2018-06-28 02:03:08 +08:00
|
|
|
//===- AffineExpr.cpp - MLIR Affine Expr Classes --------------------------===//
|
|
|
|
//
|
2020-01-26 11:58:30 +08:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
2019-12-24 01:35:36 +08:00
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
2018-06-28 02:03:08 +08:00
|
|
|
//
|
2019-12-24 01:35:36 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2018-06-28 02:03:08 +08:00
|
|
|
|
|
|
|
#include "mlir/IR/AffineExpr.h"
|
2018-10-10 01:59:27 +08:00
|
|
|
#include "AffineExprDetail.h"
|
2019-01-04 23:23:28 +08:00
|
|
|
#include "mlir/IR/AffineExprVisitor.h"
|
2019-01-08 09:40:31 +08:00
|
|
|
#include "mlir/IR/AffineMap.h"
|
2019-02-06 09:00:13 +08:00
|
|
|
#include "mlir/IR/IntegerSet.h"
|
2019-05-21 16:34:13 +08:00
|
|
|
#include "mlir/Support/MathExtras.h"
|
2018-10-04 06:36:53 +08:00
|
|
|
#include "llvm/ADT/STLExtras.h"
|
2018-06-28 02:03:08 +08:00
|
|
|
|
|
|
|
using namespace mlir;
|
2018-10-09 01:20:25 +08:00
|
|
|
using namespace mlir::detail;
|
2018-07-10 00:00:25 +08:00
|
|
|
|
2019-05-21 16:34:13 +08:00
|
|
|
MLIRContext *AffineExpr::getContext() const { return expr->context; }
|
2018-10-10 01:59:27 +08:00
|
|
|
|
|
|
|
AffineExprKind AffineExpr::getKind() const {
|
2019-05-21 16:34:13 +08:00
|
|
|
return static_cast<AffineExprKind>(expr->getKind());
|
2018-10-10 01:59:27 +08:00
|
|
|
}
|
|
|
|
|
2019-01-04 23:23:28 +08:00
|
|
|
/// Walk all of the AffineExprs in this subgraph in postorder.
|
|
|
|
void AffineExpr::walk(std::function<void(AffineExpr)> callback) const {
|
|
|
|
struct AffineExprWalker : public AffineExprVisitor<AffineExprWalker> {
|
|
|
|
std::function<void(AffineExpr)> callback;
|
|
|
|
|
|
|
|
AffineExprWalker(std::function<void(AffineExpr)> callback)
|
|
|
|
: callback(callback) {}
|
|
|
|
|
|
|
|
void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { callback(expr); }
|
|
|
|
void visitConstantExpr(AffineConstantExpr expr) { callback(expr); }
|
|
|
|
void visitDimExpr(AffineDimExpr expr) { callback(expr); }
|
|
|
|
void visitSymbolExpr(AffineSymbolExpr expr) { callback(expr); }
|
|
|
|
};
|
|
|
|
|
|
|
|
AffineExprWalker(callback).walkPostOrder(*this);
|
|
|
|
}
|
|
|
|
|
2019-05-21 16:34:13 +08:00
|
|
|
// Dispatch affine expression construction based on kind.
|
|
|
|
AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs,
|
|
|
|
AffineExpr rhs) {
|
|
|
|
if (kind == AffineExprKind::Add)
|
|
|
|
return lhs + rhs;
|
|
|
|
if (kind == AffineExprKind::Mul)
|
|
|
|
return lhs * rhs;
|
|
|
|
if (kind == AffineExprKind::FloorDiv)
|
|
|
|
return lhs.floorDiv(rhs);
|
|
|
|
if (kind == AffineExprKind::CeilDiv)
|
|
|
|
return lhs.ceilDiv(rhs);
|
|
|
|
if (kind == AffineExprKind::Mod)
|
|
|
|
return lhs % rhs;
|
|
|
|
|
|
|
|
llvm_unreachable("unknown binary operation on affine expressions");
|
|
|
|
}
|
|
|
|
|
2019-01-04 23:23:28 +08:00
|
|
|
/// This method substitutes any uses of dimensions and symbols (e.g.
|
|
|
|
/// dim#0 with dimReplacements[0]) and returns the modified expression tree.
|
|
|
|
AffineExpr
|
|
|
|
AffineExpr::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
|
|
|
|
ArrayRef<AffineExpr> symReplacements) const {
|
|
|
|
switch (getKind()) {
|
|
|
|
case AffineExprKind::Constant:
|
|
|
|
return *this;
|
|
|
|
case AffineExprKind::DimId: {
|
|
|
|
unsigned dimId = cast<AffineDimExpr>().getPosition();
|
|
|
|
if (dimId >= dimReplacements.size())
|
|
|
|
return *this;
|
|
|
|
return dimReplacements[dimId];
|
|
|
|
}
|
|
|
|
case AffineExprKind::SymbolId: {
|
|
|
|
unsigned symId = cast<AffineSymbolExpr>().getPosition();
|
|
|
|
if (symId >= symReplacements.size())
|
|
|
|
return *this;
|
|
|
|
return symReplacements[symId];
|
|
|
|
}
|
|
|
|
case AffineExprKind::Add:
|
|
|
|
case AffineExprKind::Mul:
|
|
|
|
case AffineExprKind::FloorDiv:
|
|
|
|
case AffineExprKind::CeilDiv:
|
|
|
|
case AffineExprKind::Mod:
|
|
|
|
auto binOp = cast<AffineBinaryOpExpr>();
|
|
|
|
auto lhs = binOp.getLHS(), rhs = binOp.getRHS();
|
|
|
|
auto newLHS = lhs.replaceDimsAndSymbols(dimReplacements, symReplacements);
|
|
|
|
auto newRHS = rhs.replaceDimsAndSymbols(dimReplacements, symReplacements);
|
|
|
|
if (newLHS == lhs && newRHS == rhs)
|
|
|
|
return *this;
|
2019-01-07 23:51:23 +08:00
|
|
|
return getAffineBinaryOpExpr(getKind(), newLHS, newRHS);
|
2019-01-04 23:23:28 +08:00
|
|
|
}
|
2019-05-11 05:06:10 +08:00
|
|
|
llvm_unreachable("Unknown AffineExpr");
|
2019-01-04 23:23:28 +08:00
|
|
|
}
|
|
|
|
|
2018-10-09 01:20:25 +08:00
|
|
|
/// Returns true if this expression is made out of only symbols and
|
|
|
|
/// constants (no dimensional identifiers).
