamp(SDValue In, SDValue &Src, SDValue &SrcMods,
SDValue &Omod) const;
SDNode *SelectADD_SUB_I64(SDNode *N);
SDNode *SelectDIV_SCALE(SDNode *N);
// Include the pieces autogenerated from the target description.
#include "AMDGPUGenDAGISel.inc"
};
} // end anonymous namespace
/// \brief This pass converts a legalized DAG into a AMDGPU-specific
// DAG, ready for instruction scheduling.
FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM) {
return new AMDGPUDAGToDAGISel(TM);
}
AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM)
: SelectionDAGISel(TM), Subtarget(TM.getSubtarget<AMDGPUSubtarget>()) {
}
AMDGPUDAGToDAGISel::~AMDGPUDAGToDAGISel() {
}
bool AMDGPUDAGToDAGISel::isInlineImmediate(SDNode *N) const {
const SITargetLowering *TL
= static_cast<const SITargetLowering *>(getTargetLowering());
return TL->analyzeImmediate(N) == 0;
}
/// \brief Determine the register class for \p OpNo
/// \returns The register class of the virtual register that will be used for
/// the given operand number \OpNo or NULL if the register class cannot be
/// determined.
const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
unsigned OpNo) const {
if (!N->isMachineOpcode())
return nullptr;
switch (N->getMachineOpcode()) {
default: {
const MCInstrDesc &Desc =
TM.getSubtargetImpl()->getInstrInfo()->get(N->getMachineOpcode());
unsigned OpIdx = Desc.getNumDefs() + OpNo;
if (OpIdx >= Desc.getNumOperands())
return nullptr;
int RegClass = Desc.OpInfo[OpIdx].RegClass;
if (RegClass == -1)
return nullptr;
return TM.getSubtargetImpl()->getRegisterInfo()->getRegClass(RegClass);
}
case AMDGPU::REG_SEQUENCE: {
unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
const TargetRegisterClass *SuperRC =
TM.getSubtargetImpl()->getRegisterInfo()->getRegClass(RCID);
SDValue SubRegOp = N->getOperand(OpNo + 1);
unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
return TM.getSubtargetImpl()->getRegisterInfo()->getSubClassWithSubReg(
SuperRC, SubRegIdx);
}
}
}
SDValue AMDGPUDAGToDAGISel::getSmallIPtrImm(unsigned int Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
bool AMDGPUDAGToDAGISel::SelectADDRParam(
SDValue Addr, SDValue& R1, SDValue& R2) {
if (Addr.getOpcode() == ISD::FrameIndex) {
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
R2 = CurDAG->getTargetConstant(0, MVT::i32);
} else {
R1 = Addr;
R2 = CurDAG->getTargetConstant(0, MVT::i32);
}
} else if (Addr.getOpcode() == ISD::ADD) {
R1 = Addr.getOperand(0);
R2 = Addr.getOperand(1);
} else {
R1 = Addr;
R2 = CurDAG->getTargetConstant(0, MVT::i32);
}
return true;
}
bool AMDGPUDAGToDAGISel::SelectADDR(SDValue Addr, SDValue& R1, SDValue& R2) {
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress) {
return false;
}
return SelectADDRParam(Addr, R1, R2);
}
bool AMDGPUDAGToDAGISel::SelectADDR64(SDValue Addr, SDValue& R1, SDValue& R2) {
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress) {
return false;
}
if (Addr.getOpcode() == ISD::FrameIndex) {
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i64);
R2 = CurDAG->getTargetConstant(0, MVT::i64);
} else {
R1 = Addr;
R2 = CurDAG->getTargetConstant(0, MVT::i64);
}
} else if (Addr.getOpcode() == ISD::ADD) {
R1 = Addr.getOperand(0);
R2 = Addr.getOperand(1);
} else {
R1 = Addr;
R2 = CurDAG->getTargetConstant(0, MVT::i64);
}
return true;
}
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
unsigned int Opc = N->getOpcode();
if (N->isMachineOpcode()) {
N->setNodeId(-1);
return nullptr; // Already selected.
