llvm-project/llvm/lib/Transforms/Scalar/BDCE.cpp

119 lines
3.9 KiB
C++
Raw Normal View History

[BDCE] Add a bit-tracking DCE pass BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the "aggressive DCE" pass), with the added capability to track dead bits of integer valued instructions and remove those instructions when all of the bits are dead. Currently, it does not actually do this all-bits-dead removal, but rather replaces the instruction's uses with a constant zero, and lets instcombine (and the later run of ADCE) do the rest. Because we essentially get a run of ADCE "for free" while tracking the dead bits, we also do what ADCE does and removes actually-dead instructions as well (this includes instructions newly trivially dead because all bits were dead, but not all such instructions can be removed). The motivation for this is a case like: int __attribute__((const)) foo(int i); int bar(int x) { x |= (4 & foo(5)); x |= (8 & foo(3)); x |= (16 & foo(2)); x |= (32 & foo(1)); x |= (64 & foo(0)); x |= (128& foo(4)); return x >> 4; } As it turns out, if you order the bit-field insertions so that all of the dead ones come last, then instcombine will remove them. However, if you pick some other order (such as the one above), the fact that some of the calls to foo() are useless is not locally obvious, and we don't remove them (without this pass). I did a quick compile-time overhead check using sqlite from the test suite (Release+Asserts). BDCE took ~0.4% of the compilation time (making it about twice as expensive as ADCE). I've not looked at why yet, but we eliminate instructions due to having all-dead bits in: External/SPEC/CFP2006/447.dealII/447.dealII External/SPEC/CINT2006/400.perlbench/400.perlbench External/SPEC/CINT2006/403.gcc/403.gcc MultiSource/Applications/ClamAV/clamscan MultiSource/Benchmarks/7zip/7zip-benchmark llvm-svn: 229462
2015-02-17 09:36:59 +08:00
//===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Bit-Tracking Dead Code Elimination pass. Some
// instructions (shifts, some ands, ors, etc.) kill some of their input bits.
// We track these dead bits and remove instructions that compute only these
// dead bits.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/BDCE.h"
[BDCE] Add a bit-tracking DCE pass BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the "aggressive DCE" pass), with the added capability to track dead bits of integer valued instructions and remove those instructions when all of the bits are dead. Currently, it does not actually do this all-bits-dead removal, but rather replaces the instruction's uses with a constant zero, and lets instcombine (and the later run of ADCE) do the rest. Because we essentially get a run of ADCE "for free" while tracking the dead bits, we also do what ADCE does and removes actually-dead instructions as well (this includes instructions newly trivially dead because all bits were dead, but not all such instructions can be removed). The motivation for this is a case like: int __attribute__((const)) foo(int i); int bar(int x) { x |= (4 & foo(5)); x |= (8 & foo(3)); x |= (16 & foo(2)); x |= (32 & foo(1)); x |= (64 & foo(0)); x |= (128& foo(4)); return x >> 4; } As it turns out, if you order the bit-field insertions so that all of the dead ones come last, then instcombine will remove them. However, if you pick some other order (such as the one above), the fact that some of the calls to foo() are useless is not locally obvious, and we don't remove them (without this pass). I did a quick compile-time overhead check using sqlite from the test suite (Release+Asserts). BDCE took ~0.4% of the compilation time (making it about twice as expensive as ADCE). I've not looked at why yet, but we eliminate instructions due to having all-dead bits in: External/SPEC/CFP2006/447.dealII/447.dealII External/SPEC/CINT2006/400.perlbench/400.perlbench External/SPEC/CINT2006/403.gcc/403.gcc MultiSource/Applications/ClamAV/clamscan MultiSource/Benchmarks/7zip/7zip-benchmark llvm-svn: 229462
2015-02-17 09:36:59 +08:00
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/GlobalsModRef.h"
