llvm-project/clang/lib/Sema/DeclSpec.cpp

1342 lines
48 KiB
C++
Raw Normal View History

//===--- DeclSpec.cpp - Declaration Specifier Semantic Analysis -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for declaration specifiers.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/DeclSpec.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/LocInfoType.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/LangOptions.h"
[PowerPC] Initial VSX intrinsic support, with min/max for vector double Now that we have initial support for VSX, we can begin adding intrinsics for programmer access to VSX instructions. This patch performs the necessary enablement in the front end, and tests it by implementing intrinsics for minimum and maximum using the vector double data type. The main change in the front end is to no longer disallow "vector" and "double" in the same declaration (lib/Sema/DeclSpec.cpp), but "vector" and "long double" must still be disallowed. The new intrinsics are accessed via vec_max and vec_min with changes in lib/Headers/altivec.h. Note that for v4f32, we already access corresponding VMX builtins, but with VSX enabled we should use the forms that allow all 64 vector registers. The new built-ins are defined in include/clang/Basic/BuiltinsPPC.def. I've added a new test in test/CodeGen/builtins-ppc-vsx.c that is similar to, but much smaller than, builtins-ppc-altivec.c. This allows us to test VSX IR generation without duplicating CHECK lines for the existing bazillion Altivec tests. Since vector double is now legal when VSX is available, I've modified the error message, and changed where we test for it and for vector long double, since the target machine isn't visible in the old place. This serendipitously removed a not-pertinent warning about 'long' being deprecated when used with 'vector', when "vector long double" is encountered and we just want to issue an error. The existing tests test/Parser/altivec.c and test/Parser/cxx-altivec.cpp have been updated accordingly, and I've added test/Parser/vsx.c to verify that "vector double" is now legitimate with VSX enabled. There is a companion patch for LLVM. llvm-svn: 220989
2014-11-01 03:19:24 +08:00
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
2009-03-19 08:18:19 +08:00
#include <cstring>
using namespace clang;
void UnqualifiedId::setTemplateId(TemplateIdAnnotation *TemplateId) {
assert(TemplateId && "NULL template-id annotation?");
Kind = IK_TemplateId;
this->TemplateId = TemplateId;
StartLocation = TemplateId->TemplateNameLoc;
EndLocation = TemplateId->RAngleLoc;
}
void UnqualifiedId::setConstructorTemplateId(TemplateIdAnnotation *TemplateId) {
assert(TemplateId && "NULL template-id annotation?");
Kind = IK_ConstructorTemplateId;
this->TemplateId = TemplateId;
StartLocation = TemplateId->TemplateNameLoc;
EndLocation = TemplateId->RAngleLoc;
}
void CXXScopeSpec::Extend(ASTContext &Context, SourceLocation TemplateKWLoc,
TypeLoc TL, SourceLocation ColonColonLoc) {
Builder.Extend(Context, TemplateKWLoc, TL, ColonColonLoc);
if (Range.getBegin().isInvalid())
Range.setBegin(TL.getBeginLoc());
Range.setEnd(ColonColonLoc);
assert(Range == Builder.getSourceRange() &&
"NestedNameSpecifierLoc range computation incorrect");
}
void CXXScopeSpec::Extend(ASTContext &Context, IdentifierInfo *Identifier,
SourceLocation IdentifierLoc,
SourceLocation ColonColonLoc) {
Builder.Extend(Context, Identifier, IdentifierLoc, ColonColonLoc);
if (Range.getBegin().isInvalid())
Range.setBegin(IdentifierLoc);
Range.setEnd(ColonColonLoc);
assert(Range == Builder.getSourceRange() &&
"NestedNameSpecifierLoc range computation incorrect");
}
void CXXScopeSpec::Extend(ASTContext &Context, NamespaceDecl *Namespace,
SourceLocation NamespaceLoc,
SourceLocation ColonColonLoc) {
Builder.Extend(Context, Namespace, NamespaceLoc, ColonColonLoc);
if (Range.getBegin().isInvalid())
Range.setBegin(NamespaceLoc);
Range.setEnd(ColonColonLoc);
assert(Range == Builder.getSourceRange() &&
"NestedNameSpecifierLoc range computation incorrect");
}
void CXXScopeSpec::Extend(ASTContext &Context, NamespaceAliasDecl *Alias,
SourceLocation AliasLoc,
SourceLocation ColonColonLoc) {
Builder.Extend(Context, Alias, AliasLoc, ColonColonLoc);
if (Range.getBegin().isInvalid())
Range.setBegin(AliasLoc);
Range.setEnd(ColonColonLoc);
assert(Range == Builder.getSourceRange() &&
"NestedNameSpecifierLoc range computation incorrect");
}
void CXXScopeSpec::MakeGlobal(ASTContext &Context,
SourceLocation ColonColonLoc) {
Builder.MakeGlobal(Context, ColonColonLoc);
Range = SourceRange(ColonColonLoc);
assert(Range == Builder.getSourceRange() &&
"NestedNameSpecifierLoc range computation incorrect");
}
void CXXScopeSpec::MakeSuper(ASTContext &Context, CXXRecordDecl *RD,
SourceLocation SuperLoc,
SourceLocation ColonColonLoc) {
Builder.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
Range.setBegin(SuperLoc);
Range.setEnd(ColonColonLoc);
assert(Range == Builder.getSourceRange() &&
"NestedNameSpecifierLoc range computation incorrect");
}
void CXXScopeSpec::MakeTrivial(ASTContext &Context,
NestedNameSpecifier *Qualifier, SourceRange R) {
Builder.MakeTrivial(Context, Qualifier, R);
Range = R;
}
void CXXScopeSpec::Adopt(NestedNameSpecifierLoc Other) {
if (!Other) {
Range = SourceRange();
Builder.Clear();
return;
}
Range = Other.getSourceRange();
Builder.Adopt(Other);
}
SourceLocation CXXScopeSpec::getLastQualifierNameLoc() const {
if (!Builder.getRepresentation())
return SourceLocation();
return Builder.getTemporary().getLocalBeginLoc();
}
NestedNameSpecifierLoc
CXXScopeSpec::getWithLocInContext(ASTContext &Context) const {
if (!Builder.getRepresentation())
return NestedNameSpecifierLoc();
return Builder.getWithLocInContext(Context);
}
/// DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
/// "TheDeclarator" is the declarator that this will be added to.
