llvm-project/libcxx/include/cmath

612 lines
14 KiB
Plaintext
Raw Normal View History

2010-05-12 03:42:16 +08:00
// -*- C++ -*-
//===---------------------------- cmath -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
2010-05-12 03:42:16 +08:00
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_CMATH
#define _LIBCPP_CMATH
/*
cmath synopsis
Macros:
HUGE_VAL
HUGE_VALF // C99
HUGE_VALL // C99
INFINITY // C99
NAN // C99
FP_INFINITE // C99
FP_NAN // C99
FP_NORMAL // C99
FP_SUBNORMAL // C99
FP_ZERO // C99
FP_FAST_FMA // C99
FP_FAST_FMAF // C99
FP_FAST_FMAL // C99
FP_ILOGB0 // C99
FP_ILOGBNAN // C99
MATH_ERRNO // C99
MATH_ERREXCEPT // C99
math_errhandling // C99
namespace std
{
Types:
float_t // C99
double_t // C99
// C90
floating_point abs(floating_point x);
floating_point acos (arithmetic x);
float acosf(float x);
long double acosl(long double x);
floating_point asin (arithmetic x);
float asinf(float x);
long double asinl(long double x);
floating_point atan (arithmetic x);
float atanf(float x);
long double atanl(long double x);
floating_point atan2 (arithmetic y, arithmetic x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);
floating_point ceil (arithmetic x);
float ceilf(float x);
long double ceill(long double x);
floating_point cos (arithmetic x);
float cosf(float x);
long double cosl(long double x);
floating_point cosh (arithmetic x);
float coshf(float x);
long double coshl(long double x);
floating_point exp (arithmetic x);
float expf(float x);
long double expl(long double x);
floating_point fabs (arithmetic x);
float fabsf(float x);
long double fabsl(long double x);
floating_point floor (arithmetic x);
float floorf(float x);
long double floorl(long double x);
floating_point fmod (arithmetic x, arithmetic y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);
floating_point frexp (arithmetic value, int* exp);
float frexpf(float value, int* exp);
long double frexpl(long double value, int* exp);
floating_point ldexp (arithmetic value, int exp);
float ldexpf(float value, int exp);
long double ldexpl(long double value, int exp);
floating_point log (arithmetic x);
float logf(float x);
long double logl(long double x);
floating_point log10 (arithmetic x);
float log10f(float x);
long double log10l(long double x);
floating_point modf (floating_point value, floating_point* iptr);
float modff(float value, float* iptr);
long double modfl(long double value, long double* iptr);
floating_point pow (arithmetic x, arithmetic y);
float powf(float x, float y);
long double powl(long double x, long double y);
floating_point sin (arithmetic x);
float sinf(float x);
long double sinl(long double x);
floating_point sinh (arithmetic x);
float sinhf(float x);
long double sinhl(long double x);
floating_point sqrt (arithmetic x);
float sqrtf(float x);
long double sqrtl(long double x);
floating_point tan (arithmetic x);
float tanf(float x);
long double tanl(long double x);
floating_point tanh (arithmetic x);
float tanhf(float x);
long double tanhl(long double x);
// C99
bool signbit(arithmetic x);
2010-05-12 03:42:16 +08:00
int fpclassify(arithmetic x);
2010-05-12 03:42:16 +08:00
bool isfinite(arithmetic x);
bool isinf(arithmetic x);
bool isnan(arithmetic x);
bool isnormal(arithmetic x);
bool isgreater(arithmetic x, arithmetic y);
bool isgreaterequal(arithmetic x, arithmetic y);
bool isless(arithmetic x, arithmetic y);
bool islessequal(arithmetic x, arithmetic y);
bool islessgreater(arithmetic x, arithmetic y);
bool isunordered(arithmetic x, arithmetic y);
2010-05-12 03:42:16 +08:00
floating_point acosh (arithmetic x);
float acoshf(float x);
long double acoshl(long double x);
floating_point asinh (arithmetic x);
float asinhf(float x);
long double asinhl(long double x);
floating_point atanh (arithmetic x);
float atanhf(float x);
long double atanhl(long double x);
floating_point cbrt (arithmetic x);
float cbrtf(float x);
long double cbrtl(long double x);
floating_point copysign (arithmetic x, arithmetic y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);