[BDCE] Add a bit-tracking DCE pass BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the "aggressive DCE" pass), with the added capability to track dead bits of integer valued instructions and remove those instructions when all of the bits are dead. Currently, it does not actually do this all-bits-dead removal, but rather replaces the instruction's uses with a constant zero, and lets instcombine (and the later run of ADCE) do the rest. Because we essentially get a run of ADCE "for free" while tracking the dead bits, we also do what ADCE does and removes actually-dead instructions as well (this includes instructions newly trivially dead because all bits were dead, but not all such instructions can be removed). The motivation for this is a case like: int __attribute__((const)) foo(int i); int bar(int x) { x |= (4 & foo(5)); x |= (8 & foo(3)); x |= (16 & foo(2)); x |= (32 & foo(1)); x |= (64 & foo(0)); x |= (128& foo(4)); return x >> 4; } As it turns out, if you order the bit-field insertions so that all of the dead ones come last, then instcombine will remove them. However, if you pick some other order (such as the one above), the fact that some of the calls to foo() are useless is not locally obvious, and we don't remove them (without this pass). I did a quick compile-time overhead check using sqlite from the test suite (Release+Asserts). BDCE took ~0.4% of the compilation time (making it about twice as expensive as ADCE). I've not looked at why yet, but we eliminate instructions due to having all-dead bits in: External/SPEC/CFP2006/447.dealII/447.dealII External/SPEC/CINT2006/400.perlbench/400.perlbench External/SPEC/CINT2006/403.gcc/403.gcc MultiSource/Applications/ClamAV/clamscan MultiSource/Benchmarks/7zip/7zip-benchmark llvm-svn: 229462
2015-02-17 09:36:59 +08:00
#include "llvm/IR/CFG.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
[BDCE] Add a bit-tracking DCE pass BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the "aggressive DCE" pass), with the added capability to track dead bits of integer valued instructions and remove those instructions when all of the bits are dead. Currently, it does not actually do this all-bits-dead removal, but rather replaces the instruction's uses with a constant zero, and lets instcombine (and the later run of ADCE) do the rest. Because we essentially get a run of ADCE "for free" while tracking the dead bits, we also do what ADCE does and removes actually-dead instructions as well (this includes instructions newly trivially dead because all bits were dead, but not all such instructions can be removed). The motivation for this is a case like: int __attribute__((const)) foo(int i); int bar(int x) { x |= (4 & foo(5)); x |= (8 & foo(3)); x |= (16 & foo(2)); x |= (32 & foo(1)); x |= (64 & foo(0)); x |= (128& foo(4)); return x >> 4; } As it turns out, if you order the bit-field insertions so that all of the dead ones come last, then instcombine will remove them. However, if you pick some other order (such as the one above), the fact that some of the calls to foo() are useless is not locally obvious, and we don't remove them (without this pass). I did a quick compile-time overhead check using sqlite from the test suite (Release+Asserts). BDCE took ~0.4% of the compilation time (making it about twice as expensive as ADCE). I've not looked at why yet, but we eliminate instructions due to having all-dead bits in: External/SPEC/CFP2006/447.dealII/447.dealII External/SPEC/CINT2006/400.perlbench/400.perlbench External/SPEC/CINT2006/403.gcc/403.gcc MultiSource/Applications/ClamAV/clamscan MultiSource/Benchmarks/7zip/7zip-benchmark llvm-svn: 229462
2015-02-17 09:36:59 +08:00
using namespace llvm;
#define DEBUG_TYPE "bdce"
STATISTIC(NumRemoved, "Number of instructions removed (unused)");
STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)");
static bool bitTrackingDCE(Function &F, DemandedBits &DB) {
[BDCE] Add a bit-tracking DCE pass BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the "aggressive DCE" pass), with the added capability to track dead bits of integer valued instructions and remove those instructions when all of the bits are dead. Currently, it does not actually do this all-bits-dead removal, but rather replaces the instruction's uses with a constant zero, and lets instcombine (and the later run of ADCE) do the rest. Because we essentially get a run of ADCE "for free" while tracking the dead bits, we also do what ADCE does and removes actually-dead instructions as well (this includes instructions newly trivially dead because all bits