DeclaratorChunk DeclaratorChunk::getFunction(bool hasProto,
bool isAmbiguous,
SourceLocation LParenLoc,
ParamInfo *Params,
unsigned NumParams,
SourceLocation EllipsisLoc,
SourceLocation RParenLoc,
unsigned TypeQuals,
bool RefQualifierIsLvalueRef,
SourceLocation RefQualifierLoc,
SourceLocation ConstQualifierLoc,
SourceLocation
VolatileQualifierLoc,
SourceLocation
RestrictQualifierLoc,
SourceLocation MutableLoc,
ExceptionSpecificationType
ESpecType,
SourceRange ESpecRange,
ParsedType *Exceptions,
SourceRange *ExceptionRanges,
unsigned NumExceptions,
Expr *NoexceptExpr,
CachedTokens *ExceptionSpecTokens,
ArrayRef<NamedDecl*>
DeclsInPrototype,
SourceLocation LocalRangeBegin,
SourceLocation LocalRangeEnd,
Declarator &TheDeclarator,
TypeResult TrailingReturnType) {
assert(!(TypeQuals & DeclSpec::TQ_atomic) &&
"function cannot have _Atomic qualifier");
DeclaratorChunk I;
I.Kind = Function;
I.Loc = LocalRangeBegin;
I.EndLoc = LocalRangeEnd;
I.Fun.AttrList = nullptr;
I.Fun.hasPrototype = hasProto;
I.Fun.isVariadic = EllipsisLoc.isValid();
I.Fun.isAmbiguous = isAmbiguous;
I.Fun.LParenLoc = LParenLoc.getRawEncoding();
I.Fun.EllipsisLoc = EllipsisLoc.getRawEncoding();
I.Fun.RParenLoc = RParenLoc.getRawEncoding();
I.Fun.DeleteParams = false;
I.Fun.TypeQuals = TypeQuals;
I.Fun.NumParams = NumParams;
I.Fun.Params = nullptr;
I.Fun.RefQualifierIsLValueRef = RefQualifierIsLvalueRef;
I.Fun.RefQualifierLoc = RefQualifierLoc.getRawEncoding();
I.Fun.ConstQualifierLoc = ConstQualifierLoc.getRawEncoding();
I.Fun.VolatileQualifierLoc = VolatileQualifierLoc.getRawEncoding();
I.Fun.RestrictQualifierLoc = RestrictQualifierLoc.getRawEncoding();
I.Fun.MutableLoc = MutableLoc.getRawEncoding();
I.Fun.ExceptionSpecType = ESpecType;
I.Fun.ExceptionSpecLocBeg = ESpecRange.getBegin().getRawEncoding();
I.Fun.ExceptionSpecLocEnd = ESpecRange.getEnd().getRawEncoding();
I.Fun.NumExceptionsOrDecls = 0;
I.Fun.Exceptions = nullptr;
I.Fun.NoexceptExpr = nullptr;
I.Fun.HasTrailingReturnType = TrailingReturnType.isUsable() ||
TrailingReturnType.isInvalid();
I.Fun.TrailingReturnType = TrailingReturnType.get();
assert(I.Fun.TypeQuals == TypeQuals && "bitfield overflow");
assert(I.Fun.ExceptionSpecType == ESpecType && "bitfield overflow");
// new[] a parameter array if needed.
if (NumParams) {
// If the 'InlineParams' in Declarator is unused and big enough, put our
// parameter list there (in an effort to avoid new/delete traffic). If it
// is already used (consider a function returning a function pointer) or too
// small (function with too many parameters), go to the heap.
if (!TheDeclarator.InlineStorageUsed &&
NumParams <= llvm::array_lengthof(TheDeclarator.InlineParams)) {
I.Fun.Params = TheDeclarator.InlineParams;
new (I.Fun.Params) ParamInfo[NumParams];
I.Fun.DeleteParams = false;
TheDeclarator.InlineStorageUsed = true;
} else {
I.Fun.Params = new DeclaratorChunk::ParamInfo[NumParams];
I.Fun.DeleteParams = true;
}
for (unsigned i = 0; i < NumParams; i++)
I.Fun.Params[i] = std::move(Params[i]);
}
// Check what exception specification information we should actually store.
switch (ESpecType) {
default: break; // By default, save nothing.
case EST_Dynamic:
// new[] an exception array if needed
if (NumExceptions) {
I.Fun.NumExceptionsOrDecls = NumExceptions;
I.Fun.Exceptions = new DeclaratorChunk::TypeAndRange[NumExceptions];
for (unsigned i = 0; i != NumExceptions; ++i) {
I.Fun.Exceptions[i].Ty = Exceptions[i];
I.Fun.Exceptions[i].Range = ExceptionRanges[i];
}
}
break;
case EST_ComputedNoexcept:
I.Fun.NoexceptExpr = NoexceptExpr;
break;
case EST_Unparsed:
I.Fun.ExceptionSpecTokens = ExceptionSpecTokens;
break;
}
if (!DeclsInPrototype.empty()) {
assert(ESpecType == EST_None && NumExceptions == 0 &&
"cannot have exception specifiers and decls in prototype");
I.Fun.NumExceptionsOrDecls = DeclsInPrototype.size();
// Copy the array of decls into stable heap storage.
I.Fun.DeclsInPrototype = new NamedDecl *[DeclsInPrototype.size()];
for (size_t J = 0; J < DeclsInPrototype.size(); ++J)
I.Fun.DeclsInPrototype[J] = DeclsInPrototype[J];
}
return I;
}
void Declarator::setDecompositionBindings(
SourceLocation LSquareLoc,
ArrayRef<DecompositionDeclarator::Binding> Bindings,
SourceLocation RSquareLoc) {
assert(!hasName() && "declarator given multiple names!");
BindingGroup.LSquareLoc = LSquareLoc;
BindingGroup.RSquareLoc = RSquareLoc;
BindingGroup.NumBindings = Bindings.size();
Range.setEnd(RSquareLoc);
// We're now past the identifier.
SetIdentifier(nullptr, LSquareLoc);
Name.EndLocation = RSquareLoc;
// Allocate storage for bindings and stash them away.
if (Bindings.size()) {
if (!InlineStorageUsed &&
Bindings.size() <= llvm::array_lengthof(InlineBindings)) {
BindingGroup.Bindings = InlineBindings;
BindingGroup.DeleteBindings = false;
InlineStorageUsed = true;
} else {
BindingGroup.Bindings =
new DecompositionDeclarator::Binding[Bindings.size()];
BindingGroup.DeleteBindings = true;
}
std::uninitialized_copy(Bindings.begin(), Bindings.end(),
BindingGroup.Bindings);
}
}
bool Declarator::isDeclarationOfFunction() const {
for (unsigned i = 0, i_end = DeclTypeInfo.size(); i < i_end; ++i) {
switch (DeclTypeInfo[i].Kind) {
case DeclaratorChunk::Function:
return true;
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Array:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
return false;
}
llvm_unreachable("Invalid type chunk");
}
switch (DS.getTypeSpecType()) {
case TST_atomic:
case TST_auto:
case TST_auto_type:
case TST_bool:
case TST_char:
case TST_char16:
case TST_char32:
case TST_class:
case TST_decimal128:
case TST_decimal32:
case TST_decimal64:
case TST_double:
case TST_Float16:
case TST_float128:
case TST_enum:
case TST_error:
case TST_float:
case TST_half:
case TST_int:
case TST_int128:
case TST_struct:
case TST_interface:
case TST_union:
case TST_unknown_anytype:
case TST_unspecified:
case TST_void:
case TST_wchar:
[OpenCL] Complete image types support. I. Current implementation of images is not conformant to spec in the following points: 1. It makes no distinction with respect to access qualifiers and therefore allows to use images with different access type interchangeably. The following code would compile just fine: void write_image(write_only image2d_t img); kernel void foo(read_only image2d_t img) { write_image(img); } // Accepted code which is disallowed according to s6.13.14. 2. It discards access qualifier on generated code, which leads to generated code for the above example: call void @write_image(%opencl.image2d_t* %img); In OpenCL2.0 however we can have different calls into write_image with read_only and wite_only images. Also generally following compiler steps have no easy way to take different path depending on the image access: linking to the right implementation of image types, performing IR opts and backend codegen differently. 3. Image types are language keywords and can't be redeclared s6.1.9, which can happen currently as they are just typedef names. 4. Default access qualifier read_only is to be added if not provided explicitly. II. This patch corrects the above points as follows: 1. All images are encapsulated into a separate .def file that is inserted in different points where image handling is required. This avoid a lot of code repetition as all images are handled the same way in the code with no distinction of their exact type. 2. The Cartesian product of image types and image access qualifiers is added to the builtin types. This simplifies a lot handling of access type mismatch as no operations are allowed by default on distinct Builtin types. Also spec intended access qualifier as special type qualifier that are combined with an image type to form a distinct type (see statement above - images can't be created w/o access qualifiers). 3. Improves testing of images in Clang. Author: Anastasia Stulova Reviewers: bader, mgrang. Subscribers: pxli168, pekka.jaaskelainen, yaxunl. Differential Revision: http://reviews.llvm.org/D17821 llvm-svn: 265783
2016-04-08 21:40:33 +08:00
#define GENERIC_IMAGE_TYPE(ImgType, Id) case TST_##ImgType##_t:
#include "clang/Basic/OpenCLImageTypes.def"
return false;
case TST_decltype_auto:
// This must have an initializer, so can't be a function declaration,
// even if the initializer has function type.
