llvm-project/llvm/test/Transforms/IRCE/unsigned_comparisons_ult.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

390 lines
14 KiB
LLVM
Raw Normal View History

; RUN: opt -verify-loop-info -irce-print-changed-loops -irce -S < %s 2>&1 | FileCheck %s
; RUN: opt -verify-loop-info -irce-print-changed-loops -passes='require<branch-prob>,irce' -S < %s 2>&1 | FileCheck %s
; CHECK: irce: in function test_01: constrained Loop at depth 1 containing: %loop<header><exiting>,%in.bounds<latch><exiting>
; CHECK: irce: in function test_02: constrained Loop at depth 1 containing: %loop<header><exiting>,%in.bounds<latch><exiting>
; CHECK: irce: in function test_03: constrained Loop at depth 1 containing: %loop<header><exiting>,%in.bounds<latch><exiting>
; CHECK: irce: in function test_04: constrained Loop at depth 1 containing: %loop<header><exiting>,%in.bounds<latch><exiting>
; CHECK: irce: in function test_05: constrained Loop at depth 1 containing: %loop<header><exiting>,%in.bounds<latch><exiting>
; CHECK: irce: in function test_06: constrained Loop at depth 1 containing: %loop<header><exiting>,%in.bounds<latch><exiting>
; CHECK-NOT: irce: in function test_07: constrained Loop at depth 1 containing: %loop<header><exiting>,%in.bounds<latch><exiting>
; CHECK: irce: in function test_08: constrained Loop at depth 1 containing: %loop<header><exiting>,%in.bounds<latch><exiting>
; CHECK-NOT: irce: in function test_09: constrained Loop at depth 1 containing: %loop<header><exiting>,%in.bounds<latch><exiting>
; ULT condition for increasing loop.
define void @test_01(i32* %arr, i32* %a_len_ptr) #0 {
; CHECK: test_01
; CHECK: entry:
Infer alignment of unmarked loads in IR/bitcode parsing. For IR generated by a compiler, this is really simple: you just take the datalayout from the beginning of the file, and apply it to all the IR later in the file. For optimization testcases that don't care about the datalayout, this is also really simple: we just use the default datalayout. The complexity here comes from the fact that some LLVM tools allow overriding the datalayout: some tools have an explicit flag for this, some tools will infer a datalayout based on the code generation target. Supporting this properly required plumbing through a bunch of new machinery: we want to allow overriding the datalayout after the datalayout is parsed from the file, but before we use any information from it. Therefore, IR/bitcode parsing now has a callback to allow tools to compute the datalayout at the appropriate time. Not sure if I covered all the LLVM tools that want to use the callback. (clang? lli? Misc IR manipulation tools like llvm-link?). But this is at least enough for all the LLVM regression tests, and IR without a datalayout is not something frontends should generate. This change had some sort of weird effects for certain CodeGen regression tests: if the datalayout is overridden with a datalayout with a different program or stack address space, we now parse IR based on the overridden datalayout, instead of the one written in the file (or the default one, if none is specified). This broke a few AVR tests, and one AMDGPU test. Outside the CodeGen tests I mentioned, the test changes are all just fixing CHECK lines and moving around datalayout lines in weird places. Differential Revision: https://reviews.llvm.org/D78403
2020-05-15 03:59:45 +08:00
; CHECK-NEXT: %exit.mainloop.at = load i32, i32* %a_len_ptr, align 4, !range !0
; CHECK-NEXT: [[COND:%[^ ]+]] = icmp ult i32 0, %exit.mainloop.at
; CHECK-NEXT: br i1 [[COND]], label %loop.preheader, label %main.pseudo.exit
; CHECK: loop:
; CHECK-NEXT: %idx = phi i32 [ %idx.next, %in.bounds ], [ 0, %loop.preheader ]
; CHECK-NEXT: %idx.next = add nuw nsw i32 %idx, 1
; CHECK-NEXT: %abc = icmp ult i32 %idx, %exit.mainloop.at
; CHECK-NEXT: br i1 true, label %in.bounds, label %out.of.bounds.loopexit1
; CHECK-NOT: loop.preloop:
; CHECK: loop.postloop:
; CHECK-NEXT: %idx.postloop = phi i32 [ %idx.copy, %postloop ], [ %idx.next.postloop, %in.bounds.postloop ]
; CHECK-NEXT: %idx.next.postloop = add nuw nsw i32 %idx.postloop, 1
; CHECK-NEXT: %abc.postloop = icmp ult i32 %idx.postloop, %exit.mainloop.at
; CHECK-NEXT: br i1 %abc.postloop, label %in.bounds.postloop, label %out.of.bounds.loopexit
entry:
%len = load i32, i32* %a_len_ptr, !range !0
br label %loop
loop:
%idx = phi i32 [ 0, %entry ], [ %idx.next, %in.bounds ]
%idx.next = add nsw nuw i32 %idx, 1
%abc = icmp ult i32 %idx, %len
br i1 %abc, label %in.bounds, label %out.of.bounds
in.bounds:
%addr = getelementptr i32, i32* %arr, i32 %idx
store i32 0, i32* %addr
%next = icmp ult i32 %idx.next, 100
br i1 %next, label %loop, label %exit
out.of.bounds:
ret void
exit:
ret void
}
; ULT condition for decreasing loops.