floating_point erf (arithmetic x);
float erff(float x);
long double erfl(long double x);
floating_point erfc (arithmetic x);
float erfcf(float x);
long double erfcl(long double x);
floating_point exp2 (arithmetic x);
float exp2f(float x);
long double exp2l(long double x);
floating_point expm1 (arithmetic x);
float expm1f(float x);
long double expm1l(long double x);
floating_point fdim (arithmetic x, arithmetic y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);
floating_point fma (arithmetic x, arithmetic y, arithmetic z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);
floating_point fmax (arithmetic x, arithmetic y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);
floating_point fmin (arithmetic x, arithmetic y);
float fminf(float x, float y);
long double fminl(long double x, long double y);
floating_point hypot (arithmetic x, arithmetic y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);
double hypot(double x, double y, double z); // C++17
float hypot(float x, float y, float z); // C++17
long double hypot(long double x, long double y, long double z); // C++17
2010-05-12 03:42:16 +08:00
int ilogb (arithmetic x);
int ilogbf(float x);
int ilogbl(long double x);
floating_point lgamma (arithmetic x);
float lgammaf(float x);
long double lgammal(long double x);
long long llrint (arithmetic x);
long long llrintf(float x);
long long llrintl(long double x);
long long llround (arithmetic x);
long long llroundf(float x);
long long llroundl(long double x);
floating_point log1p (arithmetic x);
float log1pf(float x);
long double log1pl(long double x);
floating_point log2 (arithmetic x);
float log2f(float x);
long double log2l(long double x);
floating_point logb (arithmetic x);
float logbf(float x);
long double logbl(long double x);
long lrint (arithmetic x);
long lrintf(float x);
long lrintl(long double x);
long lround (arithmetic x);
long lroundf(float x);
long lroundl(long double x);
double nan (const char* str);
float nanf(const char* str);
long double nanl(const char* str);
floating_point nearbyint (arithmetic x);
float nearbyintf(float x);
long double nearbyintl(long double x);
floating_point nextafter (arithmetic x, arithmetic y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
floating_point nexttoward (arithmetic x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);
floating_point remainder (arithmetic x, arithmetic y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);
floating_point remquo (arithmetic x, arithmetic y, int* pquo);
float remquof(float x, float y, int* pquo);
long double remquol(long double x, long double y, int* pquo);
floating_point rint (arithmetic x);
float rintf(float x);
long double rintl(long double x);
floating_point round (arithmetic x);
float roundf(float x);
long double roundl(long double x);
floating_point scalbln (arithmetic x, long ex);
float scalblnf(float x, long ex);
long double scalblnl(long double x, long ex);
floating_point scalbn (arithmetic x, int ex);
float scalbnf(float x, int ex);
long double scalbnl(long double x, int ex);
floating_point tgamma (arithmetic x);
float tgammaf(float x);
long double tgammal(long double x);
floating_point trunc (arithmetic x);
float truncf(float x);
long double truncl(long double x);
} // std
*/
#include <__config>
#include <math.h>
#include <version>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
2010-05-12 03:42:16 +08:00
#pragma GCC system_header
#endif
2010-05-12 03:42:16 +08:00
_LIBCPP_BEGIN_NAMESPACE_STD
2010-05-12 03:42:16 +08:00
using ::signbit;
using ::fpclassify;
using ::isfinite;
using ::isinf;
using ::isnan;
using ::isnormal;
using ::isgreater;
using ::isgreaterequal;
using ::isless;
using ::islessequal;
using ::islessgreater;
using ::isunordered;
using ::isunordered;
using ::float_t;
using ::double_t;
#ifndef _AIX
using ::abs;
#endif
using ::acos;
using ::acosf;
using ::asin;
using ::asinf;
using ::atan;
using ::atanf;
using ::atan2;
using ::atan2f;
using ::ceil;
using ::ceilf;
using ::cos;
using ::cosf;
using ::cosh;
using ::coshf;
2010-05-12 03:42:16 +08:00