return false;
case TST_decltype:
case TST_typeofExpr:
if (Expr *E = DS.getRepAsExpr())
return E->getType()->isFunctionType();
return false;
case TST_underlyingType:
case TST_typename:
case TST_typeofType: {
QualType QT = DS.getRepAsType().get();
if (QT.isNull())
return false;
if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT))
QT = LIT->getType();
if (QT.isNull())
return false;
return QT->isFunctionType();
}
}
llvm_unreachable("Invalid TypeSpecType!");
}
bool Declarator::isStaticMember() {
assert(getContext() == MemberContext);
return getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
(getName().Kind == UnqualifiedId::IK_OperatorFunctionId &&
CXXMethodDecl::isStaticOverloadedOperator(
getName().OperatorFunctionId.Operator));
}
bool Declarator::isCtorOrDtor() {
return (getName().getKind() == UnqualifiedId::IK_ConstructorName) ||
(getName().getKind() == UnqualifiedId::IK_DestructorName);
}
bool DeclSpec::hasTagDefinition() const {
if (!TypeSpecOwned)
return false;
return cast<TagDecl>(getRepAsDecl())->isCompleteDefinition();
}
/// getParsedSpecifiers - Return a bitmask of which flavors of specifiers this
2009-02-28 02:35:46 +08:00
/// declaration specifier includes.
///
unsigned DeclSpec::getParsedSpecifiers() const {
unsigned Res = 0;
if (StorageClassSpec != SCS_unspecified ||
ThreadStorageClassSpec != TSCS_unspecified)
Res |= PQ_StorageClassSpecifier;
if (TypeQualifiers != TQ_unspecified)
Res |= PQ_TypeQualifier;
if (hasTypeSpecifier())
Res |= PQ_TypeSpecifier;
if (FS_inline_specified || FS_virtual_specified || FS_explicit_specified ||
FS_noreturn_specified || FS_forceinline_specified)
Res |= PQ_FunctionSpecifier;
return Res;
}
template <class T> static bool BadSpecifier(T TNew, T TPrev,
const char *&PrevSpec,
unsigned &DiagID,
bool IsExtension = true) {
PrevSpec = DeclSpec::getSpecifierName(TPrev);
if (TNew != TPrev)
DiagID = diag::err_invalid_decl_spec_combination;
else
DiagID = IsExtension ? diag::ext_duplicate_declspec :
diag::warn_duplicate_declspec;
return true;
}
const char *DeclSpec::getSpecifierName(DeclSpec::SCS S) {
switch (S) {
case DeclSpec::SCS_unspecified: return "unspecified";
case DeclSpec::SCS_typedef: return "typedef";
case DeclSpec::SCS_extern: return "extern";
case DeclSpec::SCS_static: return "static";
case DeclSpec::SCS_auto: return "auto";
case DeclSpec::SCS_register: return "register";
case DeclSpec::SCS_private_extern: return "__private_extern__";
case DeclSpec::SCS_mutable: return "mutable";
}
llvm_unreachable("Unknown typespec!");
}
const char *DeclSpec::getSpecifierName(DeclSpec::TSCS S) {
switch (S) {
case DeclSpec::TSCS_unspecified: return "unspecified";
case DeclSpec::TSCS___thread: return "__thread";
case DeclSpec::TSCS_thread_local: return "thread_local";
case DeclSpec::TSCS__Thread_local: return "_Thread_local";
}
llvm_unreachable("Unknown typespec!");
}
const char *DeclSpec::getSpecifierName(TSW W) {
switch (W) {
case TSW_unspecified: return "unspecified";
case TSW_short: return "short";
case TSW_long: return "long";
case TSW_longlong: return "long long";
}
llvm_unreachable("Unknown typespec!");
}
const char *DeclSpec::getSpecifierName(TSC C) {
switch (C) {
case TSC_unspecified: return "unspecified";
case TSC_imaginary: return "imaginary";
case TSC_complex: return "complex";
}
llvm_unreachable("Unknown typespec!");
}
const char *DeclSpec::getSpecifierName(TSS S) {
switch (S) {
case TSS_unspecified: return "unspecified";
case TSS_signed: return "signed";
case TSS_unsigned: return "unsigned";
}
llvm_unreachable("Unknown typespec!");
}
const char *DeclSpec::getSpecifierName(DeclSpec::TST T,
const PrintingPolicy &Policy) {
switch (T) {
case DeclSpec::TST_unspecified: return "unspecified";
case DeclSpec::TST_void: return "void";
case DeclSpec::TST_char: return "char";
case DeclSpec::TST_wchar: return Policy.MSWChar ? "__wchar_t" : "wchar_t";
case DeclSpec::TST_char16: return "char16_t";
case DeclSpec::TST_char32: return "char32_t";
case DeclSpec::TST_int: return "int";
case DeclSpec::TST_int128: return "__int128";
case DeclSpec::TST_half: return "half";
case DeclSpec::TST_float: return "float";
case DeclSpec::TST_double: return "double";
case DeclSpec::TST_float16: return "_Float16";
case DeclSpec::TST_float128: return "__float128";
case DeclSpec::TST_bool: return Policy.Bool ? "bool" : "_Bool";
case DeclSpec::TST_decimal32: return "_Decimal32";
case DeclSpec::TST_decimal64: return "_Decimal64";
case DeclSpec::TST_decimal128: return "_Decimal128";
case DeclSpec::TST_enum: return "enum";
case DeclSpec::TST_class: return "class";
case DeclSpec::TST_union: return "union";
case DeclSpec::TST_struct: return "struct";
case DeclSpec::TST_interface: return "__interface";
case DeclSpec::TST_typename: return "type-name";
case DeclSpec::TST_typeofType:
case DeclSpec::TST_typeofExpr: return "typeof";
case DeclSpec::TST_auto: return "auto";
case DeclSpec::TST_auto_type: return "__auto_type";
case DeclSpec::TST_decltype: return "(decltype)";
case DeclSpec::TST_decltype_auto: return "decltype(auto)";
case DeclSpec::TST_underlyingType: return "__underlying_type";
case DeclSpec::TST_unknown_anytype: return "__unknown_anytype";
case DeclSpec::TST_atomic: return "_Atomic";