define void @test_02(i32* %arr, i32* %a_len_ptr) #0 {
; CHECK: test_02(
; CHECK: entry:
Infer alignment of unmarked loads in IR/bitcode parsing. For IR generated by a compiler, this is really simple: you just take the datalayout from the beginning of the file, and apply it to all the IR later in the file. For optimization testcases that don't care about the datalayout, this is also really simple: we just use the default datalayout. The complexity here comes from the fact that some LLVM tools allow overriding the datalayout: some tools have an explicit flag for this, some tools will infer a datalayout based on the code generation target. Supporting this properly required plumbing through a bunch of new machinery: we want to allow overriding the datalayout after the datalayout is parsed from the file, but before we use any information from it. Therefore, IR/bitcode parsing now has a callback to allow tools to compute the datalayout at the appropriate time. Not sure if I covered all the LLVM tools that want to use the callback. (clang? lli? Misc IR manipulation tools like llvm-link?). But this is at least enough for all the LLVM regression tests, and IR without a datalayout is not something frontends should generate. This change had some sort of weird effects for certain CodeGen regression tests: if the datalayout is overridden with a datalayout with a different program or stack address space, we now parse IR based on the overridden datalayout, instead of the one written in the file (or the default one, if none is specified). This broke a few AVR tests, and one AMDGPU test. Outside the CodeGen tests I mentioned, the test changes are all just fixing CHECK lines and moving around datalayout lines in weird places. Differential Revision: https://reviews.llvm.org/D78403
2020-05-15 03:59:45 +08:00
; CHECK-NEXT: %len = load i32, i32* %a_len_ptr, align 4, !range !0
; CHECK-NEXT: [[UMIN:%[^ ]+]] = call i32 @llvm.umax.i32(i32 %len, i32 1)
; CHECK-NEXT: %exit.preloop.at = add nsw i32 [[UMIN]], -1
; CHECK-NEXT: [[COND2:%[^ ]+]] = icmp ugt i32 100, %exit.preloop.at
; CHECK-NEXT: br i1 [[COND2]], label %loop.preloop.preheader, label %preloop.pseudo.exit
; CHECK: mainloop:
; CHECK-NEXT: br label %loop
; CHECK: loop:
; CHECK-NEXT: %idx = phi i32 [ %idx.preloop.copy, %mainloop ], [ %idx.next, %in.bounds ]
; CHECK-NEXT: %idx.next = add i32 %idx, -1
; CHECK-NEXT: %abc = icmp ult i32 %idx, %len
; CHECK-NEXT: br i1 true, label %in.bounds, label %out.of.bounds.loopexit1
; CHECK-NOT: loop.postloop:
; CHECK: loop.preloop:
; CHECK-NEXT: %idx.preloop = phi i32 [ %idx.next.preloop, %in.bounds.preloop ], [ 100, %loop.preloop.preheader ]
; CHECK-NEXT: %idx.next.preloop = add i32 %idx.preloop, -1
; CHECK-NEXT: %abc.preloop = icmp ult i32 %idx.preloop, %len
; CHECK-NEXT: br i1 %abc.preloop, label %in.bounds.preloop, label %out.of.bounds.loopexit
entry:
%len = load i32, i32* %a_len_ptr, !range !0
br label %loop
loop:
%idx = phi i32 [ 100, %entry ], [ %idx.next, %in.bounds ]
%idx.next = add i32 %idx, -1
%abc = icmp ult i32 %idx, %len
br i1 %abc, label %in.bounds, label %out.of.bounds
in.bounds:
%addr = getelementptr i32, i32* %arr, i32 %idx
store i32 0, i32* %addr
%next = icmp ult i32 %idx.next, 1
br i1 %next, label %exit, label %loop
out.of.bounds:
ret void
exit:
ret void
}
; Check SINT_MAX.