using ::exp;
using ::expf;
2010-05-12 03:42:16 +08:00
using ::fabs;
using ::fabsf;
using ::floor;
using ::floorf;
using ::fmod;
using ::fmodf;
2010-05-12 03:42:16 +08:00
using ::frexp;
using ::frexpf;
using ::ldexp;
using ::ldexpf;
using ::log;
using ::logf;
2010-05-12 03:42:16 +08:00
using ::log10;
using ::log10f;
using ::modf;
using ::modff;
using ::pow;
using ::powf;
using ::sin;
using ::sinf;
using ::sinh;
using ::sinhf;
using ::sqrt;
using ::sqrtf;
using ::tan;
using ::tanf;
using ::tanh;
using ::tanhf;
2010-05-12 03:42:16 +08:00
using ::acosh;
using ::acoshf;
using ::asinh;
using ::asinhf;
using ::atanh;
using ::atanhf;
using ::cbrt;
using ::cbrtf;
using ::copysign;
using ::copysignf;
using ::erf;
using ::erff;
using ::erfc;
using ::erfcf;
using ::exp2;
using ::exp2f;
using ::expm1;
using ::expm1f;
using ::fdim;
using ::fdimf;
using ::fmaf;
2010-05-12 03:42:16 +08:00
using ::fma;
using ::fmax;
using ::fmaxf;
using ::fmin;
using ::fminf;
using ::hypot;
using ::hypotf;
using ::ilogb;
using ::ilogbf;
using ::lgamma;
using ::lgammaf;
using ::llrint;
using ::llrintf;
using ::llround;
using ::llroundf;
using ::log1p;
using ::log1pf;
using ::log2;
using ::log2f;
using ::logb;
using ::logbf;
using ::lrint;
using ::lrintf;
using ::lround;
using ::lroundf;
2010-05-12 03:42:16 +08:00
using ::nan;
using ::nanf;
2010-05-12 03:42:16 +08:00
using ::nearbyint;
using ::nearbyintf;
using ::nextafter;
using ::nextafterf;
using ::nexttoward;
using ::nexttowardf;
using ::remainder;
using ::remainderf;
using ::remquo;
using ::remquof;
using ::rint;
using ::rintf;
using ::round;
using ::roundf;
using ::scalbln;
using ::scalblnf;
using ::scalbn;
using ::scalbnf;
using ::tgamma;
using ::tgammaf;
using ::trunc;
using ::truncf;
2010-05-12 03:42:16 +08:00
using ::acosl;
using ::asinl;
using ::atanl;
using ::atan2l;
using ::ceill;
using ::cosl;
using ::coshl;
using ::expl;
using ::fabsl;
using ::floorl;
using ::fmodl;
using ::frexpl;
using ::ldexpl;
using ::logl;
using ::log10l;
using ::modfl;
using ::powl;
using ::sinl;
using ::sinhl;
using ::sqrtl;
using ::tanl;
2010-05-12 03:42:16 +08:00
using ::tanhl;
using ::acoshl;
using ::asinhl;
using ::atanhl;
using ::cbrtl;
2010-05-12 03:42:16 +08:00
using ::copysignl;
2010-05-12 03:42:16 +08:00
using ::erfl;
using ::erfcl;
using ::exp2l;
using ::expm1l;
using ::fdiml;
using ::fmal;
using ::fmaxl;
using ::fminl;
using ::hypotl;
using ::ilogbl;
using ::lgammal;
using ::llrintl;
using ::llroundl;
using ::log1pl;
using ::log2l;
using ::logbl;
using ::lrintl;
using ::lroundl;
using ::nanl;
using ::nearbyintl;
using ::nextafterl;
using ::nexttowardl;
using ::remainderl;
using ::remquol;
using ::rintl;
using ::roundl;
using ::scalblnl;
using ::scalbnl;
using ::tgammal;
using ::truncl;
#if _LIBCPP_STD_VER > 14
inline _LIBCPP_INLINE_VISIBILITY float hypot( float x, float y, float z ) { return sqrt(x*x + y*y + z*z); }
inline _LIBCPP_INLINE_VISIBILITY double hypot( double x, double y, double z ) { return sqrt(x*x + y*y + z*z); }
inline _LIBCPP_INLINE_VISIBILITY long double hypot( long double x, long double y, long double z ) { return sqrt(x*x + y*y + z*z); }
template <class _A1, class _A2, class _A3>
inline _LIBCPP_INLINE_VISIBILITY
typename __lazy_enable_if
<
is_arithmetic<_A1>::value &&
is_arithmetic<_A2>::value &&
is_arithmetic<_A3>::value,
__promote<_A1, _A2, _A3>
>::type
hypot(_A1 __lcpp_x, _A2 __lcpp_y, _A3 __lcpp_z) _NOEXCEPT
{
typedef typename __promote<_A1, _A2, _A3>::type __result_type;
static_assert((!(is_same<_A1, __result_type>::value &&
is_same<_A2, __result_type>::value &&
is_same<_A3, __result_type>::value)), "");
return hypot((__result_type)__lcpp_x, (__result_type)__lcpp_y, (__result_type)__lcpp_z);
}
#endif