[OpenCL] Complete image types support. I. Current implementation of images is not conformant to spec in the following points: 1. It makes no distinction with respect to access qualifiers and therefore allows to use images with different access type interchangeably. The following code would compile just fine: void write_image(write_only image2d_t img); kernel void foo(read_only image2d_t img) { write_image(img); } // Accepted code which is disallowed according to s6.13.14. 2. It discards access qualifier on generated code, which leads to generated code for the above example: call void @write_image(%opencl.image2d_t* %img); In OpenCL2.0 however we can have different calls into write_image with read_only and wite_only images. Also generally following compiler steps have no easy way to take different path depending on the image access: linking to the right implementation of image types, performing IR opts and backend codegen differently. 3. Image types are language keywords and can't be redeclared s6.1.9, which can happen currently as they are just typedef names. 4. Default access qualifier read_only is to be added if not provided explicitly. II. This patch corrects the above points as follows: 1. All images are encapsulated into a separate .def file that is inserted in different points where image handling is required. This avoid a lot of code repetition as all images are handled the same way in the code with no distinction of their exact type. 2. The Cartesian product of image types and image access qualifiers is added to the builtin types. This simplifies a lot handling of access type mismatch as no operations are allowed by default on distinct Builtin types. Also spec intended access qualifier as special type qualifier that are combined with an image type to form a distinct type (see statement above - images can't be created w/o access qualifiers). 3. Improves testing of images in Clang. Author: Anastasia Stulova Reviewers: bader, mgrang. Subscribers: pxli168, pekka.jaaskelainen, yaxunl. Differential Revision: http://reviews.llvm.org/D17821 llvm-svn: 265783
2016-04-08 21:40:33 +08:00
#define GENERIC_IMAGE_TYPE(ImgType, Id) \
case DeclSpec::TST_##ImgType##_t: \
return #ImgType "_t";
#include "clang/Basic/OpenCLImageTypes.def"
case DeclSpec::TST_error: return "(error)";
}
llvm_unreachable("Unknown typespec!");
}
const char *DeclSpec::getSpecifierName(TQ T) {
switch (T) {
case DeclSpec::TQ_unspecified: return "unspecified";
case DeclSpec::TQ_const: return "const";
case DeclSpec::TQ_restrict: return "restrict";
case DeclSpec::TQ_volatile: return "volatile";
case DeclSpec::TQ_atomic: return "_Atomic";
case DeclSpec::TQ_unaligned: return "__unaligned";
}
llvm_unreachable("Unknown typespec!");
}
bool DeclSpec::SetStorageClassSpec(Sema &S, SCS SC, SourceLocation Loc,
const char *&PrevSpec,
unsigned &DiagID,
const PrintingPolicy &Policy) {
// OpenCL v1.1 s6.8g: "The extern, static, auto and register storage-class
// specifiers are not supported.
// It seems sensible to prohibit private_extern too
// The cl_clang_storage_class_specifiers extension enables support for
// these storage-class specifiers.
// OpenCL v1.2 s6.8 changes this to "The auto and register storage-class
// specifiers are not supported."
if (S.getLangOpts().OpenCL &&
!S.getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers")) {
switch (SC) {
case SCS_extern:
case SCS_private_extern:
case SCS_static:
2015-11-15 03:31:52 +08:00
if (S.getLangOpts().OpenCLVersion < 120) {
DiagID = diag::err_opencl_unknown_type_specifier;
PrevSpec = getSpecifierName(SC);
return true;
}
break;
case SCS_auto:
case SCS_register:
DiagID = diag::err_opencl_unknown_type_specifier;
PrevSpec = getSpecifierName(SC);
return true;
default:
break;
}
}
if (StorageClassSpec != SCS_unspecified) {
// Maybe this is an attempt to use C++11 'auto' outside of C++11 mode.
bool isInvalid = true;
if (TypeSpecType == TST_unspecified && S.getLangOpts().CPlusPlus) {
if (SC == SCS_auto)
return SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID, Policy);
if (StorageClassSpec == SCS_auto) {
isInvalid = SetTypeSpecType(TST_auto, StorageClassSpecLoc,
PrevSpec, DiagID, Policy);
assert(!isInvalid && "auto SCS -> TST recovery failed");
}
}
// Changing storage class is allowed only if the previous one
// was the 'extern' that is part of a linkage specification and
// the new storage class is 'typedef'.
if (isInvalid &&
!(SCS_extern_in_linkage_spec &&
StorageClassSpec == SCS_extern &&
SC == SCS_typedef))
return BadSpecifier(SC, (SCS)StorageClassSpec, PrevSpec, DiagID);
}
StorageClassSpec = SC;
StorageClassSpecLoc = Loc;
assert((unsigned)SC == StorageClassSpec && "SCS constants overflow bitfield");
return false;
}
bool DeclSpec::SetStorageClassSpecThread(TSCS TSC, SourceLocation Loc,
const char *&PrevSpec,
unsigned &DiagID) {
if (ThreadStorageClassSpec != TSCS_unspecified)
return BadSpecifier(TSC, (TSCS)ThreadStorageClassSpec, PrevSpec, DiagID);
ThreadStorageClassSpec = TSC;
ThreadStorageClassSpecLoc = Loc;
return false;
}
/// These methods set the specified attribute of the DeclSpec, but return true
/// and ignore the request if invalid (e.g. "extern" then "auto" is
/// specified).
bool DeclSpec::SetTypeSpecWidth(TSW W, SourceLocation Loc,
const char *&PrevSpec,
unsigned &DiagID,
const PrintingPolicy &Policy) {
// Overwrite TSWRange.Begin only if TypeSpecWidth was unspecified, so that
// for 'long long' we will keep the source location of the first 'long'.
if (TypeSpecWidth == TSW_unspecified)
TSWRange.setBegin(Loc);
// Allow turning long -> long long.