}
const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
switch (Opc) {
default: break;
// We are selecting i64 ADD here instead of custom lower it during
// DAG legalization, so we can fold some i64 ADDs used for address
// calculation into the LOAD and STORE instructions.
case ISD::ADD:
case ISD::SUB: {
if (N->getValueType(0) != MVT::i64 ||
ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS)
break;
return SelectADD_SUB_I64(N);
}
case ISD::SCALAR_TO_VECTOR:
case AMDGPUISD::BUILD_VERTICAL_VECTOR:
case ISD::BUILD_VECTOR: {
unsigned RegClassID;
const AMDGPURegisterInfo *TRI = static_cast<const AMDGPURegisterInfo *>(
TM.getSubtargetImpl()->getRegisterInfo());
const SIRegisterInfo *SIRI = static_cast<const SIRegisterInfo *>(
TM.getSubtargetImpl()->getRegisterInfo());
EVT VT = N->getValueType(0);
unsigned NumVectorElts = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
assert(EltVT.bitsEq(MVT::i32));
if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
bool UseVReg = true;
for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
U != E; ++U) {
if (!U->isMachineOpcode()) {
continue;
}
const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
if (!RC) {
continue;
}
if (SIRI->isSGPRClass(RC)) {
UseVReg = false;
}
}
switch(NumVectorElts) {
case 1: RegClassID = UseVReg ? AMDGPU::VReg_32RegClassID :
AMDGPU::SReg_32RegClassID;
break;
case 2: RegClassID = UseVReg ? AMDGPU::VReg_64RegClassID :
AMDGPU::SReg_64RegClassID;
break;
case 4: RegClassID = UseVReg ? AMDGPU::VReg_128RegClassID :
AMDGPU::SReg_128RegClassID;
break;
case 8: RegClassID = UseVReg ? AMDGPU::VReg_256RegClassID :
AMDGPU::SReg_256RegClassID;
break;
case 16: RegClassID = UseVReg ? AMDGPU::VReg_512RegClassID :
AMDGPU::SReg_512RegClassID;
break;
default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
}
} else {
// BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
// that adds a 128 bits reg copy when going through TwoAddressInstructions
// pass. We want to avoid 128 bits copies as much as possible because they
// can't be bundled by our scheduler.
switch(NumVectorElts) {
case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break;
case 4:
if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
RegClassID = AMDGPU::R600_Reg128VerticalRegClassID;
else
RegClassID = AMDGPU::R600_Reg128RegClassID;
break;
default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
}
}
SDValue RegClass = CurDAG->getTargetConstant(RegClassID, MVT::i32);
if (NumVectorElts == 1) {
return CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT,
N->getOperand(0), RegClass);
}
assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not "
"supported yet");
// 16 = Max Num Vector Elements
// 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
// 1 = Vector Register Class
SmallVector<SDValue, 16 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, MVT::i32);
bool IsRegSeq = true;
unsigned NOps = N->getNumOperands();
for (unsigned i = 0; i < NOps; i++) {
// XXX: Why is this here?
if (dyn_cast<RegisterSDNode>(N->getOperand(i))) {
IsRegSeq = false;
break;
}
RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
RegSeqArgs[1 + (2 * i) + 1] =
CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32);
}
if (NOps != NumVectorElts) {
// Fill in the missing undef elements if this was a scalar_to_vector.
