2010-05-12 03:42:16 +08:00
|
|
|
// -*- C++ -*-
|
|
|
|
//===---------------------------- cmath -----------------------------------===//
|
|
|
|
//
|
2019-01-19 18:56:40 +08:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
2010-05-12 03:42:16 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#ifndef _LIBCPP_CMATH
|
|
|
|
#define _LIBCPP_CMATH
|
|
|
|
|
|
|
|
/*
|
|
|
|
cmath synopsis
|
|
|
|
|
|
|
|
Macros:
|
|
|
|
|
|
|
|
HUGE_VAL
|
|
|
|
HUGE_VALF // C99
|
|
|
|
HUGE_VALL // C99
|
|
|
|
INFINITY // C99
|
|
|
|
NAN // C99
|
|
|
|
FP_INFINITE // C99
|
|
|
|
FP_NAN // C99
|
|
|
|
FP_NORMAL // C99
|
|
|
|
FP_SUBNORMAL // C99
|
|
|
|
FP_ZERO // C99
|
|
|
|
FP_FAST_FMA // C99
|
|
|
|
FP_FAST_FMAF // C99
|
|
|
|
FP_FAST_FMAL // C99
|
|
|
|
FP_ILOGB0 // C99
|
|
|
|
FP_ILOGBNAN // C99
|
|
|
|
MATH_ERRNO // C99
|
|
|
|
MATH_ERREXCEPT // C99
|
|
|
|
math_errhandling // C99
|
|
|
|
|
|
|
|
namespace std
|
|
|
|
{
|
|
|
|
|
|
|
|
Types:
|
|
|
|
|
|
|
|
float_t // C99
|
|
|
|
double_t // C99
|
|
|
|
|
|
|
|
// C90
|
|
|
|
|
|
|
|
floating_point abs(floating_point x);
|
|
|
|
|
|
|
|
floating_point acos (arithmetic x);
|
|
|
|
float acosf(float x);
|
|
|
|
long double acosl(long double x);
|
|
|
|
|
|
|
|
floating_point asin (arithmetic x);
|
|
|
|
float asinf(float x);
|
|
|
|
long double asinl(long double x);
|
|
|
|
|
|
|
|
floating_point atan (arithmetic x);
|
|
|
|
float atanf(float x);
|
|
|
|
long double atanl(long double x);
|
|
|
|
|
|
|
|
floating_point atan2 (arithmetic y, arithmetic x);
|
|
|
|
float atan2f(float y, float x);
|
|
|
|
long double atan2l(long double y, long double x);
|
|
|
|
|
|
|
|
floating_point ceil (arithmetic x);
|
|
|
|
float ceilf(float x);
|
|
|
|
long double ceill(long double x);
|
|
|
|
|
|
|
|
floating_point cos (arithmetic x);
|
|
|
|
float cosf(float x);
|
|
|
|
long double cosl(long double x);
|
|
|
|
|
|
|
|
floating_point cosh (arithmetic x);
|
|
|
|
float coshf(float x);
|
|
|
|
long double coshl(long double x);
|
|
|
|
|
|
|
|
floating_point exp (arithmetic x);
|
|
|
|
float expf(float x);
|
|
|
|
long double expl(long double x);
|
|
|
|
|
|
|
|
floating_point fabs (arithmetic x);
|
|
|
|
float fabsf(float x);
|
|
|
|
long double fabsl(long double x);
|
|
|
|
|
|
|
|
floating_point floor (arithmetic x);
|
|
|
|
float floorf(float x);
|
|
|
|
long double floorl(long double x);
|
|
|
|
|
|
|
|
floating_point fmod (arithmetic x, arithmetic y);
|
|
|
|
float fmodf(float x, float y);
|
|
|
|
long double fmodl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point frexp (arithmetic value, int* exp);
|
|
|
|
float frexpf(float value, int* exp);
|
|
|
|
long double frexpl(long double value, int* exp);
|
|
|
|
|
|
|
|
floating_point ldexp (arithmetic value, int exp);
|
|
|
|
float ldexpf(float value, int exp);
|
|
|
|
long double ldexpl(long double value, int exp);
|
|
|
|
|
|
|
|
floating_point log (arithmetic x);
|
|
|
|
float logf(float x);
|
|
|
|
long double logl(long double x);
|
|
|
|
|
|
|
|
floating_point log10 (arithmetic x);
|
|
|
|
float log10f(float x);
|
|
|
|
long double log10l(long double x);
|
