llvm-project/llvm/lib/Target/AVR/AVRFrameLowering.cpp

548 lines
19 KiB
C++
Raw Normal View History

//===-- AVRFrameLowering.cpp - AVR Frame Information ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the AVR implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "AVRFrameLowering.h"
#include "AVR.h"
#include "AVRInstrInfo.h"
#include "AVRMachineFunctionInfo.h"
#include "AVRTargetMachine.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"
#include <vector>
namespace llvm {
AVRFrameLowering::AVRFrameLowering()
: TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 1, -2) {}
bool AVRFrameLowering::canSimplifyCallFramePseudos(
const MachineFunction &MF) const {
// Always simplify call frame pseudo instructions, even when
// hasReservedCallFrame is false.
return true;
}
bool AVRFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
// Reserve call frame memory in function prologue under the following
// conditions:
// - Y pointer is reserved to be the frame pointer.
// - The function does not contain variable sized objects.
const MachineFrameInfo &MFI = MF.getFrameInfo();
return hasFP(MF) && !MFI.hasVarSizedObjects();
}
void AVRFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator MBBI = MBB.begin();
CallingConv::ID CallConv = MF.getFunction()->getCallingConv();
DebugLoc DL = (MBBI != MBB.end()) ? MBBI->getDebugLoc() : DebugLoc();
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
const AVRInstrInfo &TII = *STI.getInstrInfo();
bool HasFP = hasFP(MF);
// Interrupt handlers re-enable interrupts in function entry.
if (CallConv == CallingConv::AVR_INTR) {
BuildMI(MBB, MBBI, DL, TII.get(AVR::BSETs))
.addImm(0x07)
.setMIFlag(MachineInstr::FrameSetup);
}
// Save the frame pointer if we have one.
if (HasFP) {
BuildMI(MBB, MBBI, DL, TII.get(AVR::PUSHWRr))
.addReg(AVR::R29R28, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
}
// Emit special prologue code to save R1, R0 and SREG in interrupt/signal
// handlers before saving any other registers.
if (CallConv == CallingConv::AVR_INTR ||
CallConv == CallingConv::AVR_SIGNAL) {
BuildMI(MBB, MBBI, DL, TII.get(AVR::PUSHWRr))
.addReg(AVR::R1R0, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII.get(AVR::INRdA), AVR::R0)
.addImm(0x3f)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII.get(AVR::PUSHRr))
.addReg(AVR::R0, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII.get(AVR::EORRdRr))
.addReg(AVR::R0, RegState::Define)
.addReg(AVR::R0, RegState::Kill)
.addReg(AVR::R0, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
}
// Early exit if the frame pointer is not needed in this function.
if (!HasFP) {
return;
}
const MachineFrameInfo &MFI = MF.getFrameInfo();
const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
unsigned FrameSize = MFI.getStackSize() - AFI->getCalleeSavedFrameSize();
// Skip the callee-saved push instructions.
while (
(MBBI != MBB.end()) && MBBI->getFlag(MachineInstr::FrameSetup) &&
(MBBI->getOpcode() == AVR::PUSHRr || MBBI->getOpcode() == AVR::PUSHWRr)) {
++MBBI;
}
// Update Y with the new base value.
BuildMI(MBB, MBBI, DL, TII.get(AVR::SPREAD), AVR::R29R28)
.addReg(AVR::SP)
.setMIFlag(MachineInstr::FrameSetup);
// Mark the FramePtr as live-in in every block except the entry.
for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
I != E; ++I) {
I->addLiveIn(AVR::R29R28);
}
if (!FrameSize) {
return;
}
// Reserve the necessary frame memory by doing FP -= <size>.
unsigned Opcode = (isUInt<6>(FrameSize)) ? AVR::SBIWRdK : AVR::SUBIWRdK;
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opcode), AVR::R29R28)
.addReg(AVR::R29R28, RegState::Kill)
.addImm(FrameSize)
.setMIFlag(MachineInstr::FrameSetup);
// The SREG implicit def is dead.