assert(Opc == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
SDLoc(N), EltVT);
for (unsigned i = NOps; i < NumVectorElts; ++i) {
RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
RegSeqArgs[1 + (2 * i) + 1] =
CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32);
}
}
if (!IsRegSeq)
break;
return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(),
RegSeqArgs);
}
case ISD::BUILD_PAIR: {
SDValue RC, SubReg0, SubReg1;
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
break;
}
if (N->getValueType(0) == MVT::i128) {
RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32);
SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32);
SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32);
} else if (N->getValueType(0) == MVT::i64) {
RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32);
SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32);
SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32);
} else {
llvm_unreachable("Unhandled value type for BUILD_PAIR");
}
const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
N->getOperand(1), SubReg1 };
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
SDLoc(N), N->getValueType(0), Ops);
}
case ISD::Constant:
case ISD::ConstantFP: {
const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS ||
N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
break;
uint64_t Imm;
if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
else {
ConstantSDNode *C = cast<ConstantSDNode>(N);
Imm = C->getZExtValue();
}
SDNode *Lo = CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SDLoc(N), MVT::i32,
CurDAG->getConstant(Imm & 0xFFFFFFFF, MVT::i32));
SDNode *Hi = CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SDLoc(N), MVT::i32,
CurDAG->getConstant(Imm >> 32, MVT::i32));
const SDValue Ops[] = {
CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32),
SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32),
SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32)
};
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N),
N->getValueType(0), Ops);
}
case AMDGPUISD::REGISTER_LOAD: {
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
break;
SDValue Addr, Offset;
SelectADDRIndirect(N->getOperand(1), Addr, Offset);
const SDValue Ops[] = {
Addr,
Offset,
CurDAG->getTargetConstant(0, MVT::i32),
N->getOperand(0),
};
return CurDAG->getMachineNode(AMDGPU::SI_RegisterLoad, SDLoc(N),
CurDAG->getVTList(MVT::i32, MVT::i64, MVT::Other),
Ops);
}
case AMDGPUISD::REGISTER_STORE: {
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
break;
SDValue Addr, Offset;
SelectADDRIndirect(N->getOperand(2), Addr, Offset);
const SDValue Ops[] = {
N->getOperand(1),
Addr,
Offset,
CurDAG->getTargetConstant(0, MVT::i32),
N->getOperand(0),
};
return CurDAG->getMachineNode(AMDGPU::SI_RegisterStorePseudo, SDLoc(N),
CurDAG->getVTList(MVT::Other),
Ops);
}
case AMDGPUISD::BFE_I32:
case AMDGPUISD::BFE_U32: {
if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS)
break;
// There is a scalar version available, but unlike the vector version which
// has a separate operand for the offset and width, the scalar version packs
// the width and offset into a single operand. Try to move to the scalar
// version if the offsets are constant, so that we can try to keep extended
// loads of kernel arguments in SGPRs.
// TODO: Technically we could try to pattern match scalar bitshifts of
// dynamic values, but it's probably not useful.
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!Offset)
break;
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
if (!Width)
break;
bool Signed = Opc == AMDGPUISD::BFE_I32;
// Transformation function, pack the offset and width of a BFE into
// the format expected by the S_BFE_I32 / S_BFE_U32. In the second
// source, bits [5:0] contain the offset and bits [22:16] the width.
uint32_t OffsetVal = Offset->getZExtValue();
uint32_t WidthVal = Width->getZExtValue();
uint32_t PackedVal = OffsetVal | WidthVal << 16;
SDValue PackedOffsetWidth = CurDAG->getTargetConstant(PackedVal, MVT::i32);
return CurDAG->getMachineNode(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
SDLoc(N),
MVT::i32,
N->getOperand(0),
PackedOffsetWidth);
}
case AMDGPUISD::DIV_SCALE: {
return SelectDIV_SCALE(N);
}
case ISD::CopyToReg: {
const SITargetLowering& Lowering =
*static_cast<const SITargetLowering*>(getTargetLowering());
Lowering.legalizeTargetIndependentNode(N, *CurDAG);
break;
}
case ISD::ADDRSPACECAST:
return SelectAddrSpaceCast(N);
}
return SelectCode(N);
}