|
|
|
|
|
|
|
floating_point modf (floating_point value, floating_point* iptr);
|
|
|
|
float modff(float value, float* iptr);
|
|
|
|
long double modfl(long double value, long double* iptr);
|
|
|
|
|
|
|
|
floating_point pow (arithmetic x, arithmetic y);
|
|
|
|
float powf(float x, float y);
|
|
|
|
long double powl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point sin (arithmetic x);
|
|
|
|
float sinf(float x);
|
|
|
|
long double sinl(long double x);
|
|
|
|
|
|
|
|
floating_point sinh (arithmetic x);
|
|
|
|
float sinhf(float x);
|
|
|
|
long double sinhl(long double x);
|
|
|
|
|
|
|
|
floating_point sqrt (arithmetic x);
|
|
|
|
float sqrtf(float x);
|
|
|
|
long double sqrtl(long double x);
|
|
|
|
|
|
|
|
floating_point tan (arithmetic x);
|
|
|
|
float tanf(float x);
|
|
|
|
long double tanl(long double x);
|
|
|
|
|
|
|
|
floating_point tanh (arithmetic x);
|
|
|
|
float tanhf(float x);
|
|
|
|
long double tanhl(long double x);
|
|
|
|
|
|
|
|
// C99
|
|
|
|
|
2013-01-15 04:56:22 +08:00
|
|
|
bool signbit(arithmetic x);
|
2010-05-12 03:42:16 +08:00
|
|
|
|
2013-01-15 04:56:22 +08:00
|
|
|
int fpclassify(arithmetic x);
|
2010-05-12 03:42:16 +08:00
|
|
|
|
2013-01-15 04:56:22 +08:00
|
|
|
bool isfinite(arithmetic x);
|
|
|
|
bool isinf(arithmetic x);
|
|
|
|
bool isnan(arithmetic x);
|
|
|
|
bool isnormal(arithmetic x);
|
2010-08-22 08:02:43 +08:00
|
|
|
|
2013-01-15 04:56:22 +08:00
|
|
|
bool isgreater(arithmetic x, arithmetic y);
|
|
|
|
bool isgreaterequal(arithmetic x, arithmetic y);
|
|
|
|
bool isless(arithmetic x, arithmetic y);
|
|
|
|
bool islessequal(arithmetic x, arithmetic y);
|
|
|
|
bool islessgreater(arithmetic x, arithmetic y);
|
|
|
|
bool isunordered(arithmetic x, arithmetic y);
|
2010-05-12 03:42:16 +08:00
|
|
|
|
|
|
|
floating_point acosh (arithmetic x);
|
|
|
|
float acoshf(float x);
|
|
|
|
long double acoshl(long double x);
|
|
|
|
|
|
|
|
floating_point asinh (arithmetic x);
|
|
|
|
float asinhf(float x);
|
|
|
|
long double asinhl(long double x);
|
|
|
|
|
|
|
|
floating_point atanh (arithmetic x);
|
|
|
|
float atanhf(float x);
|
|
|
|
long double atanhl(long double x);
|
|
|
|
|
|
|
|
floating_point cbrt (arithmetic x);
|
|
|
|
float cbrtf(float x);
|
|
|
|
long double cbrtl(long double x);
|
|
|
|
|
|
|
|
floating_point copysign (arithmetic x, arithmetic y);
|
|
|
|
float copysignf(float x, float y);
|
|
|
|
long double copysignl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point erf (arithmetic x);
|
|
|
|
float erff(float x);
|
|
|
|
long double erfl(long double x);
|
|
|
|
|
|
|
|
floating_point erfc (arithmetic x);
|
|
|
|
float erfcf(float x);
|
|
|
|
long double erfcl(long double x);
|
|
|
|
|
|
|
|
floating_point exp2 (arithmetic x);
|
|
|
|
float exp2f(float x);
|
|
|
|
long double exp2l(long double x);
|
|
|
|
|
|
|
|
floating_point expm1 (arithmetic x);
|
|
|
|
float expm1f(float x);
|
|
|
|
long double expm1l(long double x);
|
|
|
|
|
|
|
|
floating_point fdim (arithmetic x, arithmetic y);
|
|
|
|
float fdimf(float x, float y);
|
|
|
|