MI->getOperand(3).setIsDead();
// Write back R29R28 to SP and temporarily disable interrupts.
BuildMI(MBB, MBBI, DL, TII.get(AVR::SPWRITE), AVR::SP)
.addReg(AVR::R29R28)
.setMIFlag(MachineInstr::FrameSetup);
}
void AVRFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
CallingConv::ID CallConv = MF.getFunction()->getCallingConv();
bool isHandler = (CallConv == CallingConv::AVR_INTR ||
CallConv == CallingConv::AVR_SIGNAL);
// Early exit if the frame pointer is not needed in this function except for
// signal/interrupt handlers where special code generation is required.
if (!hasFP(MF) && !isHandler) {
return;
}
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
assert(MBBI->getDesc().isReturn() &&
"Can only insert epilog into returning blocks");
DebugLoc DL = MBBI->getDebugLoc();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
unsigned FrameSize = MFI.getStackSize() - AFI->getCalleeSavedFrameSize();
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
const AVRInstrInfo &TII = *STI.getInstrInfo();
// Emit special epilogue code to restore R1, R0 and SREG in interrupt/signal
// handlers at the very end of the function, just before reti.
if (isHandler) {
BuildMI(MBB, MBBI, DL, TII.get(AVR::POPRd), AVR::R0);
BuildMI(MBB, MBBI, DL, TII.get(AVR::OUTARr))
.addImm(0x3f)
.addReg(AVR::R0, RegState::Kill);
BuildMI(MBB, MBBI, DL, TII.get(AVR::POPWRd), AVR::R1R0);
}
if (hasFP(MF))
BuildMI(MBB, MBBI, DL, TII.get(AVR::POPWRd), AVR::R29R28);
// Early exit if there is no need to restore the frame pointer.
if (!FrameSize) {
return;
}
// Skip the callee-saved pop instructions.
while (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PI = std::prev(MBBI);
int Opc = PI->getOpcode();
if (Opc != AVR::POPRd && Opc != AVR::POPWRd && !PI->isTerminator()) {
break;
}
--MBBI;
}
unsigned Opcode;
// Select the optimal opcode depending on how big it is.
if (isUInt<6>(FrameSize)) {
Opcode = AVR::ADIWRdK;
} else {
Opcode = AVR::SUBIWRdK;
FrameSize = -FrameSize;
}
// Restore the frame pointer by doing FP += <size>.
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opcode), AVR::R29R28)
.addReg(AVR::R29R28, RegState::Kill)
.addImm(FrameSize);
// The SREG implicit def is dead.
MI->getOperand(3).setIsDead();
// Write back R29R28 to SP and temporarily disable interrupts.
BuildMI(MBB, MBBI, DL, TII.get(AVR::SPWRITE), AVR::SP)
.addReg(AVR::R29R28, RegState::Kill);
}
// Return true if the specified function should have a dedicated frame
// pointer register. This is true if the function meets any of the following
// conditions:
// - a register has been spilled
// - has allocas
// - input arguments are passed using the stack
//
// Notice that strictly this is not a frame pointer because it contains SP after
// frame allocation instead of having the original SP in function entry.
bool AVRFrameLowering::hasFP(const MachineFunction &MF) const {
const AVRMachineFunctionInfo *FuncInfo = MF.getInfo<AVRMachineFunctionInfo>();
return (FuncInfo->getHasSpills() || FuncInfo->getHasAllocas() ||
FuncInfo->getHasStackArgs());
}
bool AVRFrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
if (CSI.empty()) {
return false;
}
unsigned CalleeFrameSize = 0;
DebugLoc DL = MBB.findDebugLoc(MI);
MachineFunction &MF = *MBB.getParent();
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
const TargetInstrInfo &TII = *STI.getInstrInfo();
AVRMachineFunctionInfo *AVRFI = MF.getInfo<AVRMachineFunctionInfo>();
for (unsigned i = CSI.size(); i != 0; --i) {
unsigned Reg = CSI[i - 1].getReg();
bool IsNotLiveIn = !MBB.isLiveIn(Reg);
assert(TRI->getRegSizeInBits(*TRI->getMinimalPhysRegClass(Reg)) == 8 &&
"Invalid register size");
// Add the callee-saved register as live-in only if it is not already a
// live-in register, this usually happens with arguments that are passed
// through callee-saved registers.