bool AMDGPUDAGToDAGISel::checkType(const Value *Ptr, unsigned AS) {
assert(AS != 0 && "Use checkPrivateAddress instead.");
if (!Ptr)
return false;
return Ptr->getType()->getPointerAddressSpace() == AS;
}
bool AMDGPUDAGToDAGISel::checkPrivateAddress(const MachineMemOperand *Op) {
if (Op->getPseudoValue())
return true;
if (PointerType *PT = dyn_cast<PointerType>(Op->getValue()->getType()))
return PT->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS;
return false;
}
bool AMDGPUDAGToDAGISel::isGlobalStore(const StoreSDNode *N) {
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::GLOBAL_ADDRESS);
}
bool AMDGPUDAGToDAGISel::isPrivateStore(const StoreSDNode *N) {
const Value *MemVal = N->getMemOperand()->getValue();
return (!checkType(MemVal, AMDGPUAS::LOCAL_ADDRESS) &&
!checkType(MemVal, AMDGPUAS::GLOBAL_ADDRESS) &&
!checkType(MemVal, AMDGPUAS::REGION_ADDRESS));
}
bool AMDGPUDAGToDAGISel::isLocalStore(const StoreSDNode *N) {
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS);
}
bool AMDGPUDAGToDAGISel::isFlatStore(const StoreSDNode *N) {
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::FLAT_ADDRESS);
}
bool AMDGPUDAGToDAGISel::isRegionStore(const StoreSDNode *N) {
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::REGION_ADDRESS);
}
bool AMDGPUDAGToDAGISel::isConstantLoad(const LoadSDNode *N, int CbId) const {
const Value *MemVal = N->getMemOperand()->getValue();
if (CbId == -1)
return checkType(MemVal, AMDGPUAS::CONSTANT_ADDRESS);
return checkType(MemVal, AMDGPUAS::CONSTANT_BUFFER_0 + CbId);
}
bool AMDGPUDAGToDAGISel::isGlobalLoad(const LoadSDNode *N) const {
if (N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS) {
const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS ||
N->getMemoryVT().bitsLT(MVT::i32)) {
return true;
}
}
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::GLOBAL_ADDRESS);
}
bool AMDGPUDAGToDAGISel::isParamLoad(const LoadSDNode *N) const {
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::PARAM_I_ADDRESS);
}
bool AMDGPUDAGToDAGISel::isLocalLoad(const LoadSDNode *N) const {
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::LOCAL_ADDRESS);
}
bool AMDGPUDAGToDAGISel::isFlatLoad(const LoadSDNode *N) const {
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::FLAT_ADDRESS);
}
bool AMDGPUDAGToDAGISel::isRegionLoad(const LoadSDNode *N) const {
return checkType(N->getMemOperand()->getValue(), AMDGPUAS::REGION_ADDRESS);
}
bool AMDGPUDAGToDAGISel::isCPLoad(const LoadSDNode *N) const {
MachineMemOperand *MMO = N->getMemOperand();
if (checkPrivateAddress(N->getMemOperand())) {
if (MMO) {
const PseudoSourceValue *PSV = MMO->getPseudoValue();
if (PSV && PSV == PseudoSourceValue::getConstantPool()) {
return true;
}
}
}
return false;
}
bool AMDGPUDAGToDAGISel::isPrivateLoad(const LoadSDNode *N) const {
if (checkPrivateAddress(N->getMemOperand())) {
// Check to make sure we are not a constant pool load or a constant load
// that is marked as a private load
if (isCPLoad(N) || isConstantLoad(N, -1)) {
return false;
}
}
const Value *MemVal = N->getMemOperand()->getValue();
if (!checkType(MemVal, AMDGPUAS::LOCAL_ADDRESS) &&
!checkType(MemVal, AMDGPUAS::GLOBAL_ADDRESS) &&
!checkType(MemVal, AMDGPUAS::FLAT_ADDRESS) &&
!checkType(MemVal, AMDGPUAS::REGION_ADDRESS) &&
!checkType(MemVal, AMDGPUAS::CONSTANT_ADDRESS) &&
!checkType(MemVal, AMDGPUAS::PARAM_D_ADDRESS) &&
!checkType(MemVal, AMDGPUAS::PARAM_I_ADDRESS)) {
return true;
}
return false;
}
const char *AMDGPUDAGToDAGISel::getPassName() const {
return "AMDGPU DAG->DAG Pattern Instruction Selection";
}
#ifdef DEBUGTMP
#undef INT64_C
#endif
#undef DEBUGTMP
//===----------------------------------------------------------------------===//
// Complex Patterns
//===----------------------------------------------------------------------===//
bool AMDGPUDAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
SDValue& IntPtr) {
if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, true);
return true;
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
SDValue& BaseReg, SDValue &Offset) {
if (!isa<ConstantSDNode>(Addr)) {
BaseReg = Addr;
Offset = CurDAG->getIntPtrConstant(0, true);
return true;
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
SDValue &Offset) {
ConstantSDNode *IMMOffset;
if (Addr.getOpcode() == ISD::ADD
&& (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
&& isInt<16>(IMMOffset->getZExtValue())) {
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32);
return true;
// If the pointer address is constant, we can move it to the offset field.
