2020-10-07 03:15:36 +08:00
|
|
|
//===- SparseUtils.cpp - Sparse Utils for MLIR execution ------------------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
2021-01-16 11:49:01 +08:00
|
|
|
// This file implements a light-weight runtime support library that is useful
|
|
|
|
// for sparse tensor manipulations. The functionality provided in this library
|
2020-10-07 03:15:36 +08:00
|
|
|
// is meant to simplify benchmarking, testing, and debugging MLIR code that
|
|
|
|
// operates on sparse tensors. The provided functionality is **not** part
|
|
|
|
// of core MLIR, however.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2020-11-12 10:40:01 +08:00
|
|
|
#include "mlir/ExecutionEngine/CRunnerUtils.h"
|
|
|
|
|
|
|
|
#ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
|
|
|
|
|
2021-01-16 11:49:01 +08:00
|
|
|
#include <algorithm>
|
|
|
|
#include <cassert>
|
2020-10-07 03:15:36 +08:00
|
|
|
#include <cctype>
|
|
|
|
#include <cinttypes>
|
|
|
|
#include <cstdio>
|
|
|
|
#include <cstdlib>
|
|
|
|
#include <cstring>
|
2021-01-16 11:49:01 +08:00
|
|
|
#include <vector>
|
2020-10-07 03:15:36 +08:00
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
2021-01-16 11:49:01 +08:00
|
|
|
// Internal support for reading sparse tensors in one of the following
|
|
|
|
// external file formats:
|
|
|
|
//
|
|
|
|
// (1) Matrix Market Exchange (MME): *.mtx
|
|
|
|
// https://math.nist.gov/MatrixMarket/formats.html
|
|
|
|
//
|
|
|
|
// (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
|
|
|
|
// http://frostt.io/tensors/file-formats.html
|
2020-10-07 03:15:36 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2021-01-16 11:49:01 +08:00
|
|
|
namespace {
|
|
|
|
|
|
|
|
/// A sparse tensor element in coordinate scheme (value and indices).
|
|
|
|
/// For example, a rank-1 vector element would look like
|
|
|
|
/// ({i}, a[i])
|
|
|
|
/// and a rank-5 tensor element like
|
|
|
|
/// ({i,j,k,l,m}, a[i,j,k,l,m])
|
|
|
|
struct Element {
|
2021-01-21 02:37:22 +08:00
|
|
|
Element(const std::vector<uint64_t> &ind, double val)
|
2021-01-16 11:49:01 +08:00
|
|
|
: indices(ind), value(val){};
|
2021-01-21 02:37:22 +08:00
|
|
|
std::vector<uint64_t> indices;
|
2021-01-16 11:49:01 +08:00
|
|
|
double value;
|
|
|
|
};
|
|
|
|
|
|
|
|
/// A memory-resident sparse tensor in coordinate scheme (collection of
|
|
|
|
/// elements). This data structure is used to read a sparse tensor from
|
|
|
|
/// external file format into memory and sort the elements lexicographically
|
|
|
|
/// by indices before passing it back to the client (most packed storage
|
|
|
|
/// formats require the elements to appear in lexicographic index order).
|
|
|
|
struct SparseTensor {
|
|
|
|
public:
|
2021-01-21 02:37:22 +08:00
|
|
|
SparseTensor(const std::vector<uint64_t> &szs, uint64_t capacity)
|
|
|
|
: sizes(szs), pos(0) {
|
|
|
|
elements.reserve(capacity);
|
|
|
|
}
|
2021-01-16 11:49:01 +08:00
|
|
|
// Add element as indices and value.
|
2021-01-21 02:37:22 +08:00
|
|
|
void add(const std::vector<uint64_t> &ind, double val) {
|
|
|
|
assert(sizes.size() == ind.size());
|
|
|
|
for (int64_t r = 0, rank = sizes.size(); r < rank; r++)
|
|
|
|
assert(ind[r] < sizes[r]); // within bounds
|
2021-01-16 11:49:01 +08:00
|
|
|
elements.emplace_back(Element(ind, val));
|
|
|
|
}
|
|
|
|
// Sort elements lexicographically by index.
|
|
|
|
void sort() { std::sort(elements.begin(), elements.end(), lexOrder); }
|
|
|
|
// Primitive one-time iteration.
|
|
|
|
const Element &next() { return elements[pos++]; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Returns true if indices of e1 < indices of e2.
