llvm-project/llvm/test/CodeGen/SystemZ/fp-strict-mul-02.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

415 lines
19 KiB
LLVM
Raw Normal View History

Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
; Test strict multiplication of two f32s, producing an f64 result.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s
declare float @foo()
declare double @llvm.experimental.constrained.fmul.f64(double, double, metadata, metadata)
declare float @llvm.experimental.constrained.fadd.f32(float, float, metadata, metadata)
declare float @llvm.experimental.constrained.fptrunc.f32.f64(double, metadata, metadata)
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
declare double @llvm.experimental.constrained.fpext.f64.f32(float, metadata)
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
; Check register multiplication.
define double @f1(float %f1, float %f2) #0 {
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
; CHECK-LABEL: f1:
; CHECK: mdebr %f0, %f2
; CHECK: br %r14
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%f1x = call double @llvm.experimental.constrained.fpext.f64.f32(
float %f1,
metadata !"fpexcept.strict") #0
%f2x = call double @llvm.experimental.constrained.fpext.f64.f32(
float %f2,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%res = call double @llvm.experimental.constrained.fmul.f64(
double %f1x, double %f2x,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
ret double %res
}
; Check the low end of the MDEB range.
define double @f2(float %f1, float *%ptr) #0 {
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
; CHECK-LABEL: f2:
; CHECK: mdeb %f0, 0(%r2)
; CHECK: br %r14
%f2 = load float, float *%ptr
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%f1x = call double @llvm.experimental.constrained.fpext.f64.f32(
float %f1,
metadata !"fpexcept.strict") #0
%f2x = call double @llvm.experimental.constrained.fpext.f64.f32(
float %f2,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%res = call double @llvm.experimental.constrained.fmul.f64(
double %f1x, double %f2x,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
ret double %res
}
; Check the high end of the aligned MDEB range.
define double @f3(float %f1, float *%base) #0 {
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
; CHECK-LABEL: f3:
; CHECK: mdeb %f0, 4092(%r2)
; CHECK: br %r14
%ptr = getelementptr float, float *%base, i64 1023
%f2 = load float, float *%ptr
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%f1x = call double @llvm.experimental.constrained.fpext.f64.f32(
float %f1,
metadata !"fpexcept.strict") #0
%f2x = call double @llvm.experimental.constrained.fpext.f64.f32(
float %f2,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%res = call double @llvm.experimental.constrained.fmul.f64(
double %f1x, double %f2x,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
ret double %res
}
; Check the next word up, which needs separate address logic.
; Other sequences besides this one would be OK.
define double @f4(float %f1, float *%base) #0 {
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
; CHECK-LABEL: f4:
; CHECK: aghi %r2, 4096
; CHECK: mdeb %f0, 0(%r2)
; CHECK: br %r14
%ptr = getelementptr float, float *%base, i64 1024
%f2 = load float, float *%ptr
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%f1x = call double @llvm.experimental.constrained.fpext.f64.f32(
float %f1,
metadata !"fpexcept.strict") #0
%f2x = call double @llvm.experimental.constrained.fpext.f64.f32(
float %f2,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%res = call double @llvm.experimental.constrained.fmul.f64(
double %f1x, double %f2x,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
ret double %res
}
; Check negative displacements, which also need separate address logic.
define double @f5(float %f1, float *%base) #0 {
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
; CHECK-LABEL: f5:
; CHECK: aghi %r2, -4
; CHECK: mdeb %f0, 0(%r2)
; CHECK: br %r14
%ptr = getelementptr float, float *%base, i64 -1
%f2 = load float, float *%ptr
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%f1x = call double @llvm.experimental.constrained.fpext.f64.f32(
float %f1,
metadata !"fpexcept.strict") #0
%f2x = call double @llvm.experimental.constrained.fpext.f64.f32(
float %f2,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%res = call double @llvm.experimental.constrained.fmul.f64(
double %f1x, double %f2x,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
ret double %res
}
; Check that MDEB allows indices.
define double @f6(float %f1, float *%base, i64 %index) #0 {
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
; CHECK-LABEL: f6:
; CHECK: sllg %r1, %r3, 2
; CHECK: mdeb %f0, 400(%r1,%r2)
; CHECK: br %r14
%ptr1 = getelementptr float, float *%base, i64 %index
%ptr2 = getelementptr float, float *%ptr1, i64 100
%f2 = load float, float *%ptr2
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%f1x = call double @llvm.experimental.constrained.fpext.f64.f32(
float %f1,
metadata !"fpexcept.strict") #0
%f2x = call double @llvm.experimental.constrained.fpext.f64.f32(
float %f2,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%res = call double @llvm.experimental.constrained.fmul.f64(
double %f1x, double %f2x,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
ret double %res
}
; Check that multiplications of spilled values can use MDEB rather than MDEBR.