long double fdiml(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point fma (arithmetic x, arithmetic y, arithmetic z);
|
|
|
|
float fmaf(float x, float y, float z);
|
|
|
|
long double fmal(long double x, long double y, long double z);
|
|
|
|
|
|
|
|
floating_point fmax (arithmetic x, arithmetic y);
|
|
|
|
float fmaxf(float x, float y);
|
|
|
|
long double fmaxl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point fmin (arithmetic x, arithmetic y);
|
|
|
|
float fminf(float x, float y);
|
|
|
|
long double fminl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point hypot (arithmetic x, arithmetic y);
|
|
|
|
float hypotf(float x, float y);
|
|
|
|
long double hypotl(long double x, long double y);
|
|
|
|
|
2016-05-17 22:52:19 +08:00
|
|
|
double hypot(double x, double y, double z); // C++17
|
|
|
|
float hypot(float x, float y, float z); // C++17
|
|
|
|
long double hypot(long double x, long double y, long double z); // C++17
|
|
|
|
|
2010-05-12 03:42:16 +08:00
|
|
|
int ilogb (arithmetic x);
|
|
|
|
int ilogbf(float x);
|
|
|
|
int ilogbl(long double x);
|
|
|
|
|
|
|
|
floating_point lgamma (arithmetic x);
|
|
|
|
float lgammaf(float x);
|
|
|
|
long double lgammal(long double x);
|
|
|
|
|
|
|
|
long long llrint (arithmetic x);
|
|
|
|
long long llrintf(float x);
|
|
|
|
long long llrintl(long double x);
|
|
|
|
|
|
|
|
long long llround (arithmetic x);
|
|
|
|
long long llroundf(float x);
|
|
|
|
long long llroundl(long double x);
|
|
|
|
|
|
|
|
floating_point log1p (arithmetic x);
|
|
|
|
float log1pf(float x);
|
|
|
|
long double log1pl(long double x);
|
|
|
|
|
|
|
|
floating_point log2 (arithmetic x);
|
|
|
|
float log2f(float x);
|
|
|
|
long double log2l(long double x);
|
|
|
|
|
|
|
|
floating_point logb (arithmetic x);
|
|
|
|
float logbf(float x);
|
|
|
|
long double logbl(long double x);
|
|
|
|
|
|
|
|
long lrint (arithmetic x);
|
|
|
|
long lrintf(float x);
|
|
|
|
long lrintl(long double x);
|
|
|
|
|
|
|
|
long lround (arithmetic x);
|
|
|
|
long lroundf(float x);
|
|
|
|
long lroundl(long double x);
|
|
|
|
|
|
|
|
double nan (const char* str);
|
|
|
|
float nanf(const char* str);
|
|
|
|
long double nanl(const char* str);
|
|
|
|
|
|
|
|
floating_point nearbyint (arithmetic x);
|
|
|
|
float nearbyintf(float x);
|
|
|
|
long double nearbyintl(long double x);
|
|
|
|
|
|
|
|
floating_point nextafter (arithmetic x, arithmetic y);
|
|
|
|
float nextafterf(float x, float y);
|
|
|
|
long double nextafterl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point nexttoward (arithmetic x, long double y);
|
|
|
|
float nexttowardf(float x, long double y);
|
|
|
|
long double nexttowardl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point remainder (arithmetic x, arithmetic y);
|
|
|
|
float remainderf(float x, float y);
|
|
|
|
long double remainderl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point remquo (arithmetic x, arithmetic y, int* pquo);
|
|
|
|
float remquof(float x, float y, int* pquo);
|
|
|
|
long double remquol(long double x, long double y, int* pquo);
|
|
|
|
|
|
|
|
floating_point rint (arithmetic x);
|
|
|
|
float rintf(float x);