} else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
&& isInt<16>(IMMOffset->getZExtValue())) {
Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
SDLoc(CurDAG->getEntryNode()),
AMDGPU::ZERO, MVT::i32);
Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32);
return true;
}
// Default case, no offset
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
SDValue &Offset) {
ConstantSDNode *C;
if ((C = dyn_cast<ConstantSDNode>(Addr))) {
Base = CurDAG->getRegister(AMDGPU::INDIRECT_BASE_ADDR, MVT::i32);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
} else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
(C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
} else {
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
}
return true;
}
SDNode *AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
SDLoc DL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
bool IsAdd = (N->getOpcode() == ISD::ADD);
SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32);
SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32);
SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, LHS, Sub0);
SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, LHS, Sub1);
SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, RHS, Sub0);
SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, MVT::i32, RHS, Sub1);
SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
SDValue AddLoArgs[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
SDNode *AddLo = CurDAG->getMachineNode( Opc, DL, VTList, AddLoArgs);
SDValue Carry(AddLo, 1);
SDNode *AddHi
= CurDAG->getMachineNode(CarryOpc, DL, MVT::i32,
SDValue(Hi0, 0), SDValue(Hi1, 0), Carry);
SDValue Args[5] = {
CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32),
SDValue(AddLo,0),
Sub0,
SDValue(AddHi,0),
Sub1,
};
return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, MVT::i64, Args);
}
SDNode *AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
SDLoc SL(N);
EVT VT = N->getValueType(0);
assert(VT == MVT::f32 || VT == MVT::f64);
unsigned Opc
= (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
const SDValue Zero = CurDAG->getTargetConstant(0, MVT::i32);
const SDValue False = CurDAG->getTargetConstant(0, MVT::i1);
SDValue Ops[] = {
Zero, // src0_modifiers
N->getOperand(0), // src0
Zero, // src1_modifiers
N->getOperand(1), // src1
Zero, // src2_modifiers
N->getOperand(2), // src2
False, // clamp
Zero // omod
};
return CurDAG->SelectNodeTo(N, Opc, VT, MVT::i1, Ops);
}
bool AMDGPUDAGToDAGISel::isDSOffsetLegal(const SDValue &Base, unsigned Offset,
unsigned OffsetBits) const {
const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
(OffsetBits == 8 && !isUInt<8>(Offset)))
return false;
if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS)
return true;
// On Southern Islands instruction with a negative base value and an offset
// don't seem to work.
return CurDAG->SignBitIsZero(Base);
}
bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
if (CurDAG->isBaseWithConstantOffset(Addr)) {
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
// (add n0, c0)
Base = N0;
Offset = N1;
return true;
}
}
// If we have a constant address, prefer to put the constant into the
// offset. This can save moves to load the constant address since multiple
// operations can share the zero base address register, and enables merging
// into read2 / write2 instructions.
if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
if (isUInt<16>(CAddr->getZExtValue())) {
SDValue Zero = CurDAG->getTargetConstant(0, MVT::i32);
MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
SDLoc(Addr), MVT::i32, Zero);
Base = SDValue(MovZero, 0);
Offset = Addr;
return true;
}
}
// default case
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i16);
return true;
}
bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
SDValue &Offset0,
SDValue &Offset1) const {
if (CurDAG->isBaseWithConstantOffset(Addr)) {
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
unsigned DWordOffset0 = C1->getZExtValue() / 4;
unsigned DWordOffset1 = DWordOffset0 + 1;
// (add n0, c0)
if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
Base = N0;
Offset0 = CurDAG->getTargetConstant(DWordOffset0, MVT::i8);
Offset1 = CurDAG->getTargetConstant(DWordOffset1, MVT::i8);
return true;
}
}
if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
unsigned DWordOffset1 = DWordOffset0 + 1;
assert(4 * DWordOffset0 == CAddr->getZExtValue());
if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
SDValue Zero = CurDAG->getTargetConstant(0, MVT::i32);
MachineSDNode *MovZero
= CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
SDLoc(Addr), MVT::i32, Zero);
Base = SDValue(MovZero, 0);
Offset0 = CurDAG->getTargetConstant(DWordOffset0, MVT::i8);
Offset1 = CurDAG->getTargetConstant(DWordOffset1, MVT::i8);
return true;
}
}
// default case
Base = Addr;
Offset0 = CurDAG->getTargetConstant(0, MVT::i8);
Offset1 = CurDAG->getTargetConstant(1, MVT::i8);
return true;
}