else if (W != TSW_longlong || TypeSpecWidth != TSW_long)
return BadSpecifier(W, (TSW)TypeSpecWidth, PrevSpec, DiagID);
TypeSpecWidth = W;
// Remember location of the last 'long'
TSWRange.setEnd(Loc);
return false;
}
bool DeclSpec::SetTypeSpecComplex(TSC C, SourceLocation Loc,
const char *&PrevSpec,
unsigned &DiagID) {
if (TypeSpecComplex != TSC_unspecified)
return BadSpecifier(C, (TSC)TypeSpecComplex, PrevSpec, DiagID);
TypeSpecComplex = C;
TSCLoc = Loc;
return false;
}
bool DeclSpec::SetTypeSpecSign(TSS S, SourceLocation Loc,
const char *&PrevSpec,
unsigned &DiagID) {
if (TypeSpecSign != TSS_unspecified)
return BadSpecifier(S, (TSS)TypeSpecSign, PrevSpec, DiagID);
TypeSpecSign = S;
TSSLoc = Loc;
return false;
}
bool DeclSpec::SetTypeSpecType(TST T, SourceLocation Loc,
const char *&PrevSpec,
unsigned &DiagID,
ParsedType Rep,
const PrintingPolicy &Policy) {
return SetTypeSpecType(T, Loc, Loc, PrevSpec, DiagID, Rep, Policy);
}
bool DeclSpec::SetTypeSpecType(TST T, SourceLocation TagKwLoc,
SourceLocation TagNameLoc,
const char *&PrevSpec,
unsigned &DiagID,
ParsedType Rep,
const PrintingPolicy &Policy) {
assert(isTypeRep(T) && "T does not store a type");
assert(Rep && "no type provided!");
if (TypeSpecType != TST_unspecified) {
PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
DiagID = diag::err_invalid_decl_spec_combination;
return true;
}
TypeSpecType = T;
TypeRep = Rep;
TSTLoc = TagKwLoc;
TSTNameLoc = TagNameLoc;
TypeSpecOwned = false;
return false;
}
bool DeclSpec::SetTypeSpecType(TST T, SourceLocation Loc,
const char *&PrevSpec,
unsigned &DiagID,
Expr *Rep,
const PrintingPolicy &Policy) {
assert(isExprRep(T) && "T does not store an expr");
assert(Rep && "no expression provided!");
if (TypeSpecType != TST_unspecified) {
PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
DiagID = diag::err_invalid_decl_spec_combination;
return true;
}
TypeSpecType = T;
ExprRep = Rep;
TSTLoc = Loc;
TSTNameLoc = Loc;
TypeSpecOwned = false;
return false;
}
bool DeclSpec::SetTypeSpecType(TST T, SourceLocation Loc,
const char *&PrevSpec,
unsigned &DiagID,
Decl *Rep, bool Owned,
const PrintingPolicy &Policy) {
return SetTypeSpecType(T, Loc, Loc, PrevSpec, DiagID, Rep, Owned, Policy);
}
bool DeclSpec::SetTypeSpecType(TST T, SourceLocation TagKwLoc,
SourceLocation TagNameLoc,
const char *&PrevSpec,
unsigned &DiagID,
Decl *Rep, bool Owned,
const PrintingPolicy &Policy) {
assert(isDeclRep(T) && "T does not store a decl");
// Unlike the other cases, we don't assert that we actually get a decl.
if (TypeSpecType != TST_unspecified) {
PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
DiagID = diag::err_invalid_decl_spec_combination;
return true;
}
TypeSpecType = T;
DeclRep = Rep;
TSTLoc = TagKwLoc;
TSTNameLoc = TagNameLoc;
TypeSpecOwned = Owned && Rep != nullptr;
return false;
}
bool DeclSpec::SetTypeSpecType(TST T, SourceLocation Loc,
const char *&PrevSpec,
unsigned &DiagID,
const PrintingPolicy &Policy) {
assert(!isDeclRep(T) && !isTypeRep(T) && !isExprRep(T) &&
"rep required for these type-spec kinds!");
if (TypeSpecType != TST_unspecified) {
PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
DiagID = diag::err_invalid_decl_spec_combination;
return true;
}
TSTLoc = Loc;
TSTNameLoc = Loc;
if (TypeAltiVecVector && (T == TST_bool) && !TypeAltiVecBool) {
TypeAltiVecBool = true;
return false;
}
TypeSpecType = T;
TypeSpecOwned = false;
return false;
}
bool DeclSpec::SetTypeAltiVecVector(bool isAltiVecVector, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
const PrintingPolicy &Policy) {
if (TypeSpecType != TST_unspecified) {
PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
DiagID = diag::err_invalid_vector_decl_spec_combination;
return true;
}
TypeAltiVecVector = isAltiVecVector;
AltiVecLoc = Loc;
return false;
}
bool DeclSpec::SetTypePipe(bool isPipe, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
const PrintingPolicy &Policy) {
if (TypeSpecType != TST_unspecified) {
PrevSpec = DeclSpec::getSpecifierName((TST)TypeSpecType, Policy);
DiagID = diag::err_invalid_decl_spec_combination;
return true;
}
if (isPipe) {
TypeSpecPipe = TSP_pipe;
}
return false;
}
bool DeclSpec::SetTypeAltiVecPixel(bool isAltiVecPixel, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
const PrintingPolicy &Policy) {
if (!TypeAltiVecVector || TypeAltiVecPixel ||
(TypeSpecType != TST_unspecified)) {
PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
DiagID = diag::err_invalid_pixel_decl_spec_combination;
return true;
}
TypeAltiVecPixel = isAltiVecPixel;
TSTLoc = Loc;
TSTNameLoc = Loc;
return false;
}
bool DeclSpec::SetTypeAltiVecBool(bool isAltiVecBool, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
const PrintingPolicy &Policy) {
if (!TypeAltiVecVector || TypeAltiVecBool ||
(TypeSpecType != TST_unspecified)) {
PrevSpec = DeclSpec::getSpecifierName((TST) TypeSpecType, Policy);
DiagID = diag::err_invalid_vector_bool_decl_spec;
return true;
}
TypeAltiVecBool = isAltiVecBool;
TSTLoc = Loc;
TSTNameLoc = Loc;
return false;
}
bool DeclSpec::SetTypeSpecError() {
TypeSpecType = TST_error;
TypeSpecOwned = false;
TSTLoc = SourceLocation();
TSTNameLoc = SourceLocation();
return false;
}
bool DeclSpec::SetTypeQual(TQ T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, const LangOptions &Lang) {
// Duplicates are permitted in C99 onwards, but are not permitted in C89 or
// C++. However, since this is likely not what the user intended, we will
// always warn. We do not need to set the qualifier's location since we
// already have it.
if (TypeQualifiers & T) {
bool IsExtension = true;
if (Lang.C99)
IsExtension = false;
return BadSpecifier(T, T, PrevSpec, DiagID, IsExtension);
}
TypeQualifiers |= T;
switch (T) {
case TQ_unspecified: break;
case TQ_const: TQ_constLoc = Loc; return false;
case TQ_restrict: TQ_restrictLoc = Loc; return false;
case TQ_volatile: TQ_volatileLoc = Loc; return false;
case TQ_unaligned: TQ_unalignedLoc = Loc; return false;
case TQ_atomic: TQ_atomicLoc = Loc; return false;
}
llvm_unreachable("Unknown type qualifier!");
}
bool DeclSpec::setFunctionSpecInline(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID) {
// 'inline inline' is ok. However, since this is likely not what the user
// intended, we will always warn, similar to duplicates of type qualifiers.
if (FS_inline_specified) {
DiagID = diag::warn_duplicate_declspec;
PrevSpec = "inline";
return true;
}
FS_inline_specified = true;
FS_inlineLoc = Loc;
return false;
}
bool DeclSpec::setFunctionSpecForceInline(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID) {
if (FS_forceinline_specified) {
DiagID = diag::warn_duplicate_declspec;
PrevSpec = "__forceinline";
return true;
}
FS_forceinline_specified = true;
FS_forceinlineLoc = Loc;
return false;
}
bool DeclSpec::setFunctionSpecVirtual(SourceLocation Loc,
const char *&PrevSpec,
unsigned &DiagID) {
// 'virtual virtual' is ok, but warn as this is likely not what the user
// intended.