|
|
|
|
long double rintl(long double x);
|
|
|
|
|
|
|
|
floating_point round (arithmetic x);
|
|
|
|
float roundf(float x);
|
|
|
|
long double roundl(long double x);
|
|
|
|
|
|
|
|
floating_point scalbln (arithmetic x, long ex);
|
|
|
|
float scalblnf(float x, long ex);
|
|
|
|
long double scalblnl(long double x, long ex);
|
|
|
|
|
|
|
|
floating_point scalbn (arithmetic x, int ex);
|
|
|
|
float scalbnf(float x, int ex);
|
|
|
|
long double scalbnl(long double x, int ex);
|
|
|
|
|
|
|
|
floating_point tgamma (arithmetic x);
|
|
|
|
float tgammaf(float x);
|
|
|
|
long double tgammal(long double x);
|
|
|
|
|
|
|
|
floating_point trunc (arithmetic x);
|
|
|
|
float truncf(float x);
|
|
|
|
long double truncl(long double x);
|
|
|
|
|
2020-05-26 04:26:50 +08:00
|
|
|
constexpr float lerp(float a, float b, float t) noexcept; // C++20
|
|
|
|
constexpr double lerp(double a, double b, double t) noexcept; // C++20
|
|
|
|
constexpr long double lerp(long double a, long double b, long double t) noexcept; // C++20
|
|
|
|
|
2010-05-12 03:42:16 +08:00
|
|
|
} // std
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <__config>
|
|
|
|
#include <math.h>
|
2018-09-13 03:41:40 +08:00
|
|
|
#include <version>
|
2019-09-04 21:35:03 +08:00
|
|
|
#include <type_traits>
|
2011-10-28 00:24:42 +08:00
|
|
|
|
2011-10-18 04:05:10 +08:00
|
|
|
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
|
2010-05-12 03:42:16 +08:00
|
|
|
#pragma GCC system_header
|
2011-10-18 04:05:10 +08:00
|
|
|
#endif
|
2010-05-12 03:42:16 +08:00
|
|
|
|
2019-09-04 21:35:03 +08:00
|
|
|
_LIBCPP_PUSH_MACROS
|
|
|
|
#include <__undef_macros>
|
|
|
|
|
2011-05-14 05:52:40 +08:00
|
|
|
_LIBCPP_BEGIN_NAMESPACE_STD
|
2010-05-12 03:42:16 +08:00
|
|
|
|
[libc++] Use the using_if_exists attribute when provided
As discussed on cfe-dev [1], use the using_if_exists Clang attribute when
the compiler supports it. This makes it easier to port libc++ on top of
new platforms that don't fully support the C Standard library.
Previously, libc++ would fail to build when trying to import a missing
declaration in a <cXXXX> header. With the attribute, the declaration will
simply not be imported into namespace std, and hence it won't be available
for libc++ to use. In many cases, the declarations were *not* actually
required for libc++ to work (they were only surfaced for users to use
them as std::XXXX), so not importing them into namespace std is acceptable.
The same thing could be achieved by conscious usage of `#ifdef` along
with platform detection, however that quickly creates a maintenance
problem as libc++ is ported to new platforms. Furthermore, this problem
is exacerbated when mixed with vendor internal-only platforms, which can
lead to difficulties maintaining a downstream fork of the library.
For the time being, we only use the using_if_exists attribute when it
is supported. At some point in the future, we will start removing #ifdef
paths that are unnecessary when the attribute is supported, and folks
who need those #ifdef paths will be required to use a compiler that
supports the attribute.