define void @test_03(i32* %arr, i32* %a_len_ptr) #0 {
; CHECK: test_03
; CHECK: entry:
Infer alignment of unmarked loads in IR/bitcode parsing. For IR generated by a compiler, this is really simple: you just take the datalayout from the beginning of the file, and apply it to all the IR later in the file. For optimization testcases that don't care about the datalayout, this is also really simple: we just use the default datalayout. The complexity here comes from the fact that some LLVM tools allow overriding the datalayout: some tools have an explicit flag for this, some tools will infer a datalayout based on the code generation target. Supporting this properly required plumbing through a bunch of new machinery: we want to allow overriding the datalayout after the datalayout is parsed from the file, but before we use any information from it. Therefore, IR/bitcode parsing now has a callback to allow tools to compute the datalayout at the appropriate time. Not sure if I covered all the LLVM tools that want to use the callback. (clang? lli? Misc IR manipulation tools like llvm-link?). But this is at least enough for all the LLVM regression tests, and IR without a datalayout is not something frontends should generate. This change had some sort of weird effects for certain CodeGen regression tests: if the datalayout is overridden with a datalayout with a different program or stack address space, we now parse IR based on the overridden datalayout, instead of the one written in the file (or the default one, if none is specified). This broke a few AVR tests, and one AMDGPU test. Outside the CodeGen tests I mentioned, the test changes are all just fixing CHECK lines and moving around datalayout lines in weird places. Differential Revision: https://reviews.llvm.org/D78403
2020-05-15 03:59:45 +08:00
; CHECK-NEXT: %exit.mainloop.at = load i32, i32* %a_len_ptr, align 4, !range !0
; CHECK-NEXT: [[COND:%[^ ]+]] = icmp ult i32 0, %exit.mainloop.at
; CHECK-NEXT: br i1 [[COND]], label %loop.preheader, label %main.pseudo.exit
; CHECK: loop:
; CHECK-NEXT: %idx = phi i32 [ %idx.next, %in.bounds ], [ 0, %loop.preheader ]
; CHECK-NEXT: %idx.next = add nuw nsw i32 %idx, 1
; CHECK-NEXT: %abc = icmp ult i32 %idx, %exit.mainloop.at
; CHECK-NEXT: br i1 true, label %in.bounds, label %out.of.bounds.loopexit1
; CHECK-NOT: loop.preloop:
; CHECK: loop.postloop:
; CHECK-NEXT: %idx.postloop = phi i32 [ %idx.copy, %postloop ], [ %idx.next.postloop, %in.bounds.postloop ]
; CHECK-NEXT: %idx.next.postloop = add nuw nsw i32 %idx.postloop, 1
; CHECK-NEXT: %abc.postloop = icmp ult i32 %idx.postloop, %exit.mainloop.at
; CHECK-NEXT: br i1 %abc.postloop, label %in.bounds.postloop, label %out.of.bounds.loopexit
entry:
%len = load i32, i32* %a_len_ptr, !range !0
br label %loop
loop:
%idx = phi i32 [ 0, %entry ], [ %idx.next, %in.bounds ]
%idx.next = add nsw nuw i32 %idx, 1
%abc = icmp ult i32 %idx, %len
br i1 %abc, label %in.bounds, label %out.of.bounds
in.bounds:
%addr = getelementptr i32, i32* %arr, i32 %idx
store i32 0, i32* %addr
%next = icmp ult i32 %idx.next, 2147483647
br i1 %next, label %loop, label %exit
out.of.bounds:
ret void
exit:
ret void
}
; Check SINT_MAX + 1, test is similar to test_01.