|
|
|
|
static bool lexOrder(const Element &e1, const Element &e2) {
|
|
|
|
assert(e1.indices.size() == e2.indices.size());
|
|
|
|
for (int64_t r = 0, rank = e1.indices.size(); r < rank; r++) {
|
|
|
|
if (e1.indices[r] == e2.indices[r])
|
|
|
|
continue;
|
|
|
|
return e1.indices[r] < e2.indices[r];
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
2021-01-21 02:37:22 +08:00
|
|
|
|
|
|
|
std::vector<uint64_t> sizes; // per-rank dimension sizes
|
2021-01-16 11:49:01 +08:00
|
|
|
std::vector<Element> elements;
|
|
|
|
uint64_t pos;
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Helper to convert string to lower case.
|
2020-10-07 03:15:36 +08:00
|
|
|
static char *toLower(char *token) {
|
|
|
|
for (char *c = token; *c; c++)
|
|
|
|
*c = tolower(*c);
|
|
|
|
return token;
|
|
|
|
}
|
|
|
|
|
2021-01-16 11:49:01 +08:00
|
|
|
/// Read the MME header of a general sparse matrix of type real.
|
|
|
|
static void readMMEHeader(FILE *file, char *name, uint64_t *idata) {
|
2020-10-07 03:15:36 +08:00
|
|
|
char line[1025];
|
|
|
|
char header[64];
|
|
|
|
char object[64];
|
|
|
|
char format[64];
|
|
|
|
char field[64];
|
|
|
|
char symmetry[64];
|
|
|
|
// Read header line.
|
|
|
|
if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field,
|
|
|
|
symmetry) != 5) {
|
|
|
|
fprintf(stderr, "Corrupt header in %s\n", name);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
// Make sure this is a general sparse matrix.
|
|
|
|
if (strcmp(toLower(header), "%%matrixmarket") ||
|
|
|
|
strcmp(toLower(object), "matrix") ||
|
|
|
|
strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") ||
|
|
|
|
strcmp(toLower(symmetry), "general")) {
|
|
|
|
fprintf(stderr,
|
|
|
|
"Cannot find a general sparse matrix with type real in %s\n", name);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
// Skip comments.
|
|
|
|
while (1) {
|
|
|
|
if (!fgets(line, 1025, file)) {
|
|
|
|
fprintf(stderr, "Cannot find data in %s\n", name);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
if (line[0] != '%')
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// Next line contains M N NNZ.
|
2021-01-16 11:49:01 +08:00
|
|
|
idata[0] = 2; // rank
|
|
|
|
if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3,
|
|
|
|
idata + 1) != 3) {
|
2020-10-07 03:15:36 +08:00
|
|
|
fprintf(stderr, "Cannot find size in %s\n", name);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-01-16 11:49:01 +08:00
|
|
|
/// Read the "extended" FROSTT header. Although not part of the documented
|
|
|
|
/// format, we assume that the file starts with optional comments followed
|
|
|
|
/// by two lines that define the rank, the number of nonzeros, and the
|
|
|
|
/// dimensions sizes (one per rank) of the sparse tensor.
|
|
|
|
static void readExtFROSTTHeader(FILE *file, char *name, uint64_t *idata) {
|
|
|
|
char line[1025];
|
|
|
|
// Skip comments.
|
|
|
|
while (1) {
|
|
|
|
if (!fgets(line, 1025, file)) {
|
|
|
|
fprintf(stderr, "Cannot find data in %s\n", name);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
if (line[0] != '#')
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// Next line contains RANK and NNZ.
|
|
|
|
if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) {
|
|
|
|
fprintf(stderr, "Cannot find metadata in %s\n", name);
|
2020-10-07 03:15:36 +08:00
|
|
|
exit(1);
|
|
|
|
}
|
2021-01-16 11:49:01 +08:00
|
|
|
// Followed by a line with the dimension sizes (one per rank).
|
|
|
|
for (uint64_t r = 0; r < idata[0]; r++) {
|
|
|
|
if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) {
|
|
|
|
fprintf(stderr, "Cannot find dimension size %s\n", name);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
2020-10-07 03:15:36 +08:00
|
|
|
}
|
|
|
|
|
2021-01-16 11:49:01 +08:00
|
|
|
} // anonymous namespace
|
|
|
|
|
2020-10-07 03:15:36 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
2021-01-16 11:49:01 +08:00
|
|
|
// Public API of the sparse runtime support library that enables MLIR code
|
|
|
|
// to read a sparse tensor from an external format (MME for FROSTT).