define float @f7(float *%ptr0) #0 {
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
; CHECK-LABEL: f7:
; CHECK: brasl %r14, foo@PLT
; CHECK: mdeb %f0, 16{{[04]}}(%r15)
; CHECK: br %r14
%ptr1 = getelementptr float, float *%ptr0, i64 2
%ptr2 = getelementptr float, float *%ptr0, i64 4
%ptr3 = getelementptr float, float *%ptr0, i64 6
%ptr4 = getelementptr float, float *%ptr0, i64 8
%ptr5 = getelementptr float, float *%ptr0, i64 10
%ptr6 = getelementptr float, float *%ptr0, i64 12
%ptr7 = getelementptr float, float *%ptr0, i64 14
%ptr8 = getelementptr float, float *%ptr0, i64 16
%ptr9 = getelementptr float, float *%ptr0, i64 18
%ptr10 = getelementptr float, float *%ptr0, i64 20
%val0 = load float, float *%ptr0
%val1 = load float, float *%ptr1
%val2 = load float, float *%ptr2
%val3 = load float, float *%ptr3
%val4 = load float, float *%ptr4
%val5 = load float, float *%ptr5
%val6 = load float, float *%ptr6
%val7 = load float, float *%ptr7
%val8 = load float, float *%ptr8
%val9 = load float, float *%ptr9
%val10 = load float, float *%ptr10
%frob0 = call float @llvm.experimental.constrained.fadd.f32(
float %val0, float %val0,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%frob1 = call float @llvm.experimental.constrained.fadd.f32(
float %val1, float %val1,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%frob2 = call float @llvm.experimental.constrained.fadd.f32(
float %val2, float %val2,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%frob3 = call float @llvm.experimental.constrained.fadd.f32(
float %val3, float %val3,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%frob4 = call float @llvm.experimental.constrained.fadd.f32(
float %val4, float %val4,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%frob5 = call float @llvm.experimental.constrained.fadd.f32(
float %val5, float %val5,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%frob6 = call float @llvm.experimental.constrained.fadd.f32(
float %val6, float %val6,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%frob7 = call float @llvm.experimental.constrained.fadd.f32(
float %val7, float %val7,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%frob8 = call float @llvm.experimental.constrained.fadd.f32(
float %val8, float %val8,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%frob9 = call float @llvm.experimental.constrained.fadd.f32(
float %val9, float %val9,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%frob10 = call float @llvm.experimental.constrained.fadd.f32(
float %val10, float %val10,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
store float %frob0, float *%ptr0
store float %frob1, float *%ptr1
store float %frob2, float *%ptr2
store float %frob3, float *%ptr3
store float %frob4, float *%ptr4
store float %frob5, float *%ptr5
store float %frob6, float *%ptr6
store float %frob7, float *%ptr7
store float %frob8, float *%ptr8
store float %frob9, float *%ptr9
store float %frob10, float *%ptr10
%ret = call float @foo() #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%accext0 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %ret,
metadata !"fpexcept.strict") #0
%ext0 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %frob0,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%mul0 = call double @llvm.experimental.constrained.fmul.f64(
double %accext0, double %ext0,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%extra0 = call double @llvm.experimental.constrained.fmul.f64(
double %mul0, double 1.01,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%trunc0 = call float @llvm.experimental.constrained.fptrunc.f32.f64(
double %extra0,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%accext1 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %trunc0,
metadata !"fpexcept.strict") #0
%ext1 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %frob1,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%mul1 = call double @llvm.experimental.constrained.fmul.f64(
double %accext1, double %ext1,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%extra1 = call double @llvm.experimental.constrained.fmul.f64(
double %mul1, double 1.11,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%trunc1 = call float @llvm.experimental.constrained.fptrunc.f32.f64(
double %extra1,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%accext2 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %trunc1,
metadata !"fpexcept.strict") #0
%ext2 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %frob2,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%mul2 = call double @llvm.experimental.constrained.fmul.f64(
double %accext2, double %ext2,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%extra2 = call double @llvm.experimental.constrained.fmul.f64(
double %mul2, double 1.21,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%trunc2 = call float @llvm.experimental.constrained.fptrunc.f32.f64(
double %extra2,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%accext3 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %trunc2,
metadata !"fpexcept.strict") #0
%ext3 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %frob3,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%mul3 = call double @llvm.experimental.constrained.fmul.f64(
double %accext3, double %ext3,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%extra3 = call double @llvm.experimental.constrained.fmul.f64(
double %mul3, double 1.31,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%trunc3 = call float @llvm.experimental.constrained.fptrunc.f32.f64(
double %extra3,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%accext4 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %trunc3,
metadata !"fpexcept.strict") #0
%ext4 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %frob4,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%mul4 = call double @llvm.experimental.constrained.fmul.f64(