|
2018-10-10 01:59:27 +08:00
|
|
|
bool AffineExpr::isSymbolicOrConstant() const {
|
2018-10-09 01:20:25 +08:00
|
|
|
switch (getKind()) {
|
|
|
|
case AffineExprKind::Constant:
|
|
|
|
return true;
|
|
|
|
case AffineExprKind::DimId:
|
|
|
|
return false;
|
|
|
|
case AffineExprKind::SymbolId:
|
|
|
|
return true;
|
|
|
|
|
|
|
|
case AffineExprKind::Add:
|
|
|
|
case AffineExprKind::Mul:
|
|
|
|
case AffineExprKind::FloorDiv:
|
|
|
|
case AffineExprKind::CeilDiv:
|
|
|
|
case AffineExprKind::Mod: {
|
2018-10-10 01:59:27 +08:00
|
|
|
auto expr = this->cast<AffineBinaryOpExpr>();
|
|
|
|
return expr.getLHS().isSymbolicOrConstant() &&
|
|
|
|
expr.getRHS().isSymbolicOrConstant();
|
2018-10-09 01:20:25 +08:00
|
|
|
}
|
|
|
|
}
|
2019-05-11 05:06:10 +08:00
|
|
|
llvm_unreachable("Unknown AffineExpr");
|
2018-10-09 01:20:25 +08:00
|
|
|
}
|
|
|
|
|
2018-07-11 01:59:53 +08:00
|
|
|
/// Returns true if this is a pure affine expression, i.e., multiplication,
|
|
|
|
/// floordiv, ceildiv, and mod is only allowed w.r.t constants.
|
2018-10-10 01:59:27 +08:00
|
|
|
bool AffineExpr::isPureAffine() const {
|
2018-07-10 00:00:25 +08:00
|
|
|
switch (getKind()) {
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::SymbolId:
|
|
|
|
case AffineExprKind::DimId:
|
|
|
|
case AffineExprKind::Constant:
|
2018-07-11 01:59:53 +08:00
|
|
|
return true;
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::Add: {
|
2018-10-10 01:59:27 +08:00
|
|
|
auto op = cast<AffineBinaryOpExpr>();
|
|
|
|
return op.getLHS().isPureAffine() && op.getRHS().isPureAffine();
|
2018-07-11 01:59:53 +08:00
|
|
|
}
|
|
|
|
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::Mul: {
|
2018-07-11 01:59:53 +08:00
|
|
|
// TODO: Canonicalize the constants in binary operators to the RHS when
|
|
|
|
// possible, allowing this to merge into the next case.
|
2018-10-10 01:59:27 +08:00
|
|
|
auto op = cast<AffineBinaryOpExpr>();
|
|
|
|
return op.getLHS().isPureAffine() && op.getRHS().isPureAffine() &&
|
|
|
|
(op.getLHS().template isa<AffineConstantExpr>() ||
|
|
|
|
op.getRHS().template isa<AffineConstantExpr>());
|
2018-07-11 01:59:53 +08:00
|
|
|
}
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::FloorDiv:
|
|
|
|
case AffineExprKind::CeilDiv:
|
|
|
|
case AffineExprKind::Mod: {
|
2018-10-10 01:59:27 +08:00
|
|
|
auto op = cast<AffineBinaryOpExpr>();
|
|
|
|
return op.getLHS().isPureAffine() &&
|
|
|
|
op.getRHS().template isa<AffineConstantExpr>();
|
2018-07-11 01:59:53 +08:00
|
|
|
}
|
2018-07-10 00:00:25 +08:00
|
|
|
}
|
2019-05-11 05:06:10 +08:00
|
|
|
llvm_unreachable("Unknown AffineExpr");
|
2018-07-10 00:00:25 +08:00
|
|
|
}
|
2018-08-31 08:35:15 +08:00
|
|
|
|
2019-05-11 05:06:10 +08:00
|
|
|
// Returns the greatest known integral divisor of this affine expression.
|
2019-12-11 07:49:07 +08:00
|
|
|
int64_t AffineExpr::getLargestKnownDivisor() const {
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineBinaryOpExpr binExpr(nullptr);
|
2018-10-09 01:20:25 +08:00
|
|
|
switch (getKind()) {
|
|
|
|
case AffineExprKind::SymbolId:
|
2018-08-31 08:35:15 +08:00
|
|
|
LLVM_FALLTHROUGH;
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::DimId:
|
2018-08-31 08:35:15 +08:00
|
|
|
return 1;
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::Constant:
|
2018-10-10 01:59:27 +08:00
|
|
|
return std::abs(this->cast<AffineConstantExpr>().getValue());
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::Mul: {
|
2018-10-10 01:59:27 +08:00
|
|
|
binExpr = this->cast<AffineBinaryOpExpr>();
|
|
|
|
return binExpr.getLHS().getLargestKnownDivisor() *
|
|
|
|
binExpr.getRHS().getLargestKnownDivisor();
|
2018-10-04 06:39:12 +08:00
|
|
|
}
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::Add:
|
2018-08-31 08:35:15 +08:00
|
|
|
LLVM_FALLTHROUGH;
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::FloorDiv:
|
|
|
|
case AffineExprKind::CeilDiv:
|
|
|
|
case AffineExprKind::Mod: {
|
2018-10-10 01:59:27 +08:00
|
|
|
binExpr = cast<AffineBinaryOpExpr>();
|
2018-09-13 01:21:23 +08:00
|
|
|
return llvm::GreatestCommonDivisor64(
|
2018-10-10 01:59:27 +08:00
|
|
|
binExpr.getLHS().getLargestKnownDivisor(),
|
|
|
|
binExpr.getRHS().getLargestKnownDivisor());
|
2018-08-31 08:35:15 +08:00
|
|
|
}
|
2018-10-04 06:39:12 +08:00
|
|
|
}
|
2019-05-11 05:06:10 +08:00
|
|
|
llvm_unreachable("Unknown AffineExpr");
|
2018-08-31 08:35:15 +08:00
|
|
|
}
|
|
|
|
|
2018-10-10 01:59:27 +08:00
|
|
|
bool AffineExpr::isMultipleOf(int64_t factor) const {
|
|
|
|
AffineBinaryOpExpr binExpr(nullptr);
|
2018-08-31 08:35:15 +08:00
|
|
|
uint64_t l, u;
|
2018-10-09 01:20:25 +08:00
|
|
|
switch (getKind()) {
|
|
|
|
case AffineExprKind::SymbolId:
|
2018-08-31 08:35:15 +08:00
|
|
|
LLVM_FALLTHROUGH;
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::DimId:
|
2018-08-31 08:35:15 +08:00
|
|
|
return factor * factor == 1;
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::Constant:
|
2018-10-10 01:59:27 +08:00
|
|
|
return cast<AffineConstantExpr>().getValue() % factor == 0;
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::Mul: {
|
2018-10-10 01:59:27 +08:00
|
|
|
binExpr = cast<AffineBinaryOpExpr>();
|
2018-08-31 08:35:15 +08:00
|
|
|
// It's probably not worth optimizing this further (to not traverse the
|
|
|
|
// whole sub-tree under - it that would require a version of isMultipleOf
|
2018-09-13 01:21:23 +08:00
|
|
|
// that on a 'false' return also returns the largest known divisor).