if (IsNotLiveIn) {
MBB.addLiveIn(Reg);
}
// Do not kill the register when it is an input argument.
BuildMI(MBB, MI, DL, TII.get(AVR::PUSHRr))
.addReg(Reg, getKillRegState(IsNotLiveIn))
.setMIFlag(MachineInstr::FrameSetup);
++CalleeFrameSize;
}
AVRFI->setCalleeSavedFrameSize(CalleeFrameSize);
return true;
}
bool AVRFrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
if (CSI.empty()) {
return false;
}
DebugLoc DL = MBB.findDebugLoc(MI);
const MachineFunction &MF = *MBB.getParent();
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
const TargetInstrInfo &TII = *STI.getInstrInfo();
for (const CalleeSavedInfo &CCSI : CSI) {
unsigned Reg = CCSI.getReg();
assert(TRI->getRegSizeInBits(*TRI->getMinimalPhysRegClass(Reg)) == 8 &&
"Invalid register size");
BuildMI(MBB, MI, DL, TII.get(AVR::POPRd), Reg);
}
return true;
}
/// Replace pseudo store instructions that pass arguments through the stack with
/// real instructions. If insertPushes is true then all instructions are
/// replaced with push instructions, otherwise regular std instructions are
/// inserted.
static void fixStackStores(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const TargetInstrInfo &TII, bool insertPushes) {
const AVRSubtarget &STI = MBB.getParent()->getSubtarget<AVRSubtarget>();
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
// Iterate through the BB until we hit a call instruction or we reach the end.
for (auto I = MI, E = MBB.end(); I != E && !I->isCall();) {
MachineBasicBlock::iterator NextMI = std::next(I);
MachineInstr &MI = *I;
unsigned Opcode = I->getOpcode();
// Only care of pseudo store instructions where SP is the base pointer.
if (Opcode != AVR::STDSPQRr && Opcode != AVR::STDWSPQRr) {
I = NextMI;
continue;
}
assert(MI.getOperand(0).getReg() == AVR::SP &&
"Invalid register, should be SP!");
if (insertPushes) {
// Replace this instruction with a push.
unsigned SrcReg = MI.getOperand(2).getReg();
bool SrcIsKill = MI.getOperand(2).isKill();
// We can't use PUSHWRr here because when expanded the order of the new
// instructions are reversed from what we need. Perform the expansion now.
if (Opcode == AVR::STDWSPQRr) {
BuildMI(MBB, I, MI.getDebugLoc(), TII.get(AVR::PUSHRr))
.addReg(TRI.getSubReg(SrcReg, AVR::sub_hi),
getKillRegState(SrcIsKill));
BuildMI(MBB, I, MI.getDebugLoc(), TII.get(AVR::PUSHRr))
.addReg(TRI.getSubReg(SrcReg, AVR::sub_lo),
getKillRegState(SrcIsKill));
} else {
BuildMI(MBB, I, MI.getDebugLoc(), TII.get(AVR::PUSHRr))
.addReg(SrcReg, getKillRegState(SrcIsKill));
}
MI.eraseFromParent();
I = NextMI;
continue;
}
// Replace this instruction with a regular store. Use Y as the base
// pointer since it is guaranteed to contain a copy of SP.