if (FS_virtual_specified) {
DiagID = diag::warn_duplicate_declspec;
PrevSpec = "virtual";
return true;
}
FS_virtual_specified = true;
FS_virtualLoc = Loc;
return false;
}
bool DeclSpec::setFunctionSpecExplicit(SourceLocation Loc,
const char *&PrevSpec,
unsigned &DiagID) {
// 'explicit explicit' is ok, but warn as this is likely not what the user
// intended.
if (FS_explicit_specified) {
DiagID = diag::warn_duplicate_declspec;
PrevSpec = "explicit";
return true;
}
FS_explicit_specified = true;
FS_explicitLoc = Loc;
return false;
}
bool DeclSpec::setFunctionSpecNoreturn(SourceLocation Loc,
const char *&PrevSpec,
unsigned &DiagID) {
// '_Noreturn _Noreturn' is ok, but warn as this is likely not what the user
// intended.
if (FS_noreturn_specified) {
DiagID = diag::warn_duplicate_declspec;
PrevSpec = "_Noreturn";
return true;
}
FS_noreturn_specified = true;
FS_noreturnLoc = Loc;
return false;
}
bool DeclSpec::SetFriendSpec(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID) {
if (Friend_specified) {
PrevSpec = "friend";
// Keep the later location, so that we can later diagnose ill-formed
// declarations like 'friend class X friend;'. Per [class.friend]p3,
// 'friend' must be the first token in a friend declaration that is
// not a function declaration.
FriendLoc = Loc;
DiagID = diag::warn_duplicate_declspec;
return true;
}
Friend_specified = true;
FriendLoc = Loc;
return false;
}
bool DeclSpec::setModulePrivateSpec(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID) {
if (isModulePrivateSpecified()) {
PrevSpec = "__module_private__";
DiagID = diag::ext_duplicate_declspec;
return true;
}
ModulePrivateLoc = Loc;
return false;
}
bool DeclSpec::SetConstexprSpec(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID) {
// 'constexpr constexpr' is ok, but warn as this is likely not what the user
// intended.
if (Constexpr_specified) {
DiagID = diag::warn_duplicate_declspec;
PrevSpec = "constexpr";
return true;
}
Constexpr_specified = true;
ConstexprLoc = Loc;
return false;
}
bool DeclSpec::SetConceptSpec(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID) {
if (Concept_specified) {
DiagID = diag::ext_duplicate_declspec;
PrevSpec = "concept";
return true;
}
Concept_specified = true;
ConceptLoc = Loc;
return false;
}
void DeclSpec::SaveWrittenBuiltinSpecs() {
writtenBS.Sign = getTypeSpecSign();
writtenBS.Width = getTypeSpecWidth();
writtenBS.Type = getTypeSpecType();
// Search the list of attributes for the presence of a mode attribute.
writtenBS.ModeAttr = false;
AttributeList* attrs = getAttributes().getList();
while (attrs) {
if (attrs->getKind() == AttributeList::AT_Mode) {
writtenBS.ModeAttr = true;
break;
}
attrs = attrs->getNext();
}
}
/// Finish - This does final analysis of the declspec, rejecting things like
/// "_Imaginary" (lacking an FP type). This returns a diagnostic to issue or
/// diag::NUM_DIAGNOSTICS if there is no error. After calling this method,
/// DeclSpec is guaranteed self-consistent, even if an error occurred.
void DeclSpec::Finish(Sema &S, const PrintingPolicy &Policy) {
// Before possibly changing their values, save specs as written.
SaveWrittenBuiltinSpecs();
// Check the type specifier components first.
// If decltype(auto) is used, no other type specifiers are permitted.
if (TypeSpecType == TST_decltype_auto &&
(TypeSpecWidth != TSW_unspecified ||
TypeSpecComplex != TSC_unspecified ||
TypeSpecSign != TSS_unspecified ||
TypeAltiVecVector || TypeAltiVecPixel || TypeAltiVecBool ||
TypeQualifiers)) {
const unsigned NumLocs = 9;
SourceLocation ExtraLocs[NumLocs] = {
TSWRange.getBegin(), TSCLoc, TSSLoc,
AltiVecLoc, TQ_constLoc, TQ_restrictLoc,
TQ_volatileLoc, TQ_atomicLoc, TQ_unalignedLoc};
FixItHint Hints[NumLocs];
SourceLocation FirstLoc;
for (unsigned I = 0; I != NumLocs; ++I) {
if (ExtraLocs[I].isValid()) {
if (FirstLoc.isInvalid() ||
S.getSourceManager().isBeforeInTranslationUnit(ExtraLocs[I],
FirstLoc))
FirstLoc = ExtraLocs[I];
Hints[I] = FixItHint::CreateRemoval(ExtraLocs[I]);
}
}
TypeSpecWidth = TSW_unspecified;
TypeSpecComplex = TSC_unspecified;
TypeSpecSign = TSS_unspecified;
TypeAltiVecVector = TypeAltiVecPixel = TypeAltiVecBool = false;
TypeQualifiers = 0;
S.Diag(TSTLoc, diag::err_decltype_auto_cannot_be_combined)
<< Hints[0] << Hints[1] << Hints[2] << Hints[3]
<< Hints[4] << Hints[5] << Hints[6] << Hints[7];
}
// Validate and finalize AltiVec vector declspec.
if (TypeAltiVecVector) {
if (TypeAltiVecBool) {
// Sign specifiers are not allowed with vector bool. (PIM 2.1)
if (TypeSpecSign != TSS_unspecified) {
S.Diag(TSSLoc, diag::err_invalid_vector_bool_decl_spec)
<< getSpecifierName((TSS)TypeSpecSign);
}
// Only char/int are valid with vector bool. (PIM 2.1)
if (((TypeSpecType != TST_unspecified) && (TypeSpecType != TST_char) &&
(TypeSpecType != TST_int)) || TypeAltiVecPixel) {
S.Diag(TSTLoc, diag::err_invalid_vector_bool_decl_spec)
<< (TypeAltiVecPixel ? "__pixel" :
getSpecifierName((TST)TypeSpecType, Policy));
}
// Only 'short' and 'long long' are valid with vector bool. (PIM 2.1)
if ((TypeSpecWidth != TSW_unspecified) && (TypeSpecWidth != TSW_short) &&
(TypeSpecWidth != TSW_longlong))
S.Diag(TSWRange.getBegin(), diag::err_invalid_vector_bool_decl_spec)
<< getSpecifierName((TSW)TypeSpecWidth);
// vector bool long long requires VSX support or ZVector.