|
2018-10-10 01:59:27 +08:00
|
|
|
return (l = binExpr.getLHS().getLargestKnownDivisor()) % factor == 0 ||
|
|
|
|
(u = binExpr.getRHS().getLargestKnownDivisor()) % factor == 0 ||
|
2018-08-31 08:35:15 +08:00
|
|
|
(l * u) % factor == 0;
|
2018-10-04 06:39:12 +08:00
|
|
|
}
|
2018-10-09 01:20:25 +08:00
|
|
|
case AffineExprKind::Add:
|
|
|
|
case AffineExprKind::FloorDiv:
|
|
|
|
case AffineExprKind::CeilDiv:
|
|
|
|
case AffineExprKind::Mod: {
|
2018-10-10 01:59:27 +08:00
|
|
|
binExpr = cast<AffineBinaryOpExpr>();
|
2018-09-13 01:21:23 +08:00
|
|
|
return llvm::GreatestCommonDivisor64(
|
2018-10-10 01:59:27 +08:00
|
|
|
binExpr.getLHS().getLargestKnownDivisor(),
|
|
|
|
binExpr.getRHS().getLargestKnownDivisor()) %
|
2018-08-31 08:35:15 +08:00
|
|
|
factor ==
|
|
|
|
0;
|
|
|
|
}
|
2018-10-04 06:39:12 +08:00
|
|
|
}
|
2019-05-11 05:06:10 +08:00
|
|
|
llvm_unreachable("Unknown AffineExpr");
|
2018-08-31 08:35:15 +08:00
|
|
|
}
|
2018-10-04 06:36:53 +08:00
|
|
|
|
2018-10-18 09:01:44 +08:00
|
|
|
bool AffineExpr::isFunctionOfDim(unsigned position) const {
|
|
|
|
if (getKind() == AffineExprKind::DimId) {
|
|
|
|
return *this == mlir::getAffineDimExpr(position, getContext());
|
|
|
|
}
|
|
|
|
if (auto expr = this->dyn_cast<AffineBinaryOpExpr>()) {
|
|
|
|
return expr.getLHS().isFunctionOfDim(position) ||
|
|
|
|
expr.getRHS().isFunctionOfDim(position);
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineBinaryOpExpr::AffineBinaryOpExpr(AffineExpr::ImplType *ptr)
|
|
|
|
: AffineExpr(ptr) {}
|
|
|
|
AffineExpr AffineBinaryOpExpr::getLHS() const {
|
|
|
|
return static_cast<ImplType *>(expr)->lhs;
|
|
|
|
}
|
|
|
|
AffineExpr AffineBinaryOpExpr::getRHS() const {
|
|
|
|
return static_cast<ImplType *>(expr)->rhs;
|
|
|
|
}
|
|
|
|
|
|
|
|
AffineDimExpr::AffineDimExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {}
|
|
|
|
unsigned AffineDimExpr::getPosition() const {
|
|
|
|
return static_cast<ImplType *>(expr)->position;
|
|
|
|
}
|
|
|
|
|
2019-05-21 16:34:13 +08:00
|
|
|
static AffineExpr getAffineDimOrSymbol(AffineExprKind kind, unsigned position,
|
|
|
|
MLIRContext *context) {
|
|
|
|
auto assignCtx = [context](AffineDimExprStorage *storage) {
|
|
|
|
storage->context = context;
|
|
|
|
};
|
|
|
|
|
|
|
|
StorageUniquer &uniquer = context->getAffineUniquer();
|
|
|
|
return uniquer.get<AffineDimExprStorage>(
|
|
|
|
assignCtx, static_cast<unsigned>(kind), position);
|
|
|
|
}
|
|
|
|
|
|
|
|
AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) {
|
|
|
|
return getAffineDimOrSymbol(AffineExprKind::DimId, position, context);
|
|
|
|
}
|
|
|
|
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineSymbolExpr::AffineSymbolExpr(AffineExpr::ImplType *ptr)
|
|
|
|
: AffineExpr(ptr) {}
|
|
|
|
unsigned AffineSymbolExpr::getPosition() const {
|
|
|
|
return static_cast<ImplType *>(expr)->position;
|
|
|
|
}
|
2018-10-04 06:36:53 +08:00
|
|
|
|
2019-05-21 16:34:13 +08:00
|
|
|
AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) {
|
|
|
|
return getAffineDimOrSymbol(AffineExprKind::SymbolId, position, context);
|
|
|
|
;
|
|
|
|
}
|
|
|
|
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr)
|
|
|
|
: AffineExpr(ptr) {}
|
|
|
|
int64_t AffineConstantExpr::getValue() const {
|
|
|
|
return static_cast<ImplType *>(expr)->constant;
|
|
|
|
}
|
2018-10-09 01:20:25 +08:00
|
|
|
|
2019-09-22 01:08:32 +08:00
|
|
|
bool AffineExpr::operator==(int64_t v) const {
|
|
|
|
return *this == getAffineConstantExpr(v, getContext());
|
|
|
|
}
|
|
|
|
|
2019-05-21 16:34:13 +08:00
|
|
|
AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) {
|
|
|
|
auto assignCtx = [context](AffineConstantExprStorage *storage) {
|
|
|
|
storage->context = context;
|
|
|
|
};
|
|
|
|
|
|
|
|
StorageUniquer &uniquer = context->getAffineUniquer();
|
|
|
|
return uniquer.get<AffineConstantExprStorage>(
|
|
|
|
assignCtx, static_cast<unsigned>(AffineExprKind::Constant), constant);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Simplify add expression. Return nullptr if it can't be simplified.
|
|
|
|
static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) {
|
|
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
// Fold if both LHS, RHS are a constant.
|
|
|
|
if (lhsConst && rhsConst)
|
|
|
|
return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(),
|
|
|
|
lhs.getContext());
|
|
|
|
|
|
|
|
// Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4).
|
|
|
|
// If only one of them is a symbolic expressions, make it the RHS.
|
|
|
|
if (lhs.isa<AffineConstantExpr>() ||
|
|
|
|
(lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) {
|
|
|
|
return rhs + lhs;
|
|
|
|
}
|
|
|
|
|
|
|
|
// At this point, if there was a constant, it would be on the right.
|
|
|
|
|
|
|
|
// Addition with a zero is a noop, return the other input.
|
|
|
|
if (rhsConst) {
|
|
|
|
if (rhsConst.getValue() == 0)
|
|
|
|
return lhs;
|
|
|
|
}
|
|
|
|
// Fold successive additions like (d0 + 2) + 3 into d0 + 5.
|
|
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
|
|
|
if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) {
|
|
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
|
|
|
|
return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue());
|
|
|
|
}
|
|
|
|
|
2020-02-10 11:22:11 +08:00
|
|
|
// Detect "c1 * expr + c_2 * expr" as "(c1 + c2) * expr".
|
|
|
|
// c1 is rRhsConst, c2 is rLhsConst; firstExpr, secondExpr are their
|
|
|
|
// respective multiplicands.