double %accext4, double %ext4,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%extra4 = call double @llvm.experimental.constrained.fmul.f64(
double %mul4, double 1.41,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%trunc4 = call float @llvm.experimental.constrained.fptrunc.f32.f64(
double %extra4,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%accext5 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %trunc4,
metadata !"fpexcept.strict") #0
%ext5 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %frob5,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%mul5 = call double @llvm.experimental.constrained.fmul.f64(
double %accext5, double %ext5,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%extra5 = call double @llvm.experimental.constrained.fmul.f64(
double %mul5, double 1.51,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%trunc5 = call float @llvm.experimental.constrained.fptrunc.f32.f64(
double %extra5,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%accext6 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %trunc5,
metadata !"fpexcept.strict") #0
%ext6 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %frob6,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%mul6 = call double @llvm.experimental.constrained.fmul.f64(
double %accext6, double %ext6,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%extra6 = call double @llvm.experimental.constrained.fmul.f64(
double %mul6, double 1.61,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%trunc6 = call float @llvm.experimental.constrained.fptrunc.f32.f64(
double %extra6,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%accext7 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %trunc6,
metadata !"fpexcept.strict") #0
%ext7 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %frob7,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%mul7 = call double @llvm.experimental.constrained.fmul.f64(
double %accext7, double %ext7,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%extra7 = call double @llvm.experimental.constrained.fmul.f64(
double %mul7, double 1.71,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%trunc7 = call float @llvm.experimental.constrained.fptrunc.f32.f64(
double %extra7,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%accext8 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %trunc7,
metadata !"fpexcept.strict") #0
%ext8 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %frob8,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%mul8 = call double @llvm.experimental.constrained.fmul.f64(
double %accext8, double %ext8,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%extra8 = call double @llvm.experimental.constrained.fmul.f64(
double %mul8, double 1.81,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%trunc8 = call float @llvm.experimental.constrained.fptrunc.f32.f64(
double %extra8,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
[FPEnv][SelectionDAG] Relax chain requirements This patch implements the following changes: 1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats each constrained intrinsic like a global barrier (e.g. a function call) and fully serializes all pending chains. This is actually not required; it is allowed for constrained intrinsics to be reordered w.r.t one another or (nonvolatile) memory accesses. The MI-level scheduler already allows for that flexibility, so it makes sense to allow it at the DAG level as well. This patch therefore changes the way chains for constrained intrisincs are created, and handles them basically like load operations are handled. This has the effect that constrained intrinsics are no longer serialized against one another or (nonvolatile) loads. They are still serialized against stores, but that seems hard to change with the current DAG chain setup, and it also doesn't seem to be a big problem preventing DAG 2) The OPC_CheckFoldableChainNode check requires that each of the intermediate nodes in a multi-node pattern match only has a single use. This check tends to fail if those intermediate nodes are strict operations as those have a chain output that typically indeed has another use. However, we don't really need to consider chains here at all, since they will all be rewritten anyway by UpdateChains later. Other parts of the matcher therefore already ignore chains, but this hasOneUse check doesn't. This patch replaces hasOneUse by a custom test that verifies there is no more than one use of any non-chain output value. In theory, this change could affect code unrelated to strict FP nodes, but at least on SystemZ I could not find any single instance of that happening 3) The SystemZ back-end currently does not allow matching multiply-and- extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for strict FP operations. This was not possible in the past due to the problems described under 1) and 2) above. With those issues fixed, it is now possible to fully support those instructions in strict mode as well, and this patch does so. Differential Revision: https://reviews.llvm.org/D70913
2019-12-06 18:02:11 +08:00
%accext9 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %trunc8,
metadata !"fpexcept.strict") #0
%ext9 = call double @llvm.experimental.constrained.fpext.f64.f32(
float %frob9,
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%mul9 = call double @llvm.experimental.constrained.fmul.f64(
double %accext9, double %ext9,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
%extra9 = call double @llvm.experimental.constrained.fmul.f64(
double %mul9, double 1.91,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
%trunc9 = call float @llvm.experimental.constrained.fptrunc.f32.f64(
double %extra9,
metadata !"round.dynamic",
metadata !"fpexcept.strict") #0
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
ret float %trunc9
}
attributes #0 = { strictfp }