if ((TypeSpecWidth == TSW_longlong) &&
(!S.Context.getTargetInfo().hasFeature("vsx")) &&
(!S.Context.getTargetInfo().hasFeature("power8-vector")) &&
!S.getLangOpts().ZVector)
S.Diag(TSTLoc, diag::err_invalid_vector_long_long_decl_spec);
// Elements of vector bool are interpreted as unsigned. (PIM 2.1)
if ((TypeSpecType == TST_char) || (TypeSpecType == TST_int) ||
(TypeSpecWidth != TSW_unspecified))
TypeSpecSign = TSS_unsigned;
[PowerPC] Initial VSX intrinsic support, with min/max for vector double Now that we have initial support for VSX, we can begin adding intrinsics for programmer access to VSX instructions. This patch performs the necessary enablement in the front end, and tests it by implementing intrinsics for minimum and maximum using the vector double data type. The main change in the front end is to no longer disallow "vector" and "double" in the same declaration (lib/Sema/DeclSpec.cpp), but "vector" and "long double" must still be disallowed. The new intrinsics are accessed via vec_max and vec_min with changes in lib/Headers/altivec.h. Note that for v4f32, we already access corresponding VMX builtins, but with VSX enabled we should use the forms that allow all 64 vector registers. The new built-ins are defined in include/clang/Basic/BuiltinsPPC.def. I've added a new test in test/CodeGen/builtins-ppc-vsx.c that is similar to, but much smaller than, builtins-ppc-altivec.c. This allows us to test VSX IR generation without duplicating CHECK lines for the existing bazillion Altivec tests. Since vector double is now legal when VSX is available, I've modified the error message, and changed where we test for it and for vector long double, since the target machine isn't visible in the old place. This serendipitously removed a not-pertinent warning about 'long' being deprecated when used with 'vector', when "vector long double" is encountered and we just want to issue an error. The existing tests test/Parser/altivec.c and test/Parser/cxx-altivec.cpp have been updated accordingly, and I've added test/Parser/vsx.c to verify that "vector double" is now legitimate with VSX enabled. There is a companion patch for LLVM. llvm-svn: 220989
2014-11-01 03:19:24 +08:00
} else if (TypeSpecType == TST_double) {
// vector long double and vector long long double are never allowed.
// vector double is OK for Power7 and later, and ZVector.
[PowerPC] Initial VSX intrinsic support, with min/max for vector double Now that we have initial support for VSX, we can begin adding intrinsics for programmer access to VSX instructions. This patch performs the necessary enablement in the front end, and tests it by implementing intrinsics for minimum and maximum using the vector double data type. The main change in the front end is to no longer disallow "vector" and "double" in the same declaration (lib/Sema/DeclSpec.cpp), but "vector" and "long double" must still be disallowed. The new intrinsics are accessed via vec_max and vec_min with changes in lib/Headers/altivec.h. Note that for v4f32, we already access corresponding VMX builtins, but with VSX enabled we should use the forms that allow all 64 vector registers. The new built-ins are defined in include/clang/Basic/BuiltinsPPC.def. I've added a new test in test/CodeGen/builtins-ppc-vsx.c that is similar to, but much smaller than, builtins-ppc-altivec.c. This allows us to test VSX IR generation without duplicating CHECK lines for the existing bazillion Altivec tests. Since vector double is now legal when VSX is available, I've modified the error message, and changed where we test for it and for vector long double, since the target machine isn't visible in the old place. This serendipitously removed a not-pertinent warning about 'long' being deprecated when used with 'vector', when "vector long double" is encountered and we just want to issue an error. The existing tests test/Parser/altivec.c and test/Parser/cxx-altivec.cpp have been updated accordingly, and I've added test/Parser/vsx.c to verify that "vector double" is now legitimate with VSX enabled. There is a companion patch for LLVM. llvm-svn: 220989
2014-11-01 03:19:24 +08:00
if (TypeSpecWidth == TSW_long || TypeSpecWidth == TSW_longlong)
S.Diag(TSWRange.getBegin(),
diag::err_invalid_vector_long_double_decl_spec);
else if (!S.Context.getTargetInfo().hasFeature("vsx") &&
!S.getLangOpts().ZVector)
S.Diag(TSTLoc, diag::err_invalid_vector_double_decl_spec);
} else if (TypeSpecType == TST_float) {
// vector float is unsupported for ZVector unless we have the
// vector-enhancements facility 1 (ISA revision 12).
if (S.getLangOpts().ZVector &&
!S.Context.getTargetInfo().hasFeature("arch12"))
S.Diag(TSTLoc, diag::err_invalid_vector_float_decl_spec);
} else if (TypeSpecWidth == TSW_long) {
// vector long is unsupported for ZVector and deprecated for AltiVec.
if (S.getLangOpts().ZVector)
S.Diag(TSWRange.getBegin(), diag::err_invalid_vector_long_decl_spec);
else
S.Diag(TSWRange.getBegin(),
diag::warn_vector_long_decl_spec_combination)
<< getSpecifierName((TST)TypeSpecType, Policy);
}
if (TypeAltiVecPixel) {
//TODO: perform validation
TypeSpecType = TST_int;
TypeSpecSign = TSS_unsigned;
TypeSpecWidth = TSW_short;
TypeSpecOwned = false;
}
}
// signed/unsigned are only valid with int/char/wchar_t.
if (TypeSpecSign != TSS_unspecified) {
if (TypeSpecType == TST_unspecified)
TypeSpecType = TST_int; // unsigned -> unsigned int, signed -> signed int.
else if (TypeSpecType != TST_int && TypeSpecType != TST_int128 &&
TypeSpecType != TST_char && TypeSpecType != TST_wchar) {
S.Diag(TSSLoc, diag::err_invalid_sign_spec)
<< getSpecifierName((TST)TypeSpecType, Policy);
// signed double -> double.
TypeSpecSign = TSS_unspecified;
}
}
// Validate the width of the type.
switch (TypeSpecWidth) {
case TSW_unspecified: break;
case TSW_short: // short int
case TSW_longlong: // long long int
if (TypeSpecType == TST_unspecified)
TypeSpecType = TST_int; // short -> short int, long long -> long long int.
else if (TypeSpecType != TST_int) {
S.Diag(TSWRange.getBegin(), diag::err_invalid_width_spec)
<< (int)TypeSpecWidth << getSpecifierName((TST)TypeSpecType, Policy);
TypeSpecType = TST_int;
TypeSpecOwned = false;
}
break;
case TSW_long: // long double, long int
if (TypeSpecType == TST_unspecified)
TypeSpecType = TST_int; // long -> long int.
else if (TypeSpecType != TST_int && TypeSpecType != TST_double) {
S.Diag(TSWRange.getBegin(), diag::err_invalid_width_spec)
<< (int)TypeSpecWidth << getSpecifierName((TST)TypeSpecType, Policy);
TypeSpecType = TST_int;
TypeSpecOwned = false;
}
break;
}
// TODO: if the implementation does not implement _Complex or _Imaginary,
// disallow their use. Need information about the backend.
if (TypeSpecComplex != TSC_unspecified) {
if (TypeSpecType == TST_unspecified) {
S.Diag(TSCLoc, diag::ext_plain_complex)
<< FixItHint::CreateInsertion(
S.getLocForEndOfToken(getTypeSpecComplexLoc()),
" double");
TypeSpecType = TST_double; // _Complex -> _Complex double.