Use __builtin_isnan/isinf/isfinite in complex The libc-provided isnan/isinf/isfinite macro implementations are specifically designed to function correctly, even in the presence of -ffast-math (or, more specifically, -ffinite-math-only). As such, on most implementation, these either always turn into external function calls (e.g. glibc) or are specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin). Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite to deal with corner cases involving non-finite quantities. This was problematic in two respects: 1. On systems where these are always function calls (e.g. Linux/glibc), there was a performance penalty 2. When compiling with -ffast-math, there was a significant performance penalty (in fact, on Darwin and systems with similar implementations, the code may in fact be slower than not using -ffast-math, because the inline definitions provided by libc become unavailable to prevent the checks from being optimized out). Eliding these inf/nan checks in -ffast-math mode is consistent with what happens with libstdc++, and in my experience, what users expect. This is critical to getting high-performance code when using complex<T>. This change replaces uses of those functions on basic floating-point types with calls to __builtin_isnan/isinf/isfinite, which Clang will always expand inline. When using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks as expected. Differential Revision: https://reviews.llvm.org/D18639 llvm-svn: 283051
2016-10-02 04:38:31 +08:00
template <class _A1>
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_CONSTEXPR typename enable_if<is_floating_point<_A1>::value, bool>::type
__libcpp_isnan_or_builtin(_A1 __lcpp_x) _NOEXCEPT
Use __builtin_isnan/isinf/isfinite in complex The libc-provided isnan/isinf/isfinite macro implementations are specifically designed to function correctly, even in the presence of -ffast-math (or, more specifically, -ffinite-math-only). As such, on most implementation, these either always turn into external function calls (e.g. glibc) or are specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin). Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite to deal with corner cases involving non-finite quantities. This was problematic in two respects: 1. On systems where these are always function calls (e.g. Linux/glibc), there was a performance penalty 2. When compiling with -ffast-math, there was a significant performance penalty (in fact, on Darwin and systems with similar implementations, the code may in fact be slower than not using -ffast-math, because the inline definitions provided by libc become unavailable to prevent the checks from being optimized out). Eliding these inf/nan checks in -ffast-math mode is consistent with what happens with libstdc++, and in my experience, what users expect. This is critical to getting high-performance code when using complex<T>. This change replaces uses of those functions on basic floating-point types with calls to __builtin_isnan/isinf/isfinite, which Clang will always expand inline. When using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks as expected. Differential Revision: https://reviews.llvm.org/D18639 llvm-svn: 283051
2016-10-02 04:38:31 +08:00
{
#if __has_builtin(__builtin_isnan)
return __builtin_isnan(__lcpp_x);
#else
return isnan(__lcpp_x);
#endif
}
template <class _A1>
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_CONSTEXPR typename enable_if<!is_floating_point<_A1>::value, bool>::type
__libcpp_isnan_or_builtin(_A1 __lcpp_x) _NOEXCEPT
Use __builtin_isnan/isinf/isfinite in complex The libc-provided isnan/isinf/isfinite macro implementations are specifically designed to function correctly, even in the presence of -ffast-math (or, more specifically, -ffinite-math-only). As such, on most implementation, these either always turn into external function calls (e.g. glibc) or are specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin). Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite to deal with corner cases involving non-finite quantities. This was problematic in two respects: 1. On systems where these are always function calls (e.g. Linux/glibc), there was a performance penalty 2. When compiling with -ffast-math, there was a significant performance penalty (in fact, on Darwin and systems with similar implementations, the code may in fact be slower than not using -ffast-math, because the inline definitions provided by libc become unavailable to prevent the checks from being optimized out). Eliding these inf/nan checks in -ffast-math mode is consistent with what happens with libstdc++, and in my experience, what users expect. This is critical to getting high-performance code when using complex<T>. This change replaces uses of those functions on basic floating-point types with calls to __builtin_isnan/isinf/isfinite, which Clang will always expand inline. When using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks as expected. Differential Revision: https://reviews.llvm.org/D18639 llvm-svn: 283051
2016-10-02 04:38:31 +08:00
{
return isnan(__lcpp_x);
}
template <class _A1>
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_CONSTEXPR typename enable_if<is_floating_point<_A1>::value, bool>::type
__libcpp_isinf_or_builtin(_A1 __lcpp_x) _NOEXCEPT
Use __builtin_isnan/isinf/isfinite in complex The libc-provided isnan/isinf/isfinite macro implementations are specifically designed to function correctly, even in the presence of -ffast-math (or, more specifically, -ffinite-math-only). As such, on most implementation, these either always turn into external function calls (e.g. glibc) or are specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin). Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite to deal with corner cases involving non-finite quantities. This was problematic in two respects: 1. On systems where these are always function calls (e.g. Linux/glibc), there was a performance penalty 2. When compiling with -ffast-math, there was a significant performance penalty (in fact, on Darwin and systems with similar implementations, the code may in fact be slower than not using -ffast-math, because the inline definitions provided by libc become unavailable to prevent the checks from being optimized out). Eliding these inf/nan checks in -ffast-math mode is consistent with what happens with libstdc++, and in my experience, what users expect. This is critical to getting high-performance code when using complex<T>. This change replaces uses of those functions on basic floating-point types with calls to __builtin_isnan/isinf/isfinite, which Clang will always expand inline. When using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks as expected. Differential Revision: https://reviews.llvm.org/D18639 llvm-svn: 283051
2016-10-02 04:38:31 +08:00
{
#if __has_builtin(__builtin_isinf)
return __builtin_isinf(__lcpp_x);
#else
return isinf(__lcpp_x);
#endif
}
template <class _A1>
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_CONSTEXPR typename enable_if<!is_floating_point<_A1>::value, bool>::type
__libcpp_isinf_or_builtin(_A1 __lcpp_x) _NOEXCEPT
Use __builtin_isnan/isinf/isfinite in complex The libc-provided isnan/isinf/isfinite macro implementations are specifically designed to function correctly, even in the presence of -ffast-math (or, more specifically, -ffinite-math-only). As such, on most implementation, these either always turn into external function calls (e.g. glibc) or are specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin). Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite to deal with corner cases involving non-finite quantities. This was problematic in two respects: 1. On systems where these are always function calls (e.g. Linux/glibc), there was a performance penalty 2. When compiling with -ffast-math, there was a significant performance penalty (in fact, on Darwin and systems with similar implementations, the code may in fact be slower than not using -ffast-math, because the inline definitions provided by libc become unavailable to prevent the checks from being optimized out). Eliding these inf/nan checks in -ffast-math mode is consistent with what happens with libstdc++, and in my experience, what users expect. This is critical to getting high-performance code when using complex<T>. This change replaces uses of those functions on basic floating-point types with calls to __builtin_isnan/isinf/isfinite, which Clang will always expand inline. When using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks as expected. Differential Revision: https://reviews.llvm.org/D18639 llvm-svn: 283051