|
|
|
|
Optional<int64_t> rLhsConst, rRhsConst;
|
|
|
|
AffineExpr firstExpr, secondExpr;
|
|
|
|
AffineConstantExpr rLhsConstExpr;
|
|
|
|
auto lBinOpExpr = lhs.dyn_cast<AffineBinaryOpExpr>();
|
|
|
|
if (lBinOpExpr && lBinOpExpr.getKind() == AffineExprKind::Mul &&
|
|
|
|
(rLhsConstExpr = lBinOpExpr.getRHS().dyn_cast<AffineConstantExpr>())) {
|
|
|
|
rLhsConst = rLhsConstExpr.getValue();
|
|
|
|
firstExpr = lBinOpExpr.getLHS();
|
|
|
|
} else {
|
|
|
|
rLhsConst = 1;
|
|
|
|
firstExpr = lhs;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto rBinOpExpr = rhs.dyn_cast<AffineBinaryOpExpr>();
|
|
|
|
AffineConstantExpr rRhsConstExpr;
|
|
|
|
if (rBinOpExpr && rBinOpExpr.getKind() == AffineExprKind::Mul &&
|
|
|
|
(rRhsConstExpr = rBinOpExpr.getRHS().dyn_cast<AffineConstantExpr>())) {
|
|
|
|
rRhsConst = rRhsConstExpr.getValue();
|
|
|
|
secondExpr = rBinOpExpr.getLHS();
|
|
|
|
} else {
|
|
|
|
rRhsConst = 1;
|
|
|
|
secondExpr = rhs;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rLhsConst && rRhsConst && firstExpr == secondExpr)
|
|
|
|
return getAffineBinaryOpExpr(
|
|
|
|
AffineExprKind::Mul, firstExpr,
|
|
|
|
getAffineConstantExpr(rLhsConst.getValue() + rRhsConst.getValue(),
|
|
|
|
lhs.getContext()));
|
|
|
|
|
2019-05-21 16:34:13 +08:00
|
|
|
// When doing successive additions, bring constant to the right: turn (d0 + 2)
|
|
|
|
// + d1 into (d0 + d1) + 2.
|
|
|
|
if (lBin && lBin.getKind() == AffineExprKind::Add) {
|
|
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
|
|
|
|
return lBin.getLHS() + rhs + lrhs;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Detect and transform "expr - c * (expr floordiv c)" to "expr mod c". This
|
|
|
|
// leads to a much more efficient form when 'c' is a power of two, and in
|
|
|
|
// general a more compact and readable form.
|
|
|
|
|
|
|
|
// Process '(expr floordiv c) * (-c)'.
|
|
|
|
if (!rBinOpExpr)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
auto lrhs = rBinOpExpr.getLHS();
|
|
|
|
auto rrhs = rBinOpExpr.getRHS();
|
|
|
|
|
|
|
|
// Process lrhs, which is 'expr floordiv c'.
|
|
|
|
AffineBinaryOpExpr lrBinOpExpr = lrhs.dyn_cast<AffineBinaryOpExpr>();
|
2019-08-20 16:52:39 +08:00
|
|
|
if (!lrBinOpExpr || lrBinOpExpr.getKind() != AffineExprKind::FloorDiv)
|
2019-05-21 16:34:13 +08:00
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
auto llrhs = lrBinOpExpr.getLHS();
|
|
|
|
auto rlrhs = lrBinOpExpr.getRHS();
|
|
|
|
|
|
|
|
if (lhs == llrhs && rlrhs == -rrhs) {
|
|
|
|
return lhs % rlrhs;
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineExpr AffineExpr::operator+(int64_t v) const {
|
2019-05-21 16:34:13 +08:00
|
|
|
return *this + getAffineConstantExpr(v, getContext());
|
2018-10-04 06:36:53 +08:00
|
|
|
}
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineExpr AffineExpr::operator+(AffineExpr other) const {
|
2019-05-21 16:34:13 +08:00
|
|
|
if (auto simplified = simplifyAdd(*this, other))
|
|
|
|
return simplified;
|
|
|
|
|
|
|
|
StorageUniquer &uniquer = getContext()->getAffineUniquer();
|
|
|
|
return uniquer.get<AffineBinaryOpExprStorage>(
|
|
|
|
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Add), *this, other);
|
2018-10-04 06:40:51 +08:00
|
|
|
}
|
2019-05-21 16:34:13 +08:00
|
|
|
|
|
|
|
/// Simplify a multiply expression. Return nullptr if it can't be simplified.
|
|
|
|
static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) {
|
|
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
|
|
|
|
if (lhsConst && rhsConst)
|
|
|
|
return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(),
|
|
|
|
lhs.getContext());
|
|
|
|
|
|
|
|
assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant());
|
|
|
|
|
|
|
|
// Canonicalize the mul expression so that the constant/symbolic term is the
|
|
|
|
// RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a
|
|
|
|
// constant. (Note that a constant is trivially symbolic).
|
|
|
|
if (!rhs.isSymbolicOrConstant() || lhs.isa<AffineConstantExpr>()) {
|
|
|
|
// At least one of them has to be symbolic.
|
|
|
|
return rhs * lhs;
|
|
|
|
}
|
|
|
|
|
|
|
|
// At this point, if there was a constant, it would be on the right.
|
|
|
|
|
|
|
|
// Multiplication with a one is a noop, return the other input.
|
|
|
|
if (rhsConst) {
|
|
|
|
if (rhsConst.getValue() == 1)
|
|
|
|
return lhs;
|
|
|
|
// Multiplication with zero.
|
|
|
|
if (rhsConst.getValue() == 0)
|
|
|
|
return rhsConst;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6.
|
|
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
|
|
|
if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) {
|
|
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
|
|
|
|
return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue());
|
|
|
|
}
|
|
|
|
|
|
|
|
// When doing successive multiplication, bring constant to the right: turn (d0
|
|
|
|
// * 2) * d1 into (d0 * d1) * 2.
|
|
|
|
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
|
|
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
|
|
|
|
return (lBin.getLHS() * rhs) * lrhs;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineExpr AffineExpr::operator*(int64_t v) const {
|
2019-05-21 16:34:13 +08:00
|
|
|
return *this * getAffineConstantExpr(v, getContext());
|
2018-10-04 06:40:51 +08:00
|
|
|
}
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineExpr AffineExpr::operator*(AffineExpr other) const {
|
2019-05-21 16:34:13 +08:00
|
|
|
if (auto simplified = simplifyMul(*this, other))
|
|
|
|
return simplified;
|
|
|
|
|
|
|
|
StorageUniquer &uniquer = getContext()->getAffineUniquer();
|
|
|
|
return uniquer.get<AffineBinaryOpExprStorage>(
|
|
|
|
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mul), *this, other);
|
2018-10-04 06:36:53 +08:00
|
|
|
}
|
2019-05-21 16:34:13 +08:00
|
|
|
|
2018-10-04 06:36:53 +08:00
|
|
|
// Unary minus, delegate to operator*.
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineExpr AffineExpr::operator-() const {
|
2019-05-21 16:34:13 +08:00
|
|
|
return *this * getAffineConstantExpr(-1, getContext());
|
2018-10-04 06:40:51 +08:00
|
|
|
}
|
2019-05-21 16:34:13 +08:00
|
|
|
|
2018-10-04 06:36:53 +08:00
|
|
|
// Delegate to operator+.