|
2020-10-07 03:15:36 +08:00
|
|
|
//
|
2021-01-16 11:49:01 +08:00
|
|
|
// For example, a sparse matrix in MME can be read as follows.
|
2020-10-07 03:15:36 +08:00
|
|
|
//
|
2021-01-16 11:49:01 +08:00
|
|
|
// %tensor = call @openTensor(%fileName, %idata)
|
|
|
|
// : (!llvm.ptr<i8>, memref<?xindex>) -> (!llvm.ptr<i8>)
|
|
|
|
// %rank = load %idata[%c0] : memref<?xindex> # always 2 for MME
|
|
|
|
// %nnz = load %idata[%c1] : memref<?xindex>
|
|
|
|
// %m = load %idata[%c2] : memref<?xindex>
|
|
|
|
// %n = load %idata[%c3] : memref<?xindex>
|
|
|
|
// .. prepare reading in m x n sparse tensor A with nnz nonzero elements ..
|
|
|
|
// scf.for %k = %c0 to %nnz step %c1 {
|
|
|
|
// call @readTensorItem(%tensor, %idata, %ddata)
|
|
|
|
// : (!llvm.ptr<i8>, memref<?xindex>, memref<?xf64>) -> ()
|
|
|
|
// %i = load %idata[%c0] : memref<?xindex>
|
|
|
|
// %j = load %idata[%c1] : memref<?xindex>
|
|
|
|
// %d = load %ddata[%c0] : memref<?xf64>
|
|
|
|
// .. process next nonzero element A[i][j] = d
|
|
|
|
// where the elements appear in lexicographic order ..
|
2020-10-07 03:15:36 +08:00
|
|
|
// }
|
2021-01-16 11:49:01 +08:00
|
|
|
// call @closeTensor(%tensor) : (!llvm.ptr<i8>) -> ()
|
2020-10-07 03:15:36 +08:00
|
|
|
//
|
|
|
|
//
|
2020-11-12 10:40:01 +08:00
|
|
|
// Note that input parameters in the "MLIRized" version of a function mimic
|
2021-01-16 11:49:01 +08:00
|
|
|
// the data layout of a MemRef<?xT>:
|
2020-11-12 10:40:01 +08:00
|
|
|
//
|
2020-10-07 03:15:36 +08:00
|
|
|
// struct MemRef {
|
|
|
|
// T *base;
|
|
|
|
// T *data;
|
|
|
|
// int64_t off;
|
2021-01-16 11:49:01 +08:00
|
|
|
// int64_t sizes[1];
|
|
|
|
// int64_t strides[1];
|
2020-10-07 03:15:36 +08:00
|
|
|
// }
|
2020-11-12 10:40:01 +08:00
|
|
|
//
|
2020-10-07 03:15:36 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2021-01-16 11:49:01 +08:00
|
|
|
/// Reads in a sparse tensor with the given filename. The call yields a
|
|
|
|
/// pointer to an opaque memory-resident sparse tensor object that is only
|
|
|
|
/// understood by other methods in the sparse runtime support library. An
|
|
|
|
/// array parameter is used to pass the rank, the number of nonzero elements,
|
|
|
|
/// and the dimension sizes (one per rank).
|
|
|
|
extern "C" void *openTensorC(char *filename, uint64_t *idata) {
|
|
|
|
// Open the file.
|
|
|
|
FILE *file = fopen(filename, "r");
|
|
|
|
if (!file) {
|
|
|
|
fprintf(stderr, "Cannot find %s\n", filename);
|
2020-10-07 03:15:36 +08:00
|
|
|
exit(1);
|
|
|
|
}
|
2021-01-16 11:49:01 +08:00
|
|
|
// Perform some file format dependent set up.
|
|
|
|
if (strstr(filename, ".mtx")) {
|
|
|
|
readMMEHeader(file, filename, idata);
|
|
|
|
} else if (strstr(filename, ".tns")) {
|
|
|
|
readExtFROSTTHeader(file, filename, idata);
|
|
|
|
} else {
|
|
|
|
fprintf(stderr, "Unknown format %s\n", filename);
|
2020-10-07 03:15:36 +08:00
|
|
|
exit(1);
|
|
|
|
}
|
2021-01-21 02:37:22 +08:00
|
|
|
// Prepare sparse tensor object with per-rank dimension sizes
|
|
|
|
// and the number of nonzeros as initial capacity.