} else if (TypeSpecType == TST_int || TypeSpecType == TST_char) {
// Note that this intentionally doesn't include _Complex _Bool.
if (!S.getLangOpts().CPlusPlus)
S.Diag(TSTLoc, diag::ext_integer_complex);
} else if (TypeSpecType != TST_float && TypeSpecType != TST_double) {
S.Diag(TSCLoc, diag::err_invalid_complex_spec)
<< getSpecifierName((TST)TypeSpecType, Policy);
TypeSpecComplex = TSC_unspecified;
}
}
2006-08-05 11:30:45 +08:00
// C11 6.7.1/3, C++11 [dcl.stc]p1, GNU TLS: __thread, thread_local and
// _Thread_local can only appear with the 'static' and 'extern' storage class
// specifiers. We also allow __private_extern__ as an extension.
if (ThreadStorageClassSpec != TSCS_unspecified) {
switch (StorageClassSpec) {
case SCS_unspecified:
case SCS_extern:
case SCS_private_extern:
case SCS_static:
break;
default:
if (S.getSourceManager().isBeforeInTranslationUnit(
getThreadStorageClassSpecLoc(), getStorageClassSpecLoc()))
S.Diag(getStorageClassSpecLoc(),
diag::err_invalid_decl_spec_combination)
<< DeclSpec::getSpecifierName(getThreadStorageClassSpec())
<< SourceRange(getThreadStorageClassSpecLoc());
else
S.Diag(getThreadStorageClassSpecLoc(),
diag::err_invalid_decl_spec_combination)
<< DeclSpec::getSpecifierName(getStorageClassSpec())
<< SourceRange(getStorageClassSpecLoc());
// Discard the thread storage class specifier to recover.
ThreadStorageClassSpec = TSCS_unspecified;
ThreadStorageClassSpecLoc = SourceLocation();
}
}
// If no type specifier was provided and we're parsing a language where
// the type specifier is not optional, but we got 'auto' as a storage
// class specifier, then assume this is an attempt to use C++0x's 'auto'
// type specifier.
if (S.getLangOpts().CPlusPlus &&
TypeSpecType == TST_unspecified && StorageClassSpec == SCS_auto) {
TypeSpecType = TST_auto;
StorageClassSpec = SCS_unspecified;
TSTLoc = TSTNameLoc = StorageClassSpecLoc;
StorageClassSpecLoc = SourceLocation();
}
// Diagnose if we've recovered from an ill-formed 'auto' storage class
// specifier in a pre-C++11 dialect of C++.
if (!S.getLangOpts().CPlusPlus11 && TypeSpecType == TST_auto)
S.Diag(TSTLoc, diag::ext_auto_type_specifier);
if (S.getLangOpts().CPlusPlus && !S.getLangOpts().CPlusPlus11 &&
StorageClassSpec == SCS_auto)
S.Diag(StorageClassSpecLoc, diag::warn_auto_storage_class)
<< FixItHint::CreateRemoval(StorageClassSpecLoc);
if (TypeSpecType == TST_char16 || TypeSpecType == TST_char32)
S.Diag(TSTLoc, diag::warn_cxx98_compat_unicode_type)
<< (TypeSpecType == TST_char16 ? "char16_t" : "char32_t");
if (Constexpr_specified)
S.Diag(ConstexprLoc, diag::warn_cxx98_compat_constexpr);
// C++ [class.friend]p6:
// No storage-class-specifier shall appear in the decl-specifier-seq
// of a friend declaration.
if (isFriendSpecified() &&
(getStorageClassSpec() || getThreadStorageClassSpec())) {
SmallString<32> SpecName;
SourceLocation SCLoc;
FixItHint StorageHint, ThreadHint;
if (DeclSpec::SCS SC = getStorageClassSpec()) {
SpecName = getSpecifierName(SC);
SCLoc = getStorageClassSpecLoc();
StorageHint = FixItHint::CreateRemoval(SCLoc);
}
if (DeclSpec::TSCS TSC = getThreadStorageClassSpec()) {
if (!SpecName.empty()) SpecName += " ";
SpecName += getSpecifierName(TSC);
SCLoc = getThreadStorageClassSpecLoc();
ThreadHint = FixItHint::CreateRemoval(SCLoc);
}
S.Diag(SCLoc, diag::err_friend_decl_spec)
<< SpecName << StorageHint << ThreadHint;
ClearStorageClassSpecs();
}
// C++11 [dcl.fct.spec]p5:
// The virtual specifier shall be used only in the initial
// declaration of a non-static class member function;
// C++11 [dcl.fct.spec]p6:
// The explicit specifier shall be used only in the declaration of
// a constructor or conversion function within its class
// definition;
if (isFriendSpecified() && (isVirtualSpecified() || isExplicitSpecified())) {
StringRef Keyword;
SourceLocation SCLoc;
if (isVirtualSpecified()) {
Keyword = "virtual";
SCLoc = getVirtualSpecLoc();
} else {
Keyword = "explicit";
SCLoc = getExplicitSpecLoc();
}
FixItHint Hint = FixItHint::CreateRemoval(SCLoc);
S.Diag(SCLoc, diag::err_friend_decl_spec)
<< Keyword << Hint;
FS_virtual_specified = FS_explicit_specified = false;
FS_virtualLoc = FS_explicitLoc = SourceLocation();
}
assert(!TypeSpecOwned || isDeclRep((TST) TypeSpecType));
2006-08-05 11:30:45 +08:00
// Okay, now we can infer the real type.
// TODO: return "auto function" and other bad things based on the real type.
// 'data definition has no type or storage class'?
}
bool DeclSpec::isMissingDeclaratorOk() {
TST tst = getTypeSpecType();
return isDeclRep(tst) && getRepAsDecl() != nullptr &&
StorageClassSpec != DeclSpec::SCS_typedef;
}
void UnqualifiedId::setOperatorFunctionId(SourceLocation OperatorLoc,
OverloadedOperatorKind Op,
SourceLocation SymbolLocations[3]) {
Kind = IK_OperatorFunctionId;
StartLocation = OperatorLoc;
EndLocation = OperatorLoc;
OperatorFunctionId.Operator = Op;
for (unsigned I = 0; I != 3; ++I) {
OperatorFunctionId.SymbolLocations[I] = SymbolLocations[I].getRawEncoding();
if (SymbolLocations[I].isValid())
EndLocation = SymbolLocations[I];
}
}
bool VirtSpecifiers::SetSpecifier(Specifier VS, SourceLocation Loc,
const char *&PrevSpec) {
if (!FirstLocation.isValid())
FirstLocation = Loc;
LastLocation = Loc;
LastSpecifier = VS;
if (Specifiers & VS) {
PrevSpec = getSpecifierName(VS);
return true;
}
Specifiers |= VS;
switch (VS) {
default: llvm_unreachable("Unknown specifier!");
case VS_Override: VS_overrideLoc = Loc; break;
case VS_GNU_Final:
case VS_Sealed:
case VS_Final: VS_finalLoc = Loc; break;
}
return false;
}
const char *VirtSpecifiers::getSpecifierName(Specifier VS) {
switch (VS) {
default: llvm_unreachable("Unknown specifier");
case VS_Override: return "override";
case VS_Final: return "final";
case VS_GNU_Final: return "__final";
case VS_Sealed: return "sealed";
}
}