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineExpr AffineExpr::operator-(int64_t v) const { return *this + (-v); }
|
|
|
|
AffineExpr AffineExpr::operator-(AffineExpr other) const {
|
2018-10-04 06:36:53 +08:00
|
|
|
return *this + (-other);
|
|
|
|
}
|
2019-05-21 16:34:13 +08:00
|
|
|
|
|
|
|
static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) {
|
|
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
|
2019-12-11 07:49:07 +08:00
|
|
|
// mlir floordiv by zero or negative numbers is undefined and preserved as is.
|
2019-05-21 16:34:13 +08:00
|
|
|
if (!rhsConst || rhsConst.getValue() < 1)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
if (lhsConst)
|
|
|
|
return getAffineConstantExpr(
|
|
|
|
floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
|
|
|
|
|
|
|
|
// Fold floordiv of a multiply with a constant that is a multiple of the
|
|
|
|
// divisor. Eg: (i * 128) floordiv 64 = i * 2.
|
2019-12-11 07:49:07 +08:00
|
|
|
if (rhsConst == 1)
|
2019-05-21 16:34:13 +08:00
|
|
|
return lhs;
|
|
|
|
|
2019-12-11 07:49:07 +08:00
|
|
|
// Simplify (expr * const) floordiv divConst when expr is known to be a
|
|
|
|
// multiple of divConst.
|
2019-05-21 16:34:13 +08:00
|
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
|
|
|
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
|
|
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
|
2019-12-11 07:49:07 +08:00
|
|
|
// rhsConst is known to be a positive constant.
|
2019-05-21 16:34:13 +08:00
|
|
|
if (lrhs.getValue() % rhsConst.getValue() == 0)
|
|
|
|
return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-12-11 07:49:07 +08:00
|
|
|
// Simplify (expr1 + expr2) floordiv divConst when either expr1 or expr2 is
|
|
|
|
// known to be a multiple of divConst.
|
|
|
|
if (lBin && lBin.getKind() == AffineExprKind::Add) {
|
|
|
|
int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor();
|
|
|
|
int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor();
|
|
|
|
// rhsConst is known to be a positive constant.
|
|
|
|
if (llhsDiv % rhsConst.getValue() == 0 ||
|
|
|
|
lrhsDiv % rhsConst.getValue() == 0)
|
|
|
|
return lBin.getLHS().floorDiv(rhsConst.getValue()) +
|
|
|
|
lBin.getRHS().floorDiv(rhsConst.getValue());
|
|
|
|
}
|
|
|
|
|
2019-05-21 16:34:13 +08:00
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineExpr AffineExpr::floorDiv(uint64_t v) const {
|
2019-05-21 16:34:13 +08:00
|
|
|
return floorDiv(getAffineConstantExpr(v, getContext()));
|
2018-10-04 06:36:53 +08:00
|
|
|
}
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineExpr AffineExpr::floorDiv(AffineExpr other) const {
|
2019-05-21 16:34:13 +08:00
|
|
|
if (auto simplified = simplifyFloorDiv(*this, other))
|
|
|
|
return simplified;
|
|
|
|
|
|
|
|
StorageUniquer &uniquer = getContext()->getAffineUniquer();
|
|
|
|
return uniquer.get<AffineBinaryOpExprStorage>(
|
|
|
|
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::FloorDiv), *this,
|
|
|
|
other);
|
|
|
|
}
|
|
|
|
|
|
|
|
static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) {
|
|
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
|
|
|
|
if (!rhsConst || rhsConst.getValue() < 1)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
if (lhsConst)
|
|
|
|
return getAffineConstantExpr(
|
|
|
|
ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
|
|
|
|
|
|
|
|
// Fold ceildiv of a multiply with a constant that is a multiple of the
|
|
|
|
// divisor. Eg: (i * 128) ceildiv 64 = i * 2.
|
|
|
|
if (rhsConst.getValue() == 1)
|
|
|
|
return lhs;
|
|
|
|
|
2019-12-11 07:49:07 +08:00
|
|
|
// Simplify (expr * const) ceildiv divConst when const is known to be a
|
|
|
|
// multiple of divConst.
|
2019-05-21 16:34:13 +08:00
|
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
|
|
|
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
|
|
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
|
2019-12-11 07:49:07 +08:00
|
|
|
// rhsConst is known to be a positive constant.
|
2019-05-21 16:34:13 +08:00
|
|
|
if (lrhs.getValue() % rhsConst.getValue() == 0)
|
|
|
|
return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return nullptr;
|
2018-10-04 06:36:53 +08:00
|
|
|
}
|
2019-05-21 16:34:13 +08:00
|
|
|
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineExpr AffineExpr::ceilDiv(uint64_t v) const {
|
2019-05-21 16:34:13 +08:00
|
|
|
return ceilDiv(getAffineConstantExpr(v, getContext()));
|
2018-10-04 06:36:53 +08:00
|
|
|
}
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineExpr AffineExpr::ceilDiv(AffineExpr other) const {
|
2019-05-21 16:34:13 +08:00
|
|
|
if (auto simplified = simplifyCeilDiv(*this, other))
|
|
|
|
return simplified;
|
|
|
|
|
|
|
|
StorageUniquer &uniquer = getContext()->getAffineUniquer();
|
|
|
|
return uniquer.get<AffineBinaryOpExprStorage>(
|
|
|
|
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::CeilDiv), *this,
|
|
|
|
other);
|
|
|
|
}
|
|
|
|
|
|
|
|
static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) {
|
|
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
|
2019-12-11 07:49:07 +08:00
|
|
|
// mod w.r.t zero or negative numbers is undefined and preserved as is.
|
2019-05-21 16:34:13 +08:00
|
|
|
if (!rhsConst || rhsConst.getValue() < 1)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
if (lhsConst)
|
|
|
|
return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()),
|
|
|
|
lhs.getContext());
|
|
|
|
|
|
|
|
// Fold modulo of an expression that is known to be a multiple of a constant
|
|
|
|
// to zero if that constant is a multiple of the modulo factor. Eg: (i * 128)
|
|
|
|
// mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0.
|
|
|
|
if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0)
|
|
|
|
return getAffineConstantExpr(0, lhs.getContext());
|
|
|
|
|
2019-12-11 07:49:07 +08:00
|
|
|
// Simplify (expr1 + expr2) mod divConst when either expr1 or expr2 is
|
|
|
|
// known to be a multiple of divConst.
|
|
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
|
|
|
if (lBin && lBin.getKind() == AffineExprKind::Add) {
|
|
|
|
int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor();
|
|
|
|
int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor();
|
|
|
|
// rhsConst is known to be a positive constant.
|
|
|
|
if (llhsDiv % rhsConst.getValue() == 0)
|
|
|
|
return lBin.getRHS() % rhsConst.getValue();
|
|
|
|
if (lrhsDiv % rhsConst.getValue() == 0)
|
|
|
|
return lBin.getLHS() % rhsConst.getValue();
|
|
|
|
}
|
|
|
|
|
2019-05-21 16:34:13 +08:00
|
|
|
return nullptr;
|
2018-10-04 06:36:53 +08:00
|
|
|
}
|
2019-05-21 16:34:13 +08:00
|
|
|
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineExpr AffineExpr::operator%(uint64_t v) const {
|
2019-05-21 16:34:13 +08:00
|
|
|
return *this % getAffineConstantExpr(v, getContext());
|
2018-10-04 06:36:53 +08:00
|
|
|
}
|
2018-10-10 01:59:27 +08:00
|
|
|
AffineExpr AffineExpr::operator%(AffineExpr other) const {
|
2019-05-21 16:34:13 +08:00
|
|
|
if (auto simplified = simplifyMod(*this, other))
|
|
|
|
return simplified;
|
|
|
|
|
|
|
|
StorageUniquer &uniquer = getContext()->getAffineUniquer();
|
|
|
|
return uniquer.get<AffineBinaryOpExprStorage>(
|
|
|
|
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mod), *this, other);
|
2018-10-09 04:47:18 +08:00
|
|
|
}
|
2019-05-21 16:34:13 +08:00
|
|
|
|
2019-01-08 09:40:31 +08:00
|
|
|
AffineExpr AffineExpr::compose(AffineMap map) const {
|
|
|
|
SmallVector<AffineExpr, 8> dimReplacements(map.getResults().begin(),
|
|
|
|
map.getResults().end());
|
|
|
|
return replaceDimsAndSymbols(dimReplacements, {});
|
|
|
|
}
|
[mlir][Linalg] Create a tool to generate named Linalg ops from a Tensor Comprehensions-like specification.