[1]: http://lists.llvm.org/pipermail/cfe-dev/2020-June/066038.html
Differential Revision: https://reviews.llvm.org/D90257
2021-06-02 22:41:37 +08:00
|
|
|
using ::signbit _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fpclassify _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isfinite _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isinf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isnan _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isnormal _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isgreater _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isgreaterequal _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isless _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::islessequal _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::islessgreater _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isunordered _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isunordered _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::float_t _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::double_t _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::abs _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::acos _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::acosf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::asin _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::asinf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atan _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atanf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atan2 _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atan2f _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ceil _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ceilf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cos _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cosf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cosh _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::coshf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::exp _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::expf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::fabs _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fabsf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::floor _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::floorf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::fmod _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmodf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::frexp _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::frexpf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ldexp _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ldexpf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::log _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::logf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::log10 _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log10f _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::modf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::modff _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::pow _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::powf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::sin _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sinf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sinh _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sinhf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::sqrt _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sqrtf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tan _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tanf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::tanh _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tanhf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::acosh _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::acoshf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::asinh _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::asinhf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atanh _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atanhf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cbrt _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cbrtf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::copysign _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::copysignf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::erf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::erff _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::erfc _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::erfcf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::exp2 _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::exp2f _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::expm1 _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::expm1f _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fdim _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fdimf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmaf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fma _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmax _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmaxf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmin _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fminf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::hypot _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::hypotf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ilogb _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ilogbf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lgamma _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lgammaf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::llrint _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::llrintf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::llround _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::llroundf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log1p _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log1pf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log2 _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log2f _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::logb _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::logbf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lrint _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lrintf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lround _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lroundf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::nan _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nanf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::nearbyint _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nearbyintf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nextafter _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nextafterf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nexttoward _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nexttowardf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::remainder _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::remainderf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::remquo _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::remquof _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::rint _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::rintf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::round _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::roundf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::scalbln _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::scalblnf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::scalbn _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::scalbnf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tgamma _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tgammaf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::trunc _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::truncf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::acosl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::asinl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atanl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atan2l _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ceill _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cosl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::coshl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::expl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fabsl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::floorl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmodl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::frexpl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ldexpl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::logl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log10l _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::modfl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::powl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sinl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sinhl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sqrtl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tanl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::tanhl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::acoshl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::asinhl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atanhl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cbrtl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::copysignl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::erfl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::erfcl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::exp2l _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::expm1l _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fdiml _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmal _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmaxl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fminl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::hypotl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ilogbl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lgammal _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::llrintl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::llroundl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log1pl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log2l _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::logbl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lrintl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lroundl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nanl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nearbyintl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nextafterl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nexttowardl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::remainderl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::remquol _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::rintl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::roundl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::scalblnl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::scalbnl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tgammal _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::truncl _LIBCPP_USING_IF_EXISTS;
|
2010-05-12 03:42:16 +08:00
|
|
|
|
2016-05-17 22:52:19 +08:00
|
|
|
#if _LIBCPP_STD_VER > 14
|
|
|
|
inline _LIBCPP_INLINE_VISIBILITY float hypot( float x, float y, float z ) { return sqrt(x*x + y*y + z*z); }
|
|
|
|
inline _LIBCPP_INLINE_VISIBILITY double hypot( double x, double y, double z ) { return sqrt(x*x + y*y + z*z); }
|
|
|
|
inline _LIBCPP_INLINE_VISIBILITY long double hypot( long double x, long double y, long double z ) { return sqrt(x*x + y*y + z*z); }
|
|
|
|
|
|
|
|
template <class _A1, class _A2, class _A3>
|
|
|
|
inline _LIBCPP_INLINE_VISIBILITY
|
2019-06-24 04:28:29 +08:00
|
|
|
typename _EnableIf
|
2016-05-17 22:52:19 +08:00
|
|
|
<
|
2016-10-02 04:38:44 +08:00
|
|
|
is_arithmetic<_A1>::value &&
|
|
|
|
is_arithmetic<_A2>::value &&
|
|
|
|
is_arithmetic<_A3>::value,
|
|
|
|
__promote<_A1, _A2, _A3>
|
2016-05-17 22:52:19 +08:00
|
|
|
>::type
|
|
|
|
hypot(_A1 __lcpp_x, _A2 __lcpp_y, _A3 __lcpp_z) _NOEXCEPT
|
|
|
|
{
|
2016-10-02 04:38:44 +08:00
|
|
|
typedef typename __promote<_A1, _A2, _A3>::type __result_type;
|
|
|
|
static_assert((!(is_same<_A1, __result_type>::value &&
|
|
|
|
is_same<_A2, __result_type>::value &&
|
|
|
|
is_same<_A3, __result_type>::value)), "");
|
2016-05-17 22:52:19 +08:00
|
|
|
return hypot((__result_type)__lcpp_x, (__result_type)__lcpp_y, (__result_type)__lcpp_z);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-02 04:38:31 +08:00
|
|
|
template <class _A1>
|
2018-07-12 07:14:33 +08:00
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
2016-11-16 03:15:57 +08:00
|
|
|
_LIBCPP_CONSTEXPR typename enable_if<is_floating_point<_A1>::value, bool>::type
|
2017-07-07 13:13:36 +08:00
|
|
|
__libcpp_isnan_or_builtin(_A1 __lcpp_x) _NOEXCEPT
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-02 04:38:31 +08:00
|
|
|
{
|
|
|
|
#if __has_builtin(__builtin_isnan)
|
|
|
|
return __builtin_isnan(__lcpp_x);
|
|
|
|
#else
|
|
|
|
return isnan(__lcpp_x);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _A1>