define void @test_04(i32* %arr, i32* %a_len_ptr) #0 {
; CHECK: test_04
; CHECK: entry:
Infer alignment of unmarked loads in IR/bitcode parsing. For IR generated by a compiler, this is really simple: you just take the datalayout from the beginning of the file, and apply it to all the IR later in the file. For optimization testcases that don't care about the datalayout, this is also really simple: we just use the default datalayout. The complexity here comes from the fact that some LLVM tools allow overriding the datalayout: some tools have an explicit flag for this, some tools will infer a datalayout based on the code generation target. Supporting this properly required plumbing through a bunch of new machinery: we want to allow overriding the datalayout after the datalayout is parsed from the file, but before we use any information from it. Therefore, IR/bitcode parsing now has a callback to allow tools to compute the datalayout at the appropriate time. Not sure if I covered all the LLVM tools that want to use the callback. (clang? lli? Misc IR manipulation tools like llvm-link?). But this is at least enough for all the LLVM regression tests, and IR without a datalayout is not something frontends should generate. This change had some sort of weird effects for certain CodeGen regression tests: if the datalayout is overridden with a datalayout with a different program or stack address space, we now parse IR based on the overridden datalayout, instead of the one written in the file (or the default one, if none is specified). This broke a few AVR tests, and one AMDGPU test. Outside the CodeGen tests I mentioned, the test changes are all just fixing CHECK lines and moving around datalayout lines in weird places. Differential Revision: https://reviews.llvm.org/D78403
2020-05-15 03:59:45 +08:00
; CHECK-NEXT: %exit.mainloop.at = load i32, i32* %a_len_ptr, align 4, !range !0
; CHECK-NEXT: [[COND:%[^ ]+]] = icmp ult i32 0, %exit.mainloop.at
; CHECK-NEXT: br i1 [[COND]], label %loop.preheader, label %main.pseudo.exit
; CHECK: loop:
; CHECK-NEXT: %idx = phi i32 [ %idx.next, %in.bounds ], [ 0, %loop.preheader ]
; CHECK-NEXT: %idx.next = add nuw nsw i32 %idx, 1
; CHECK-NEXT: %abc = icmp ult i32 %idx, %exit.mainloop.at
; CHECK-NEXT: br i1 true, label %in.bounds, label %out.of.bounds.loopexit1
; CHECK-NOT: loop.preloop:
; CHECK: loop.postloop:
; CHECK-NEXT: %idx.postloop = phi i32 [ %idx.copy, %postloop ], [ %idx.next.postloop, %in.bounds.postloop ]
; CHECK-NEXT: %idx.next.postloop = add nuw nsw i32 %idx.postloop, 1
; CHECK-NEXT: %abc.postloop = icmp ult i32 %idx.postloop, %exit.mainloop.at
; CHECK-NEXT: br i1 %abc.postloop, label %in.bounds.postloop, label %out.of.bounds.loopexit
entry:
%len = load i32, i32* %a_len_ptr, !range !0
br label %loop
loop:
%idx = phi i32 [ 0, %entry ], [ %idx.next, %in.bounds ]
%idx.next = add nsw nuw i32 %idx, 1
%abc = icmp ult i32 %idx, %len
br i1 %abc, label %in.bounds, label %out.of.bounds
in.bounds:
%addr = getelementptr i32, i32* %arr, i32 %idx
store i32 0, i32* %addr
%next = icmp ult i32 %idx.next, 2147483648
br i1 %next, label %loop, label %exit
out.of.bounds:
ret void
exit:
ret void
}
; Check SINT_MAX + 1, test is similar to test_02.