Summary:
This revision adds a tool that generates the ODS and C++ implementation for "named" Linalg ops according to the [RFC discussion](https://llvm.discourse.group/t/rfc-declarative-named-ops-in-the-linalg-dialect/745).
While the mechanisms and language aspects are by no means set in stone, this revision allows connecting the pieces end-to-end from a mathematical-like specification.
Some implementation details and short-term decisions taken for the purpose of bootstrapping and that are not set in stone include:
1. using a "[Tensor Comprehension](https://arxiv.org/abs/1802.04730)-inspired" syntax
2. implicit and eager discovery of dims and symbols when parsing
3. using EDSC ops to specify the computation (e.g. std_addf, std_mul_f, ...)
A followup revision will connect this tool to tablegen mechanisms and allow the emission of named Linalg ops that automatically lower to various loop forms and run end to end.
For the following "Tensor Comprehension-inspired" string:
```
def batch_matmul(A: f32(Batch, M, K), B: f32(K, N)) -> (C: f32(Batch, M, N)) {
C(b, m, n) = std_addf<k>(std_mulf(A(b, m, k), B(k, n)));
}
```
With -gen-ods-decl=1, this emits (modulo formatting):
```
def batch_matmulOp : LinalgNamedStructured_Op<"batch_matmul", [
NInputs<2>,
NOutputs<1>,
NamedStructuredOpTraits]> {
let arguments = (ins Variadic<LinalgOperand>:$views);
let results = (outs Variadic<AnyRankedTensor>:$output_tensors);
let extraClassDeclaration = [{
llvm::Optional<SmallVector<StringRef, 8>> referenceIterators();
llvm::Optional<SmallVector<AffineMap, 8>> referenceIndexingMaps();
void regionBuilder(ArrayRef<BlockArgument> args);
}];
let hasFolder = 1;
}
```
With -gen-ods-impl, this emits (modulo formatting):
```
llvm::Optional<SmallVector<StringRef, 8>> batch_matmul::referenceIterators() {
return SmallVector<StringRef, 8>{ getParallelIteratorTypeName(),
getParallelIteratorTypeName(),
getParallelIteratorTypeName(),
getReductionIteratorTypeName() };
}
llvm::Optional<SmallVector<AffineMap, 8>> batch_matmul::referenceIndexingMaps()
{
MLIRContext *context = getContext();
AffineExpr d0, d1, d2, d3;
bindDims(context, d0, d1, d2, d3);
return SmallVector<AffineMap, 8>{
AffineMap::get(4, 0, {d0, d1, d3}),
AffineMap::get(4, 0, {d3, d2}),
AffineMap::get(4, 0, {d0, d1, d2}) };
}
void batch_matmul::regionBuilder(ArrayRef<BlockArgument> args) {
using namespace edsc;
using namespace intrinsics;
ValueHandle _0(args[0]), _1(args[1]), _2(args[2]);
ValueHandle _4 = std_mulf(_0, _1);
ValueHandle _5 = std_addf(_2, _4);
(linalg_yield(ValueRange{ _5 }));
}
```
Differential Revision: https://reviews.llvm.org/D77067
2020-04-11 01:54:08 +08:00
|
|
|
raw_ostream &mlir::operator<<(raw_ostream &os, AffineExpr expr) {
|
2018-10-10 01:59:27 +08:00
|
|
|
expr.print(os);
|
|
|
|
return os;
|
2018-10-04 06:36:53 +08:00
|
|
|
}
|
2019-02-06 09:00:13 +08:00
|
|
|
|
|
|
|
/// Constructs an affine expression from a flat ArrayRef. If there are local
|
|
|
|
/// identifiers (neither dimensional nor symbolic) that appear in the sum of
|
2020-03-07 14:36:28 +08:00
|
|
|
/// products expression, `localExprs` is expected to have the AffineExpr
|
|
|
|
/// for it, and is substituted into. The ArrayRef `flatExprs` is expected to be
|
|
|
|
/// in the format [dims, symbols, locals, constant term].
|
|
|
|
AffineExpr mlir::getAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs,
|
|
|
|
unsigned numDims,
|
|
|
|
unsigned numSymbols,
|
|
|
|
ArrayRef<AffineExpr> localExprs,
|
|
|
|
MLIRContext *context) {
|
|
|
|
// Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1.
|
|
|
|
assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() &&
|
2019-02-06 09:00:13 +08:00
|
|
|
"unexpected number of local expressions");
|
|
|
|
|
|
|
|
auto expr = getAffineConstantExpr(0, context);
|
|
|
|
// Dimensions and symbols.
|
|
|
|
for (unsigned j = 0; j < numDims + numSymbols; j++) {
|
2020-03-07 14:36:28 +08:00
|
|
|
if (flatExprs[j] == 0)
|
2019-02-06 09:00:13 +08:00
|
|
|
continue;
|
|
|
|
auto id = j < numDims ? getAffineDimExpr(j, context)
|
|
|
|
: getAffineSymbolExpr(j - numDims, context);
|
2020-03-07 14:36:28 +08:00
|
|
|
expr = expr + id * flatExprs[j];
|
2019-02-06 09:00:13 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Local identifiers.
|
2020-03-07 14:36:28 +08:00
|
|
|
for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e;
|
|
|
|
j++) {
|
|
|
|
if (flatExprs[j] == 0)
|
2019-02-06 09:00:13 +08:00
|
|
|
continue;
|
2020-03-07 14:36:28 +08:00
|
|
|
auto term = localExprs[j - numDims - numSymbols] * flatExprs[j];
|
2019-02-06 09:00:13 +08:00
|
|
|
expr = expr + term;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Constant term.
|
2020-03-07 14:36:28 +08:00
|
|
|
int64_t constTerm = flatExprs[flatExprs.size() - 1];
|
2019-02-06 09:00:13 +08:00
|
|
|
if (constTerm != 0)
|
|
|
|
expr = expr + constTerm;
|
|
|
|
return expr;
|
|
|
|
}
|
|
|
|
|
2019-02-23 08:51:08 +08:00
|
|
|
SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims,
|
2019-02-26 08:11:30 +08:00
|
|
|
unsigned numSymbols)
|
|
|
|
: numDims(numDims), numSymbols(numSymbols), numLocals(0) {
|
2019-02-23 08:51:08 +08:00
|
|
|
operandExprStack.reserve(8);
|
|
|
|
}
|
2019-02-06 09:00:13 +08:00
|
|
|
|
2019-02-23 08:51:08 +08:00
|
|
|
void SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) {
|
|
|
|
assert(operandExprStack.size() >= 2);
|
|
|
|
// This is a pure affine expr; the RHS will be a constant.