were dead, but not all such instructions can be removed). The motivation for this is a case like: int __attribute__((const)) foo(int i); int bar(int x) { x |= (4 & foo(5)); x |= (8 & foo(3)); x |= (16 & foo(2)); x |= (32 & foo(1)); x |= (64 & foo(0)); x |= (128& foo(4)); return x >> 4; } As it turns out, if you order the bit-field insertions so that all of the dead ones come last, then instcombine will remove them. However, if you pick some other order (such as the one above), the fact that some of the calls to foo() are useless is not locally obvious, and we don't remove them (without this pass). I did a quick compile-time overhead check using sqlite from the test suite (Release+Asserts). BDCE took ~0.4% of the compilation time (making it about twice as expensive as ADCE). I've not looked at why yet, but we eliminate instructions due to having all-dead bits in: External/SPEC/CFP2006/447.dealII/447.dealII External/SPEC/CINT2006/400.perlbench/400.perlbench External/SPEC/CINT2006/403.gcc/403.gcc MultiSource/Applications/ClamAV/clamscan MultiSource/Benchmarks/7zip/7zip-benchmark llvm-svn: 229462
2015-02-17 09:36:59 +08:00
SmallVector<Instruction*, 128> Worklist;
bool Changed = false;
for (Instruction &I : instructions(F)) {
// If the instruction has side effects and no non-dbg uses,
// skip it. This way we avoid computing known bits on an instruction
// that will not help us.
if (I.mayHaveSideEffects() && I.use_empty())
continue;
if (I.getType()->isIntegerTy() &&
!DB.getDemandedBits(&I).getBoolValue()) {
// For live instructions that have all dead bits, first make them dead by
// replacing all uses with something else. Then, if they don't need to
// remain live (because they have side effects, etc.) we can remove them.
DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n");
// FIXME: In theory we could substitute undef here instead of zero.
// This should be reconsidered once we settle on the semantics of
// undef, poison, etc.
Value *Zero = ConstantInt::get(I.getType(), 0);
++NumSimplified;
I.replaceNonMetadataUsesWith(Zero);
Changed = true;
[BDCE] Add a bit-tracking DCE pass BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the "aggressive DCE" pass), with the added capability to track dead bits of integer valued instructions and remove those instructions when all of the bits are dead. Currently, it does not actually do this all-bits-dead removal, but rather replaces the instruction's uses with a constant zero, and lets instcombine (and the later run of ADCE) do the rest. Because we essentially get a run of ADCE "for free" while tracking the dead bits, we also do what ADCE does and removes actually-dead instructions as well (this includes instructions newly trivially dead because all bits were dead, but not all such instructions can be removed). The motivation for this is a case like: int __attribute__((const)) foo(int i); int bar(int x) { x |= (4 & foo(5)); x |= (8 & foo(3)); x |= (16 & foo(2)); x |= (32 & foo(1)); x |= (64 & foo(0)); x |= (128& foo(4)); return x >> 4; } As it turns out, if you order the bit-field insertions so that all of the dead ones come last, then instcombine will remove them. However, if you pick some other order (such as the one above), the fact that some of the calls to foo() are useless is not locally obvious, and we don't remove them (without this pass). I did a quick compile-time overhead check using sqlite from the test suite (Release+Asserts). BDCE took ~0.4% of the compilation time (making it about twice as expensive as ADCE). I've not looked at why yet, but we eliminate instructions due to having all-dead bits in: External/SPEC/CFP2006/447.dealII/447.dealII External/SPEC/CINT2006/400.perlbench/400.perlbench External/SPEC/CINT2006/403.gcc/403.gcc MultiSource/Applications/ClamAV/clamscan MultiSource/Benchmarks/7zip/7zip-benchmark llvm-svn: 229462
2015-02-17 09:36:59 +08:00
}
if (!DB.isInstructionDead(&I))