static bool isLegalMUBUFImmOffset(const ConstantSDNode *Imm) {
return isUInt<12>(Imm->getZExtValue());
}
void AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
SDValue &VAddr, SDValue &SOffset,
SDValue &Offset, SDValue &Offen,
SDValue &Idxen, SDValue &Addr64,
SDValue &GLC, SDValue &SLC,
SDValue &TFE) const {
SDLoc DL(Addr);
GLC = CurDAG->getTargetConstant(0, MVT::i1);
SLC = CurDAG->getTargetConstant(0, MVT::i1);
TFE = CurDAG->getTargetConstant(0, MVT::i1);
Idxen = CurDAG->getTargetConstant(0, MVT::i1);
Offen = CurDAG->getTargetConstant(0, MVT::i1);
Addr64 = CurDAG->getTargetConstant(0, MVT::i1);
SOffset = CurDAG->getTargetConstant(0, MVT::i32);
if (CurDAG->isBaseWithConstantOffset(Addr)) {
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
if (isLegalMUBUFImmOffset(C1)) {
if (N0.getOpcode() == ISD::ADD) {
// (add (add N2, N3), C1) -> addr64
SDValue N2 = N0.getOperand(0);
SDValue N3 = N0.getOperand(1);
Addr64 = CurDAG->getTargetConstant(1, MVT::i1);
Ptr = N2;
VAddr = N3;
Offset = CurDAG->getTargetConstant(C1->getZExtValue(), MVT::i16);
return;
}
// (add N0, C1) -> offset
VAddr = CurDAG->getTargetConstant(0, MVT::i32);
Ptr = N0;
Offset = CurDAG->getTargetConstant(C1->getZExtValue(), MVT::i16);
return;
}
}
if (Addr.getOpcode() == ISD::ADD) {
// (add N0, N1) -> addr64
SDValue N0 = Addr.getOperand(0);
SDValue N1 = Addr.getOperand(1);
Addr64 = CurDAG->getTargetConstant(1, MVT::i1);
Ptr = N0;
VAddr = N1;
Offset = CurDAG->getTargetConstant(0, MVT::i16);
return;
}
// default case -> offset
VAddr = CurDAG->getTargetConstant(0, MVT::i32);
Ptr = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i16);
}
bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
SDValue &VAddr,
SDValue &Offset) const {
SDValue Ptr, SOffset, Offen, Idxen, Addr64, GLC, SLC, TFE;
SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
GLC, SLC, TFE);
ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
if (C->getSExtValue()) {
SDLoc DL(Addr);
const SITargetLowering& Lowering =
*static_cast<const SITargetLowering*>(getTargetLowering());
SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
return true;
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
SDValue &VAddr, SDValue &Offset,
SDValue &SLC) const {
SLC = CurDAG->getTargetConstant(0, MVT::i1);
return SelectMUBUFAddr64(Addr, SRsrc, VAddr, Offset);
}
bool AMDGPUDAGToDAGISel::SelectMUBUFScratch(SDValue Addr, SDValue &Rsrc,
SDValue &VAddr, SDValue &SOffset,
SDValue &ImmOffset) const {
SDLoc DL(Addr);
MachineFunction &MF = CurDAG->getMachineFunction();
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
const SITargetLowering& Lowering =
*static_cast<const SITargetLowering*>(getTargetLowering());
unsigned ScratchPtrReg =
TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
unsigned ScratchOffsetReg =
TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_WAVE_OFFSET);
Lowering.CreateLiveInRegister(*CurDAG, &AMDGPU::SReg_32RegClass,
ScratchOffsetReg, MVT::i32);
SDValue ScratchPtr =
CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
MRI.getLiveInVirtReg(ScratchPtrReg), MVT::i64);
Rsrc = SDValue(Lowering.buildScratchRSRC(*CurDAG, DL, ScratchPtr), 0);
SOffset = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
MRI.getLiveInVirtReg(ScratchOffsetReg), MVT::i32);
// (add n0, c1)
if (CurDAG->isBaseWithConstantOffset(Addr)) {
SDValue N1 = Addr.getOperand(1);
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
if (isLegalMUBUFImmOffset(C1)) {
VAddr = Addr.getOperand(0);
ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), MVT::i16);
return true;
}
}
// (add FI, n0)
if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
isa<FrameIndexSDNode>(Addr.getOperand(0))) {
VAddr = Addr.getOperand(1);
ImmOffset = Addr.getOperand(0);
return true;
}
// (FI)
if (isa<FrameIndexSDNode>(Addr)) {
VAddr = SDValue(CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32,
CurDAG->getConstant(0, MVT::i32)), 0);
ImmOffset = Addr;
return true;
}
// (node)
VAddr = Addr;
ImmOffset = CurDAG->getTargetConstant(0, MVT::i16);
return true;
}
bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
SDValue &SOffset, SDValue &Offset,
SDValue &GLC, SDValue &SLC,
SDValue &TFE) const {
SDValue Ptr, VAddr, Offen, Idxen, Addr64;
SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
GLC, SLC, TFE);
if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
!cast<ConstantSDNode>(Idxen)->getSExtValue() &&
!cast<ConstantSDNode>(Addr64)->getSExtValue()) {
uint64_t Rsrc = AMDGPU::RSRC_DATA_FORMAT |
APInt::getAllOnesValue(32).getZExtValue(); // Size
SDLoc DL(Addr);
const SITargetLowering& Lowering =
*static_cast<const SITargetLowering*>(getTargetLowering());
SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
return true;
}
return false;
}
bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
SDValue &Soffset, SDValue &Offset,
SDValue &GLC) const {
SDValue SLC, TFE;
return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE);
}
// FIXME: This is incorrect and only enough to be able to compile.