2016-10-02 04:38:31 +08:00
{
return isinf(__lcpp_x);
}
template <class _A1>
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_CONSTEXPR typename enable_if<is_floating_point<_A1>::value, bool>::type
__libcpp_isfinite_or_builtin(_A1 __lcpp_x) _NOEXCEPT
Use __builtin_isnan/isinf/isfinite in complex The libc-provided isnan/isinf/isfinite macro implementations are specifically designed to function correctly, even in the presence of -ffast-math (or, more specifically, -ffinite-math-only). As such, on most implementation, these either always turn into external function calls (e.g. glibc) or are specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin). Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite to deal with corner cases involving non-finite quantities. This was problematic in two respects: 1. On systems where these are always function calls (e.g. Linux/glibc), there was a performance penalty 2. When compiling with -ffast-math, there was a significant performance penalty (in fact, on Darwin and systems with similar implementations, the code may in fact be slower than not using -ffast-math, because the inline definitions provided by libc become unavailable to prevent the checks from being optimized out). Eliding these inf/nan checks in -ffast-math mode is consistent with what happens with libstdc++, and in my experience, what users expect. This is critical to getting high-performance code when using complex<T>. This change replaces uses of those functions on basic floating-point types with calls to __builtin_isnan/isinf/isfinite, which Clang will always expand inline. When using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks as expected. Differential Revision: https://reviews.llvm.org/D18639 llvm-svn: 283051
2016-10-02 04:38:31 +08:00
{
#if __has_builtin(__builtin_isfinite)
return __builtin_isfinite(__lcpp_x);
#else
return isfinite(__lcpp_x);
#endif
}
template <class _A1>
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_CONSTEXPR typename enable_if<!is_floating_point<_A1>::value, bool>::type
__libcpp_isfinite_or_builtin(_A1 __lcpp_x) _NOEXCEPT
Use __builtin_isnan/isinf/isfinite in complex The libc-provided isnan/isinf/isfinite macro implementations are specifically designed to function correctly, even in the presence of -ffast-math (or, more specifically, -ffinite-math-only). As such, on most implementation, these either always turn into external function calls (e.g. glibc) or are specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin). Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite to deal with corner cases involving non-finite quantities. This was problematic in two respects: 1. On systems where these are always function calls (e.g. Linux/glibc), there was a performance penalty 2. When compiling with -ffast-math, there was a significant performance penalty (in fact, on Darwin and systems with similar implementations, the code may in fact be slower than not using -ffast-math, because the inline definitions provided by libc become unavailable to prevent the checks from being optimized out). Eliding these inf/nan checks in -ffast-math mode is consistent with what happens with libstdc++, and in my experience, what users expect. This is critical to getting high-performance code when using complex<T>. This change replaces uses of those functions on basic floating-point types with calls to __builtin_isnan/isinf/isfinite, which Clang will always expand inline. When using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks as expected. Differential Revision: https://reviews.llvm.org/D18639 llvm-svn: 283051
2016-10-02 04:38:31 +08:00
{
return isfinite(__lcpp_x);
}
2010-05-12 03:42:16 +08:00
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_CMATH