|
|
|
|
assert(expr.getRHS().isa<AffineConstantExpr>());
|
|
|
|
// Get the RHS constant.
|
|
|
|
auto rhsConst = operandExprStack.back()[getConstantIndex()];
|
|
|
|
operandExprStack.pop_back();
|
|
|
|
// Update the LHS in place instead of pop and push.
|
|
|
|
auto &lhs = operandExprStack.back();
|
|
|
|
for (unsigned i = 0, e = lhs.size(); i < e; i++) {
|
|
|
|
lhs[i] *= rhsConst;
|
2019-02-06 09:00:13 +08:00
|
|
|
}
|
2019-02-23 08:51:08 +08:00
|
|
|
}
|
2019-02-06 09:00:13 +08:00
|
|
|
|
2019-02-23 08:51:08 +08:00
|
|
|
void SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) {
|
|
|
|
assert(operandExprStack.size() >= 2);
|
|
|
|
const auto &rhs = operandExprStack.back();
|
|
|
|
auto &lhs = operandExprStack[operandExprStack.size() - 2];
|
|
|
|
assert(lhs.size() == rhs.size());
|
|
|
|
// Update the LHS in place.
|
|
|
|
for (unsigned i = 0, e = rhs.size(); i < e; i++) {
|
|
|
|
lhs[i] += rhs[i];
|
2019-02-06 09:00:13 +08:00
|
|
|
}
|
2019-02-23 08:51:08 +08:00
|
|
|
// Pop off the RHS.
|
|
|
|
operandExprStack.pop_back();
|
|
|
|
}
|
2019-02-06 09:00:13 +08:00
|
|
|
|
2019-07-23 01:51:40 +08:00
|
|
|
//
|
|
|
|
// t = expr mod c <=> t = expr - c*q and c*q <= expr <= c*q + c - 1
|
|
|
|
//
|
|
|
|
// A mod expression "expr mod c" is thus flattened by introducing a new local
|
|
|
|
// variable q (= expr floordiv c), such that expr mod c is replaced with
|
|
|
|
// 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst.
|
2019-02-23 08:51:08 +08:00
|
|
|
void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
|
|
|
|
assert(operandExprStack.size() >= 2);
|
|
|
|
// This is a pure affine expr; the RHS will be a constant.
|
|
|
|
assert(expr.getRHS().isa<AffineConstantExpr>());
|
|
|
|
auto rhsConst = operandExprStack.back()[getConstantIndex()];
|
|
|
|
operandExprStack.pop_back();
|
|
|
|
auto &lhs = operandExprStack.back();
|
|
|
|
// TODO(bondhugula): handle modulo by zero case when this issue is fixed
|
|
|
|
// at the other places in the IR.
|
|
|
|
assert(rhsConst > 0 && "RHS constant has to be positive");
|
|
|
|
|
|
|
|
// Check if the LHS expression is a multiple of modulo factor.
|
|
|
|
unsigned i, e;
|
|
|
|
for (i = 0, e = lhs.size(); i < e; i++)
|
|
|
|
if (lhs[i] % rhsConst != 0)
|
|
|
|
break;
|
|
|
|
// If yes, modulo expression here simplifies to zero.
|
|
|
|
if (i == lhs.size()) {
|
|
|
|
std::fill(lhs.begin(), lhs.end(), 0);
|
|
|
|
return;
|
2019-02-06 09:00:13 +08:00
|
|
|
}
|
|
|
|
|
2019-02-23 08:51:08 +08:00
|
|
|
// Add a local variable for the quotient, i.e., expr % c is replaced by
|
|
|
|
// (expr - q * c) where q = expr floordiv c. Do this while canceling out
|
|
|
|
// the GCD of expr and c.
|
|
|
|
SmallVector<int64_t, 8> floorDividend(lhs);
|
|
|
|
uint64_t gcd = rhsConst;
|
|
|
|
for (unsigned i = 0, e = lhs.size(); i < e; i++)
|
|
|
|
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i]));
|
|
|
|
// Simplify the numerator and the denominator.
|
|
|
|
if (gcd != 1) {
|
|
|
|
for (unsigned i = 0, e = floorDividend.size(); i < e; i++)
|
|
|
|
floorDividend[i] = floorDividend[i] / static_cast<int64_t>(gcd);
|
2019-02-06 09:00:13 +08:00
|
|
|
}
|
2019-02-23 08:51:08 +08:00
|
|
|
int64_t floorDivisor = rhsConst / static_cast<int64_t>(gcd);
|
2019-02-06 09:00:13 +08:00
|
|
|
|
2019-02-23 08:51:08 +08:00
|
|
|
// Construct the AffineExpr form of the floordiv to store in localExprs.
|
2019-02-26 08:11:30 +08:00
|
|
|
MLIRContext *context = expr.getContext();
|
2020-03-07 14:36:28 +08:00
|
|
|
auto dividendExpr = getAffineExprFromFlatForm(
|
|
|
|
floorDividend, numDims, numSymbols, localExprs, context);
|
2019-02-23 08:51:08 +08:00
|
|
|
auto divisorExpr = getAffineConstantExpr(floorDivisor, context);
|
|
|
|
auto floorDivExpr = dividendExpr.floorDiv(divisorExpr);
|
|
|
|
int loc;
|
|
|
|
if ((loc = findLocalId(floorDivExpr)) == -1) {
|
|
|
|
addLocalFloorDivId(floorDividend, floorDivisor, floorDivExpr);
|
|
|
|
// Set result at top of stack to "lhs - rhsConst * q".
|
|
|
|
lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst;
|
|
|
|
} else {
|
|
|
|
// Reuse the existing local id.
|
|
|
|
lhs[getLocalVarStartIndex() + loc] = -rhsConst;
|
2019-02-06 09:00:13 +08:00
|
|
|
}
|
2019-02-23 08:51:08 +08:00
|
|
|
}
|
2019-02-06 09:00:13 +08:00
|
|
|
|
2019-02-23 08:51:08 +08:00
|
|
|
void SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) {
|
|
|
|
visitDivExpr(expr, /*isCeil=*/true);
|
|
|
|
}
|
|
|
|
void SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) {
|
|
|
|
visitDivExpr(expr, /*isCeil=*/false);
|
|
|
|
}
|
2019-02-06 09:00:13 +08:00
|
|
|
|
2019-02-23 08:51:08 +08:00
|
|
|
void SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) {
|
|
|
|
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
|
|
|
|
auto &eq = operandExprStack.back();
|
|
|
|
assert(expr.getPosition() < numDims && "Inconsistent number of dims");
|
|
|
|
eq[getDimStartIndex() + expr.getPosition()] = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) {
|
|
|
|
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
|
|
|
|
auto &eq = operandExprStack.back();
|
|
|
|
assert(expr.getPosition() < numSymbols && "inconsistent number of symbols");
|
|
|
|
eq[getSymbolStartIndex() + expr.getPosition()] = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) {
|
|
|
|
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
|
|
|
|
auto &eq = operandExprStack.back();
|
|
|
|
eq[getConstantIndex()] = expr.getValue();
|
|
|
|
}
|
2019-02-06 09:00:13 +08:00
|
|
|
|
2019-07-23 01:51:40 +08:00
|
|
|
// t = expr floordiv c <=> t = q, c * q <= expr <= c * q + c - 1
|
|
|
|
// A floordiv is thus flattened by introducing a new local variable q, and
|
|
|
|
// replacing that expression with 'q' while adding the constraints
|
|
|
|
// c * q <= expr <= c * q + c - 1 to localVarCst (done by
|
|
|
|
// FlatAffineConstraints::addLocalFloorDiv).