define void @test_05(i32* %arr, i32* %a_len_ptr) #0 {
; CHECK: test_05(
; CHECK: entry:
Infer alignment of unmarked loads in IR/bitcode parsing. For IR generated by a compiler, this is really simple: you just take the datalayout from the beginning of the file, and apply it to all the IR later in the file. For optimization testcases that don't care about the datalayout, this is also really simple: we just use the default datalayout. The complexity here comes from the fact that some LLVM tools allow overriding the datalayout: some tools have an explicit flag for this, some tools will infer a datalayout based on the code generation target. Supporting this properly required plumbing through a bunch of new machinery: we want to allow overriding the datalayout after the datalayout is parsed from the file, but before we use any information from it. Therefore, IR/bitcode parsing now has a callback to allow tools to compute the datalayout at the appropriate time. Not sure if I covered all the LLVM tools that want to use the callback. (clang? lli? Misc IR manipulation tools like llvm-link?). But this is at least enough for all the LLVM regression tests, and IR without a datalayout is not something frontends should generate. This change had some sort of weird effects for certain CodeGen regression tests: if the datalayout is overridden with a datalayout with a different program or stack address space, we now parse IR based on the overridden datalayout, instead of the one written in the file (or the default one, if none is specified). This broke a few AVR tests, and one AMDGPU test. Outside the CodeGen tests I mentioned, the test changes are all just fixing CHECK lines and moving around datalayout lines in weird places. Differential Revision: https://reviews.llvm.org/D78403
2020-05-15 03:59:45 +08:00
; CHECK-NEXT: %len = load i32, i32* %a_len_ptr, align 4, !range !0
; CHECK-NEXT: [[UMIN:%[^ ]+]] = call i32 @llvm.umax.i32(i32 %len, i32 1)
; CHECK-NEXT: %exit.preloop.at = add nsw i32 [[UMIN]], -1
; CHECK-NEXT: [[COND2:%[^ ]+]] = icmp ugt i32 -2147483648, %exit.preloop.at
; CHECK-NEXT: br i1 [[COND2]], label %loop.preloop.preheader, label %preloop.pseudo.exit
; CHECK: mainloop:
; CHECK-NEXT: br label %loop
; CHECK: loop:
; CHECK-NEXT: %idx = phi i32 [ %idx.preloop.copy, %mainloop ], [ %idx.next, %in.bounds ]
; CHECK-NEXT: %idx.next = add i32 %idx, -1
; CHECK-NEXT: %abc = icmp ult i32 %idx, %len
; CHECK-NEXT: br i1 true, label %in.bounds, label %out.of.bounds.loopexit1
; CHECK-NOT: loop.postloop:
; CHECK: loop.preloop:
; CHECK-NEXT: %idx.preloop = phi i32 [ %idx.next.preloop, %in.bounds.preloop ], [ -2147483648, %loop.preloop.preheader ]
; CHECK-NEXT: %idx.next.preloop = add i32 %idx.preloop, -1
; CHECK-NEXT: %abc.preloop = icmp ult i32 %idx.preloop, %len
; CHECK-NEXT: br i1 %abc.preloop, label %in.bounds.preloop, label %out.of.bounds.loopexit
entry:
%len = load i32, i32* %a_len_ptr, !range !0
br label %loop
loop:
%idx = phi i32 [ 2147483648, %entry ], [ %idx.next, %in.bounds ]
%idx.next = add i32 %idx, -1
%abc = icmp ult i32 %idx, %len
br i1 %abc, label %in.bounds, label %out.of.bounds
in.bounds:
%addr = getelementptr i32, i32* %arr, i32 %idx
store i32 0, i32* %addr
%next = icmp ult i32 %idx.next, 1
br i1 %next, label %exit, label %loop
out.of.bounds:
ret void
exit:
ret void
}
; Increasing loop, UINT_MAX. Positive test.