|
2018-07-12 07:14:33 +08:00
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
2016-11-16 03:15:57 +08:00
|
|
|
_LIBCPP_CONSTEXPR typename enable_if<!is_floating_point<_A1>::value, bool>::type
|
2017-07-07 13:13:36 +08:00
|
|
|
__libcpp_isnan_or_builtin(_A1 __lcpp_x) _NOEXCEPT
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-02 04:38:31 +08:00
|
|
|
{
|
|
|
|
return isnan(__lcpp_x);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _A1>
|
2018-07-12 07:14:33 +08:00
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
2016-11-16 03:15:57 +08:00
|
|
|
_LIBCPP_CONSTEXPR typename enable_if<is_floating_point<_A1>::value, bool>::type
|
2017-07-07 13:13:36 +08:00
|
|
|
__libcpp_isinf_or_builtin(_A1 __lcpp_x) _NOEXCEPT
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-02 04:38:31 +08:00
|
|
|
{
|
|
|
|
#if __has_builtin(__builtin_isinf)
|
|
|
|
return __builtin_isinf(__lcpp_x);
|
|
|
|
#else
|
|
|
|
return isinf(__lcpp_x);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _A1>
|
2018-07-12 07:14:33 +08:00
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
2016-11-16 03:15:57 +08:00
|
|
|
_LIBCPP_CONSTEXPR typename enable_if<!is_floating_point<_A1>::value, bool>::type
|
2017-07-07 13:13:36 +08:00
|
|
|
__libcpp_isinf_or_builtin(_A1 __lcpp_x) _NOEXCEPT
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-02 04:38:31 +08:00
|
|
|
{
|
|
|
|
return isinf(__lcpp_x);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _A1>
|
2018-07-12 07:14:33 +08:00
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
2016-11-16 03:15:57 +08:00
|
|
|
_LIBCPP_CONSTEXPR typename enable_if<is_floating_point<_A1>::value, bool>::type
|
2017-07-07 13:13:36 +08:00
|
|
|
__libcpp_isfinite_or_builtin(_A1 __lcpp_x) _NOEXCEPT
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-02 04:38:31 +08:00
|
|
|
{
|
|
|
|
#if __has_builtin(__builtin_isfinite)
|
|
|
|
return __builtin_isfinite(__lcpp_x);
|
|
|
|
#else
|
|
|
|
return isfinite(__lcpp_x);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _A1>
|
2018-07-12 07:14:33 +08:00
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
2016-11-16 03:15:57 +08:00
|
|
|
_LIBCPP_CONSTEXPR typename enable_if<!is_floating_point<_A1>::value, bool>::type
|
2017-07-07 13:13:36 +08:00
|
|
|
__libcpp_isfinite_or_builtin(_A1 __lcpp_x) _NOEXCEPT
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-02 04:38:31 +08:00
|
|
|
{
|
|
|
|
return isfinite(__lcpp_x);
|
|
|
|
}
|
|
|
|
|
2019-04-26 01:44:18 +08:00
|
|
|
#if _LIBCPP_STD_VER > 17
|
|
|
|
template <typename _Fp>
|
|
|
|
constexpr
|
|
|
|
_Fp __lerp(_Fp __a, _Fp __b, _Fp __t) noexcept {
|
|
|
|
if ((__a <= 0 && __b >= 0) || (__a >= 0 && __b <= 0))
|
|
|
|
return __t * __b + (1 - __t) * __a;
|
|
|
|
|
|
|
|
if (__t == 1) return __b;
|
|
|
|
const _Fp __x = __a + __t * (__b - __a);
|
2021-07-28 05:30:47 +08:00
|
|
|
if ((__t > 1) == (__b > __a))
|
2021-04-18 05:03:20 +08:00
|
|
|
return __b < __x ? __x : __b;
|
2019-04-26 01:44:18 +08:00
|
|
|
else
|
2021-04-18 05:03:20 +08:00
|
|
|
return __x < __b ? __x : __b;
|
2019-04-26 01:44:18 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
constexpr float
|
|
|
|
lerp(float __a, float __b, float __t) _NOEXCEPT { return __lerp(__a, __b, __t); }
|
|
|
|
|
|
|
|
constexpr double
|
|
|
|
lerp(double __a, double __b, double __t) _NOEXCEPT { return __lerp(__a, __b, __t); }
|
|
|
|
|
|
|
|
constexpr long double
|
|
|
|
lerp(long double __a, long double __b, long double __t) _NOEXCEPT { return __lerp(__a, __b, __t); }
|
|
|
|
|
|
|
|
#endif // _LIBCPP_STD_VER > 17
|
|
|
|
|
2019-09-04 21:35:03 +08:00
|
|
|
template <class _IntT, class _FloatT,
|
|
|
|
bool _FloatBigger = (numeric_limits<_FloatT>::digits > numeric_limits<_IntT>::digits),
|
|
|
|
int _Bits = (numeric_limits<_IntT>::digits - numeric_limits<_FloatT>::digits)>
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
_LIBCPP_CONSTEXPR _IntT __max_representable_int_for_float() _NOEXCEPT {
|
|
|
|
static_assert(is_floating_point<_FloatT>::value, "must be a floating point type");
|
|
|
|
static_assert(is_integral<_IntT>::value, "must be an integral type");
|
|
|
|
static_assert(numeric_limits<_FloatT>::radix == 2, "FloatT has incorrect radix");
|
2019-10-01 20:12:21 +08:00
|
|
|
static_assert((_IsSame<_FloatT, float>::value || _IsSame<_FloatT, double>::value
|
|
|
|
|| _IsSame<_FloatT,long double>::value), "unsupported floating point type");
|
2019-09-04 21:35:03 +08:00
|
|
|
return _FloatBigger ? numeric_limits<_IntT>::max() : (numeric_limits<_IntT>::max() >> _Bits << _Bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Convert a floating point number to the specified integral type after
|
|
|
|
// clamping to the integral types representable range.
|
|
|
|
//
|
|
|
|
// The behavior is undefined if `__r` is NaN.
|
|
|
|
template <class _IntT, class _RealT>
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
_IntT __clamp_to_integral(_RealT __r) _NOEXCEPT {
|
[libc++] Consistently replace `std::` qualification with `_VSTD::` or nothing. NFCI.
I used a lot of `git grep` to find places where `std::` was being used
outside of comments and assert-messages. There were three outcomes:
- Qualified function calls, e.g. `std::move` becomes `_VSTD::move`.
This is the most common case.
- Typenames that don't need qualification, e.g. `std::allocator` becomes `allocator`.
Leaving these as `_VSTD::allocator` would also be fine, but I decided
that removing the qualification is more consistent with existing practice.
- Names that specifically need un-versioned `std::` qualification,
or that I wasn't sure about. For example, I didn't touch any code in
<atomic>, <math.h>, <new>, or any ext/ or experimental/ headers;
and I didn't touch any instances of `std::type_info`.
In some deduction guides, we were accidentally using `class Alloc = typename std::allocator<T>`,
despite `std::allocator<T>`'s type-ness not being template-dependent.
Because `std::allocator` is a qualified name, this did parse as we intended;
but what we meant was simply `class Alloc = allocator<T>`.
Differential Revision: https://reviews.llvm.org/D92250
2020-11-28 00:02:06 +08:00
|
|
|
using _Lim = numeric_limits<_IntT>;
|
|
|
|
const _IntT _MaxVal = __max_representable_int_for_float<_IntT, _RealT>();
|
2019-09-04 21:35:03 +08:00
|
|
|
if (__r >= ::nextafter(static_cast<_RealT>(_MaxVal), INFINITY)) {
|
|
|
|
return _Lim::max();
|
|
|
|
} else if (__r <= _Lim::lowest()) {
|
|
|
|
return _Lim::min();
|
|
|
|
}
|
|
|
|
return static_cast<_IntT>(__r);
|
|
|
|
}
|
|
|
|
|
2010-05-12 03:42:16 +08:00
|
|
|
_LIBCPP_END_NAMESPACE_STD
|
|
|
|
|
2019-09-04 21:35:03 +08:00
|
|
|
_LIBCPP_POP_MACROS
|
|
|
|
|
2021-04-21 00:03:32 +08:00
|
|
|
#endif // _LIBCPP_CMATH
|