|
2021-01-16 11:49:01 +08:00
|
|
|
uint64_t rank = idata[0];
|
|
|
|
uint64_t nnz = idata[1];
|
2021-01-21 02:37:22 +08:00
|
|
|
std::vector<uint64_t> indices(rank);
|
|
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
|
|
indices[r] = idata[2 + r];
|
|
|
|
SparseTensor *tensor = new SparseTensor(indices, nnz);
|
|
|
|
// Read all nonzero elements.
|
2021-01-16 11:49:01 +08:00
|
|
|
for (uint64_t k = 0; k < nnz; k++) {
|
|
|
|
for (uint64_t r = 0; r < rank; r++) {
|
2021-01-21 02:37:22 +08:00
|
|
|
if (fscanf(file, "%" PRIu64, &indices[r]) != 1) {
|
2021-01-16 11:49:01 +08:00
|
|
|
fprintf(stderr, "Cannot find next index in %s\n", filename);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
indices[r]--; // 0-based index
|
|
|
|
}
|
2021-01-21 02:37:22 +08:00
|
|
|
double value;
|
2021-01-16 11:49:01 +08:00
|
|
|
if (fscanf(file, "%lg\n", &value) != 1) {
|
|
|
|
fprintf(stderr, "Cannot find next value in %s\n", filename);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
tensor->add(indices, value);
|
|
|
|
}
|
|
|
|
// Close the file and return sorted tensor.
|
|
|
|
fclose(file);
|
|
|
|
tensor->sort(); // sort lexicographically
|
|
|
|
return tensor;
|
2020-10-07 03:15:36 +08:00
|
|
|
}
|
|
|
|
|
2021-01-16 11:49:01 +08:00
|
|
|
/// "MLIRized" version.
|
|
|
|
extern "C" void *openTensor(char *filename, uint64_t *ibase, uint64_t *idata,
|
|
|
|
uint64_t ioff, uint64_t isize, uint64_t istride) {
|
|
|
|
assert(istride == 1);
|
|
|
|
return openTensorC(filename, idata + ioff);
|
2020-11-12 10:40:01 +08:00
|
|
|
}
|
|
|
|
|
2021-01-16 11:49:01 +08:00
|
|
|
/// Yields the next element from the given opaque sparse tensor object.
|
|
|
|
extern "C" void readTensorItemC(void *tensor, uint64_t *idata, double *ddata) {
|
|
|
|
const Element &e = static_cast<SparseTensor *>(tensor)->next();
|
|
|
|
for (uint64_t r = 0, rank = e.indices.size(); r < rank; r++)
|
|
|
|
idata[r] = e.indices[r];
|
|
|
|
ddata[0] = e.value;
|
2020-10-07 03:15:36 +08:00
|
|
|
}
|
|
|
|
|
2021-01-16 11:49:01 +08:00
|
|
|
/// "MLIRized" version.
|
|
|
|
extern "C" void readTensorItem(void *tensor, uint64_t *ibase, uint64_t *idata,
|
|
|
|
uint64_t ioff, uint64_t isize, uint64_t istride,
|
|
|
|
double *dbase, double *ddata, uint64_t doff,
|
|
|
|
uint64_t dsize, uint64_t dstride) {
|
|
|
|
assert(istride == 1 && dstride == 1);
|
|
|
|
readTensorItemC(tensor, idata + ioff, ddata + doff);
|
2020-11-12 10:40:01 +08:00
|
|
|
}
|
|
|
|
|
2021-01-16 11:49:01 +08:00
|
|
|
/// Closes the given opaque sparse tensor object, releasing its memory
|
|
|
|
/// resources. After this call, the opague object cannot be used anymore.
|
|
|
|
extern "C" void closeTensor(void *tensor) {
|
|
|
|
delete static_cast<SparseTensor *>(tensor);
|
2020-10-07 03:15:36 +08:00
|
|
|
}
|
|
|
|
|
2021-01-16 11:49:01 +08:00
|
|
|
/// Helper method to read a sparse tensor filename from the environment,
|
|
|
|
/// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc.
|
|
|
|
extern "C" char *getTensorFilename(uint64_t id) {
|
2020-10-07 03:15:36 +08:00
|
|
|
char var[80];
|
2021-01-16 11:49:01 +08:00
|
|
|
sprintf(var, "TENSOR%" PRIu64, id);
|
2020-10-07 03:15:36 +08:00
|
|
|
char *env = getenv(var);
|
|
|
|
return env;
|
|
|
|
}
|
2020-11-12 10:40:01 +08:00
|
|
|
|
|
|
|
#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
|