unsigned STOpc =
(Opcode == AVR::STDWSPQRr) ? AVR::STDWPtrQRr : AVR::STDPtrQRr;
MI.setDesc(TII.get(STOpc));
MI.getOperand(0).setReg(AVR::R29R28);
I = NextMI;
}
}
MachineBasicBlock::iterator AVRFrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
const TargetFrameLowering &TFI = *STI.getFrameLowering();
const AVRInstrInfo &TII = *STI.getInstrInfo();
// There is nothing to insert when the call frame memory is allocated during
// function entry. Delete the call frame pseudo and replace all pseudo stores
// with real store instructions.
if (TFI.hasReservedCallFrame(MF)) {
fixStackStores(MBB, MI, TII, false);
return MBB.erase(MI);
}
DebugLoc DL = MI->getDebugLoc();
unsigned int Opcode = MI->getOpcode();
Add extra operand to CALLSEQ_START to keep frame part set up previously Using arguments with attribute inalloca creates problems for verification of machine representation. This attribute instructs the backend that the argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size stored in CALLSEQ_START in this case does not count the size of this argument. However CALLSEQ_END still keeps total frame size, as caller can be responsible for cleanup of entire frame. So CALLSEQ_START and CALLSEQ_END keep different frame size and the difference is treated by MachineVerifier as stack error. Currently there is no way to distinguish this case from actual errors. This patch adds additional argument to CALLSEQ_START and its target-specific counterparts to keep size of stack that is set up prior to the call frame sequence. This argument allows MachineVerifier to calculate actual frame size associated with frame setup instruction and correctly process the case of inalloca arguments. The changes made by the patch are: - Frame setup instructions get the second mandatory argument. It affects all targets that use frame pseudo instructions and touched many files although the changes are uniform. - Access to frame properties are implemented using special instructions rather than calls getOperand(N).getImm(). For X86 and ARM such replacement was made previously. - Changes that reflect appearance of additional argument of frame setup instruction. These involve proper instruction initialization and methods that access instruction arguments. - MachineVerifier retrieves frame size using method, which reports sum of frame parts initialized inside frame instruction pair and outside it. The patch implements approach proposed by Quentin Colombet in https://bugs.llvm.org/show_bug.cgi?id=27481#c1. It fixes 9 tests failed with machine verifier enabled and listed in PR27481. Differential Revision: https://reviews.llvm.org/D32394 llvm-svn: 302527
2017-05-09 21:35:13 +08:00
int Amount = TII.getFrameSize(*MI);
// Adjcallstackup does not need to allocate stack space for the call, instead
// we insert push instructions that will allocate the necessary stack.
// For adjcallstackdown we convert it into an 'adiw reg, <amt>' handling
// the read and write of SP in I/O space.
if (Amount != 0) {
assert(TFI.getStackAlignment() == 1 && "Unsupported stack alignment");
if (Opcode == TII.getCallFrameSetupOpcode()) {
fixStackStores(MBB, MI, TII, true);
} else {
assert(Opcode == TII.getCallFrameDestroyOpcode());
// Select the best opcode to adjust SP based on the offset size.
unsigned addOpcode;
if (isUInt<6>(Amount)) {
addOpcode = AVR::ADIWRdK;
} else {
addOpcode = AVR::SUBIWRdK;
Amount = -Amount;
}
// Build the instruction sequence.
BuildMI(MBB, MI, DL, TII.get(AVR::SPREAD), AVR::R31R30).addReg(AVR::SP);
MachineInstr *New = BuildMI(MBB, MI, DL, TII.get(addOpcode), AVR::R31R30)
.addReg(AVR::R31R30, RegState::Kill)
.addImm(Amount);
New->getOperand(3).setIsDead();
BuildMI(MBB, MI, DL, TII.get(AVR::SPWRITE), AVR::SP)
.addReg(AVR::R31R30, RegState::Kill);
}
}
return MBB.erase(MI);
}
void AVRFrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
// If we have a frame pointer, the Y register needs to be saved as well.
// We don't do that here however - the prologue and epilogue generation
// code will handle it specially.