define void @test_06(i32* %arr, i32* %a_len_ptr) #0 {
; CHECK: test_06
; CHECK: entry:
Infer alignment of unmarked loads in IR/bitcode parsing. For IR generated by a compiler, this is really simple: you just take the datalayout from the beginning of the file, and apply it to all the IR later in the file. For optimization testcases that don't care about the datalayout, this is also really simple: we just use the default datalayout. The complexity here comes from the fact that some LLVM tools allow overriding the datalayout: some tools have an explicit flag for this, some tools will infer a datalayout based on the code generation target. Supporting this properly required plumbing through a bunch of new machinery: we want to allow overriding the datalayout after the datalayout is parsed from the file, but before we use any information from it. Therefore, IR/bitcode parsing now has a callback to allow tools to compute the datalayout at the appropriate time. Not sure if I covered all the LLVM tools that want to use the callback. (clang? lli? Misc IR manipulation tools like llvm-link?). But this is at least enough for all the LLVM regression tests, and IR without a datalayout is not something frontends should generate. This change had some sort of weird effects for certain CodeGen regression tests: if the datalayout is overridden with a datalayout with a different program or stack address space, we now parse IR based on the overridden datalayout, instead of the one written in the file (or the default one, if none is specified). This broke a few AVR tests, and one AMDGPU test. Outside the CodeGen tests I mentioned, the test changes are all just fixing CHECK lines and moving around datalayout lines in weird places. Differential Revision: https://reviews.llvm.org/D78403
2020-05-15 03:59:45 +08:00
; CHECK-NEXT: %exit.mainloop.at = load i32, i32* %a_len_ptr, align 4, !range !0
; CHECK-NEXT: [[COND:%[^ ]+]] = icmp ult i32 0, %exit.mainloop.at
; CHECK-NEXT: br i1 [[COND]], label %loop.preheader, label %main.pseudo.exit
; CHECK: loop:
; CHECK-NEXT: %idx = phi i32 [ %idx.next, %in.bounds ], [ 0, %loop.preheader ]
; CHECK-NEXT: %idx.next = add nuw nsw i32 %idx, 1
; CHECK-NEXT: %abc = icmp ult i32 %idx, %exit.mainloop.at
; CHECK-NEXT: br i1 true, label %in.bounds, label %out.of.bounds.loopexit1
; CHECK-NOT: loop.preloop:
; CHECK: loop.postloop:
; CHECK-NEXT: %idx.postloop = phi i32 [ %idx.copy, %postloop ], [ %idx.next.postloop, %in.bounds.postloop ]
; CHECK-NEXT: %idx.next.postloop = add nuw nsw i32 %idx.postloop, 1
; CHECK-NEXT: %abc.postloop = icmp ult i32 %idx.postloop, %exit.mainloop.at
; CHECK-NEXT: br i1 %abc.postloop, label %in.bounds.postloop, label %out.of.bounds.loopexit
entry:
%len = load i32, i32* %a_len_ptr, !range !0
br label %loop
loop:
%idx = phi i32 [ 0, %entry ], [ %idx.next, %in.bounds ]
%idx.next = add nsw nuw i32 %idx, 1
%abc = icmp ult i32 %idx, %len
br i1 %abc, label %in.bounds, label %out.of.bounds
in.bounds:
%addr = getelementptr i32, i32* %arr, i32 %idx
store i32 0, i32* %addr
%next = icmp ult i32 %idx.next, 4294967295
br i1 %next, label %loop, label %exit
out.of.bounds:
ret void
exit:
ret void
}
; Decreasing loop, UINT_MAX. Negative test: we cannot substract -1 from 0.
define void @test_07(i32* %arr, i32* %a_len_ptr) #0 {
; CHECK: test_07(
; CHECK-NOT: loop.preloop:
; CHECK-NOT: loop.postloop:
entry:
%len = load i32, i32* %a_len_ptr, !range !0
br label %loop
loop:
%idx = phi i32 [ 4294967295, %entry ], [ %idx.next, %in.bounds ]
%idx.next = add nuw i32 %idx, -1
%abc = icmp ult i32 %idx, %len
br i1 %abc, label %in.bounds, label %out.of.bounds
in.bounds:
%addr = getelementptr i32, i32* %arr, i32 %idx
store i32 0, i32* %addr
%next = icmp ult i32 %idx.next, 0
br i1 %next, label %exit, label %loop
out.of.bounds:
ret void
exit:
ret void
}
; Unsigned walking through signed border is allowed.