SDNode *AMDGPUDAGToDAGISel::SelectAddrSpaceCast(SDNode *N) {
AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(N);
SDLoc DL(N);
assert(Subtarget.hasFlatAddressSpace() &&
"addrspacecast only supported with flat address space!");
assert((ASC->getSrcAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS &&
ASC->getDestAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) &&
"Cannot cast address space to / from constant address!");
assert((ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS ||
ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) &&
"Can only cast to / from flat address space!");
// The flat instructions read the address as the index of the VGPR holding the
// address, so casting should just be reinterpreting the base VGPR, so just
// insert trunc / bitcast / zext.
SDValue Src = ASC->getOperand(0);
EVT DestVT = ASC->getValueType(0);
EVT SrcVT = Src.getValueType();
unsigned SrcSize = SrcVT.getSizeInBits();
unsigned DestSize = DestVT.getSizeInBits();
if (SrcSize > DestSize) {
assert(SrcSize == 64 && DestSize == 32);
return CurDAG->getMachineNode(
TargetOpcode::EXTRACT_SUBREG,
DL,
DestVT,
Src,
CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32));
}
if (DestSize > SrcSize) {
assert(SrcSize == 32 && DestSize == 64);
SDValue RC = CurDAG->getTargetConstant(AMDGPU::VSrc_64RegClassID, MVT::i32);
const SDValue Ops[] = {
RC,
Src,
CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32),
SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SDLoc(N), MVT::i32,
CurDAG->getConstant(0, MVT::i32)), 0),
CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32)
};
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
SDLoc(N), N->getValueType(0), Ops);
}
assert(SrcSize == 64 && DestSize == 64);
return CurDAG->getNode(ISD::BITCAST, DL, DestVT, Src).getNode();
}
bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
SDValue &SrcMods) const {
unsigned Mods = 0;
Src = In;
if (Src.getOpcode() == ISD::FNEG) {
Mods |= SISrcMods::NEG;
Src = Src.getOperand(0);
}
if (Src.getOpcode() == ISD::FABS) {
Mods |= SISrcMods::ABS;
Src = Src.getOperand(0);
}
SrcMods = CurDAG->getTargetConstant(Mods, MVT::i32);
return true;
}
bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
SDValue &SrcMods, SDValue &Clamp,
SDValue &Omod) const {
// FIXME: Handle Clamp and Omod
Clamp = CurDAG->getTargetConstant(0, MVT::i32);
Omod = CurDAG->getTargetConstant(0, MVT::i32);
return SelectVOP3Mods(In, Src, SrcMods);
}
bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp(SDValue In, SDValue &Src,
SDValue &SrcMods,
SDValue &Omod) const {
// FIXME: Handle Omod
Omod = CurDAG->getTargetConstant(0, MVT::i32);
return SelectVOP3Mods(In, Src, SrcMods);
}
void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
const AMDGPUTargetLowering& Lowering =
*static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
bool IsModified = false;
do {
IsModified = false;
// Go over all selected nodes and try to fold them a bit more
for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
E = CurDAG->allnodes_end(); I != E; ++I) {
SDNode *Node = I;
MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
if (!MachineNode)
continue;
SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
if (ResNode != Node) {
ReplaceUses(Node, ResNode);
IsModified = true;
}
}
CurDAG->RemoveDeadNodes();
} while (IsModified);
}