|
|
|
|
//
|
|
|
|
// A ceildiv is similarly flattened:
|
|
|
|
// t = expr ceildiv c <=> t = (expr + c - 1) floordiv c
|
2019-02-23 08:51:08 +08:00
|
|
|
void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
|
|
|
|
bool isCeil) {
|
|
|
|
assert(operandExprStack.size() >= 2);
|
|
|
|
assert(expr.getRHS().isa<AffineConstantExpr>());
|
|
|
|
|
|
|
|
// This is a pure affine expr; the RHS is a positive constant.
|
|
|
|
int64_t rhsConst = operandExprStack.back()[getConstantIndex()];
|
|
|
|
// TODO(bondhugula): handle division by zero at the same time the issue is
|
|
|
|
// fixed at other places.
|
|
|
|
assert(rhsConst > 0 && "RHS constant has to be positive");
|
|
|
|
operandExprStack.pop_back();
|
|
|
|
auto &lhs = operandExprStack.back();
|
|
|
|
|
|
|
|
// Simplify the floordiv, ceildiv if possible by canceling out the greatest
|
|
|
|
// common divisors of the numerator and denominator.
|
|
|
|
uint64_t gcd = std::abs(rhsConst);
|
|
|
|
for (unsigned i = 0, e = lhs.size(); i < e; i++)
|
|
|
|
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i]));
|
|
|
|
// Simplify the numerator and the denominator.
|
|
|
|
if (gcd != 1) {
|
2019-02-06 09:00:13 +08:00
|
|
|
for (unsigned i = 0, e = lhs.size(); i < e; i++)
|
2019-02-23 08:51:08 +08:00
|
|
|
lhs[i] = lhs[i] / static_cast<int64_t>(gcd);
|
|
|
|
}
|
|
|
|
int64_t divisor = rhsConst / static_cast<int64_t>(gcd);
|
|
|
|
// If the divisor becomes 1, the updated LHS is the result. (The
|
|
|
|
// divisor can't be negative since rhsConst is positive).
|
|
|
|
if (divisor == 1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
// If the divisor cannot be simplified to one, we will have to retain
|
|
|
|
// the ceil/floor expr (simplified up until here). Add an existential
|
|
|
|
// quantifier to express its result, i.e., expr1 div expr2 is replaced
|
|
|
|
// by a new identifier, q.
|
2019-02-26 08:11:30 +08:00
|
|
|
MLIRContext *context = expr.getContext();
|
2020-03-07 14:36:28 +08:00
|
|
|
auto a =
|
|
|
|
getAffineExprFromFlatForm(lhs, numDims, numSymbols, localExprs, context);
|
2019-02-23 08:51:08 +08:00
|
|
|
auto b = getAffineConstantExpr(divisor, context);
|
|
|
|
|
|
|
|
int loc;
|
|
|
|
auto divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b);
|
|
|
|
if ((loc = findLocalId(divExpr)) == -1) {
|
|
|
|
if (!isCeil) {
|
|
|
|
SmallVector<int64_t, 8> dividend(lhs);
|
|
|
|
addLocalFloorDivId(dividend, divisor, divExpr);
|
|
|
|
} else {
|
|
|
|
// lhs ceildiv c <=> (lhs + c - 1) floordiv c
|
|
|
|
SmallVector<int64_t, 8> dividend(lhs);
|
|
|
|
dividend.back() += divisor - 1;
|
|
|
|
addLocalFloorDivId(dividend, divisor, divExpr);
|
2019-02-06 09:00:13 +08:00
|
|
|
}
|
|
|
|
}
|
2019-02-23 08:51:08 +08:00
|
|
|
// Set the expression on stack to the local var introduced to capture the
|
|
|
|
// result of the division (floor or ceil).
|
|
|
|
std::fill(lhs.begin(), lhs.end(), 0);
|
|
|
|
if (loc == -1)
|
|
|
|
lhs[getLocalVarStartIndex() + numLocals - 1] = 1;
|
|
|
|
else
|
|
|
|
lhs[getLocalVarStartIndex() + loc] = 1;
|
|
|
|
}
|
2019-02-06 09:00:13 +08:00
|
|
|
|
2019-07-23 01:51:40 +08:00
|
|
|
// Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr).
|
|
|
|
// The local identifier added is always a floordiv of a pure add/mul affine
|
|
|
|
// function of other identifiers, coefficients of which are specified in
|
|
|
|
// dividend and with respect to a positive constant divisor. localExpr is the
|
|
|
|
// simplified tree expression (AffineExpr) corresponding to the quantifier.
|
2019-02-23 08:51:08 +08:00
|
|
|
void SimpleAffineExprFlattener::addLocalFloorDivId(ArrayRef<int64_t> dividend,
|
|
|
|
int64_t divisor,
|
|
|
|
AffineExpr localExpr) {
|
|
|
|
assert(divisor > 0 && "positive constant divisor expected");
|
|
|
|
for (auto &subExpr : operandExprStack)
|
|
|
|
subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0);
|
|
|
|
localExprs.push_back(localExpr);
|
|
|
|
numLocals++;
|
2019-02-26 08:11:30 +08:00
|
|
|
// dividend and divisor are not used here; an override of this method uses it.
|
2019-02-23 08:51:08 +08:00
|
|
|
}
|
2019-02-06 09:00:13 +08:00
|
|
|
|
2019-02-23 08:51:08 +08:00
|
|
|
int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) {
|
|
|
|
SmallVectorImpl<AffineExpr>::iterator it;
|
|
|
|
if ((it = llvm::find(localExprs, localExpr)) == localExprs.end())
|
|
|
|
return -1;
|
|
|
|
return it - localExprs.begin();
|
|
|
|
}
|
2019-02-06 09:00:13 +08:00
|
|
|
|
|
|
|
/// Simplify the affine expression by flattening it and reconstructing it.
|
|
|
|
AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims,
|
|
|
|
unsigned numSymbols) {
|
|
|
|
// TODO(bondhugula): only pure affine for now. The simplification here can
|
|
|
|
// be extended to semi-affine maps in the future.
|
|
|
|
if (!expr.isPureAffine())
|
|
|
|
return expr;
|
|
|
|
|
2019-02-26 08:11:30 +08:00
|
|
|
SimpleAffineExprFlattener flattener(numDims, numSymbols);
|
2019-02-06 09:00:13 +08:00
|
|
|
flattener.walkPostOrder(expr);
|
|
|
|
ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back();
|
2020-03-07 14:36:28 +08:00
|
|
|
auto simplifiedExpr =
|
|
|
|
getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols,
|
|
|
|
flattener.localExprs, expr.getContext());
|
2019-02-06 09:00:13 +08:00
|
|
|
flattener.operandExprStack.pop_back();
|
|
|
|
assert(flattener.operandExprStack.empty());
|
|
|
|
|
|
|
|
return simplifiedExpr;
|
|
|
|
}
|