}
/// The frame analyzer pass.
///
/// Scans the function for allocas and used arguments
/// that are passed through the stack.
struct AVRFrameAnalyzer : public MachineFunctionPass {
static char ID;
AVRFrameAnalyzer() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
AVRMachineFunctionInfo *FuncInfo = MF.getInfo<AVRMachineFunctionInfo>();
// If there are no fixed frame indexes during this stage it means there
// are allocas present in the function.
if (MFI.getNumObjects() != MFI.getNumFixedObjects()) {
// Check for the type of allocas present in the function. We only care
// about fixed size allocas so do not give false positives if only
// variable sized allocas are present.
for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
// Variable sized objects have size 0.
if (MFI.getObjectSize(i)) {
FuncInfo->setHasAllocas(true);
break;
}
}
}
// If there are fixed frame indexes present, scan the function to see if
// they are really being used.
if (MFI.getNumFixedObjects() == 0) {
return false;
}
// Ok fixed frame indexes present, now scan the function to see if they
// are really being used, otherwise we can ignore them.
for (const MachineBasicBlock &BB : MF) {
for (const MachineInstr &MI : BB) {
int Opcode = MI.getOpcode();
if ((Opcode != AVR::LDDRdPtrQ) && (Opcode != AVR::LDDWRdPtrQ) &&
(Opcode != AVR::STDPtrQRr) && (Opcode != AVR::STDWPtrQRr)) {
continue;
}
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isFI()) {
continue;
}
if (MFI.isFixedObjectIndex(MO.getIndex())) {
FuncInfo->setHasStackArgs(true);
return false;
}
}
}
}
return false;
}
StringRef getPassName() const { return "AVR Frame Analyzer"; }
};
char AVRFrameAnalyzer::ID = 0;
/// Creates instance of the frame analyzer pass.
FunctionPass *createAVRFrameAnalyzerPass() { return new AVRFrameAnalyzer(); }
/// Create the Dynalloca Stack Pointer Save/Restore pass.
/// Insert a copy of SP before allocating the dynamic stack memory and restore
/// it in function exit to restore the original SP state. This avoids the need
/// of reserving a register pair for a frame pointer.
struct AVRDynAllocaSR : public MachineFunctionPass {
static char ID;
AVRDynAllocaSR() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) {
// Early exit when there are no variable sized objects in the function.
if (!MF.getFrameInfo().hasVarSizedObjects()) {
return false;
}
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
const TargetInstrInfo &TII = *STI.getInstrInfo();
MachineBasicBlock &EntryMBB = MF.front();
MachineBasicBlock::iterator MBBI = EntryMBB.begin();
DebugLoc DL = EntryMBB.findDebugLoc(MBBI);
unsigned SPCopy =
MF.getRegInfo().createVirtualRegister(&AVR::DREGSRegClass);
// Create a copy of SP in function entry before any dynallocas are
// inserted.
BuildMI(EntryMBB, MBBI, DL, TII.get(AVR::COPY), SPCopy).addReg(AVR::SP);
// Restore SP in all exit basic blocks.
for (MachineBasicBlock &MBB : MF) {
// If last instruction is a return instruction, add a restore copy.
if (!MBB.empty() && MBB.back().isReturn()) {
MBBI = MBB.getLastNonDebugInstr();
DL = MBBI->getDebugLoc();
BuildMI(MBB, MBBI, DL, TII.get(AVR::COPY), AVR::SP)
.addReg(SPCopy, RegState::Kill);
}
}
return true;
}
StringRef getPassName() const {
return "AVR dynalloca stack pointer save/restore";
}
};
char AVRDynAllocaSR::ID = 0;
/// createAVRDynAllocaSRPass - returns an instance of the dynalloca stack
/// pointer save/restore pass.
FunctionPass *createAVRDynAllocaSRPass() { return new AVRDynAllocaSR(); }
} // end of namespace llvm