[BDCE] Add a bit-tracking DCE pass BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the "aggressive DCE" pass), with the added capability to track dead bits of integer valued instructions and remove those instructions when all of the bits are dead. Currently, it does not actually do this all-bits-dead removal, but rather replaces the instruction's uses with a constant zero, and lets instcombine (and the later run of ADCE) do the rest. Because we essentially get a run of ADCE "for free" while tracking the dead bits, we also do what ADCE does and removes actually-dead instructions as well (this includes instructions newly trivially dead because all bits were dead, but not all such instructions can be removed). The motivation for this is a case like: int __attribute__((const)) foo(int i); int bar(int x) { x |= (4 & foo(5)); x |= (8 & foo(3)); x |= (16 & foo(2)); x |= (32 & foo(1)); x |= (64 & foo(0)); x |= (128& foo(4)); return x >> 4; } As it turns out, if you order the bit-field insertions so that all of the dead ones come last, then instcombine will remove them. However, if you pick some other order (such as the one above), the fact that some of the calls to foo() are useless is not locally obvious, and we don't remove them (without this pass). I did a quick compile-time overhead check using sqlite from the test suite (Release+Asserts). BDCE took ~0.4% of the compilation time (making it about twice as expensive as ADCE). I've not looked at why yet, but we eliminate instructions due to having all-dead bits in: External/SPEC/CFP2006/447.dealII/447.dealII External/SPEC/CINT2006/400.perlbench/400.perlbench External/SPEC/CINT2006/403.gcc/403.gcc MultiSource/Applications/ClamAV/clamscan MultiSource/Benchmarks/7zip/7zip-benchmark llvm-svn: 229462
2015-02-17 09:36:59 +08:00
continue;
Worklist.push_back(&I);
I.dropAllReferences();
Changed = true;
}
for (Instruction *&I : Worklist) {
++NumRemoved;
I->eraseFromParent();
}
return Changed;
}
PreservedAnalyses BDCEPass::run(Function &F, FunctionAnalysisManager &AM) {
auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
if (!bitTrackingDCE(F, DB))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<GlobalsAA>();
return PA;
[BDCE] Add a bit-tracking DCE pass BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the "aggressive DCE" pass), with the added capability to track dead bits of integer valued instructions and remove those instructions when all of the bits are dead. Currently, it does not actually do this all-bits-dead removal, but rather replaces the instruction's uses with a constant zero, and lets instcombine (and the later run of ADCE) do the rest. Because we essentially get a run of ADCE "for free" while tracking the dead bits, we also do what ADCE does and removes actually-dead instructions as well (this includes instructions newly trivially dead because all bits were dead, but not all such instructions can be removed). The motivation for this is a case like: int __attribute__((const)) foo(int i); int bar(int x) { x |= (4 & foo(5)); x |= (8 & foo(3)); x |= (16 & foo(2)); x |= (32 & foo(1)); x |= (64 & foo(0)); x |= (128& foo(4)); return x >> 4; } As it turns out, if you order the bit-field insertions so that all of the dead ones come last, then instcombine will remove them. However, if you pick some other order (such as the one above), the fact that some of the calls to foo() are useless is not locally obvious, and we don't remove them (without this pass). I did a quick compile-time overhead check using sqlite from the test suite (Release+Asserts). BDCE took ~0.4% of the compilation time (making it about twice as expensive as ADCE). I've not looked at why yet, but we eliminate instructions due to having all-dead bits in: External/SPEC/CFP2006/447.dealII/447.dealII External/SPEC/CINT2006/400.perlbench/400.perlbench External/SPEC/CINT2006/403.gcc/403.gcc MultiSource/Applications/ClamAV/clamscan MultiSource/Benchmarks/7zip/7zip-benchmark llvm-svn: 229462
2015-02-17 09:36:59 +08:00
}
namespace {
struct BDCELegacyPass : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
BDCELegacyPass() : FunctionPass(ID) {
initializeBDCELegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &DB = getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
return bitTrackingDCE(F, DB);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<DemandedBitsWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
};
}
char BDCELegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(BDCELegacyPass, "bdce",
"Bit-Tracking Dead Code Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
INITIALIZE_PASS_END(BDCELegacyPass, "bdce",
"Bit-Tracking Dead Code Elimination", false, false)
FunctionPass *llvm::createBitTrackingDCEPass() { return new BDCELegacyPass(); }