; Iteration space [0; UINT_MAX - 99), the fact that SINT_MAX is within this
; range does not prevent us from performing IRCE.
define void @test_08(i32* %arr, i32* %a_len_ptr) #0 {
; CHECK: test_08
; CHECK: entry:
Infer alignment of unmarked loads in IR/bitcode parsing. For IR generated by a compiler, this is really simple: you just take the datalayout from the beginning of the file, and apply it to all the IR later in the file. For optimization testcases that don't care about the datalayout, this is also really simple: we just use the default datalayout. The complexity here comes from the fact that some LLVM tools allow overriding the datalayout: some tools have an explicit flag for this, some tools will infer a datalayout based on the code generation target. Supporting this properly required plumbing through a bunch of new machinery: we want to allow overriding the datalayout after the datalayout is parsed from the file, but before we use any information from it. Therefore, IR/bitcode parsing now has a callback to allow tools to compute the datalayout at the appropriate time. Not sure if I covered all the LLVM tools that want to use the callback. (clang? lli? Misc IR manipulation tools like llvm-link?). But this is at least enough for all the LLVM regression tests, and IR without a datalayout is not something frontends should generate. This change had some sort of weird effects for certain CodeGen regression tests: if the datalayout is overridden with a datalayout with a different program or stack address space, we now parse IR based on the overridden datalayout, instead of the one written in the file (or the default one, if none is specified). This broke a few AVR tests, and one AMDGPU test. Outside the CodeGen tests I mentioned, the test changes are all just fixing CHECK lines and moving around datalayout lines in weird places. Differential Revision: https://reviews.llvm.org/D78403
2020-05-15 03:59:45 +08:00
; CHECK-NEXT: %exit.mainloop.at = load i32, i32* %a_len_ptr, align 4, !range !0
; CHECK-NEXT: [[COND:%[^ ]+]] = icmp ult i32 0, %exit.mainloop.at
; CHECK-NEXT: br i1 [[COND]], label %loop.preheader, label %main.pseudo.exit
; CHECK: loop:
; CHECK-NEXT: %idx = phi i32 [ %idx.next, %in.bounds ], [ 0, %loop.preheader ]
; CHECK-NEXT: %idx.next = add i32 %idx, 1
; CHECK-NEXT: %abc = icmp ult i32 %idx, %exit.mainloop.at
; CHECK-NEXT: br i1 true, label %in.bounds, label %out.of.bounds.loopexit1
; CHECK-NOT: loop.preloop:
; CHECK: loop.postloop:
; CHECK-NEXT: %idx.postloop = phi i32 [ %idx.copy, %postloop ], [ %idx.next.postloop, %in.bounds.postloop ]
; CHECK-NEXT: %idx.next.postloop = add i32 %idx.postloop, 1
; CHECK-NEXT: %abc.postloop = icmp ult i32 %idx.postloop, %exit.mainloop.at
; CHECK-NEXT: br i1 %abc.postloop, label %in.bounds.postloop, label %out.of.bounds.loopexit
entry:
%len = load i32, i32* %a_len_ptr, !range !0
br label %loop
loop:
%idx = phi i32 [ 0, %entry ], [ %idx.next, %in.bounds ]
%idx.next = add i32 %idx, 1
%abc = icmp ult i32 %idx, %len
br i1 %abc, label %in.bounds, label %out.of.bounds
in.bounds:
%addr = getelementptr i32, i32* %arr, i32 %idx
store i32 0, i32* %addr
%next = icmp ult i32 %idx.next, -100
br i1 %next, label %loop, label %exit
out.of.bounds:
ret void
exit:
ret void
}
; Walking through the border of unsigned range is not allowed
; (iteration space [-100; 100)). Negative test.
define void @test_09(i32* %arr, i32* %a_len_ptr) #0 {
; CHECK: test_09
; CHECK-NOT: preloop
; CHECK-NOT: postloop
; CHECK-NOT: br i1 false
; CHECK-NOT: br i1 true
entry:
%len = load i32, i32* %a_len_ptr, !range !0
br label %loop
loop:
%idx = phi i32 [ -100, %entry ], [ %idx.next, %in.bounds ]
%idx.next = add i32 %idx, 1
%abc = icmp ult i32 %idx, %len
br i1 %abc, label %in.bounds, label %out.of.bounds
in.bounds:
%addr = getelementptr i32, i32* %arr, i32 %idx
store i32 0, i32* %addr
%next = icmp ult i32 %idx.next, 100
br i1 %next, label %loop, label %exit
out.of.bounds:
ret void
exit:
ret void
}
!0 = !{i32 0, i32 50}