llvm-project/llvm/lib/Target/ARM/ARMScheduleSwift.td

1145 lines
53 KiB
TableGen
Raw Normal View History

//=- ARMScheduleSwift.td - Swift Scheduling Definitions -*- tablegen -*----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the itinerary class data for the Swift processor..
//
//===----------------------------------------------------------------------===//
// ===---------------------------------------------------------------------===//
// This section contains legacy support for itineraries. This is
// required until SD and PostRA schedulers are replaced by MachineScheduler.
def SW_DIS0 : FuncUnit;
def SW_DIS1 : FuncUnit;
def SW_DIS2 : FuncUnit;
def SW_ALU0 : FuncUnit;
def SW_ALU1 : FuncUnit;
def SW_LS : FuncUnit;
def SW_IDIV : FuncUnit;
def SW_FDIV : FuncUnit;
// FIXME: Need bypasses.
// FIXME: Model the multiple stages of IIC_iMOVix2, IIC_iMOVix2addpc, and
// IIC_iMOVix2ld better.
// FIXME: Model the special immediate shifts that are not microcoded.
// FIXME: Do we need to model the fact that uses of r15 in a micro-op force it
// to issue on pipe 1?
// FIXME: Model the pipelined behavior of CMP / TST instructions.
// FIXME: Better model the microcode stages of multiply instructions, especially
// conditional variants.
// FIXME: Add preload instruction when it is documented.
// FIXME: Model non-pipelined nature of FP div / sqrt unit.
def SwiftItineraries : ProcessorItineraries<
[SW_DIS0, SW_DIS1, SW_DIS2, SW_ALU0, SW_ALU1, SW_LS, SW_IDIV, SW_FDIV], [], [
//
// Move instructions, unconditional
InstrItinData<IIC_iMOVi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMOVr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMOVsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMOVsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMOVix2 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2]>,
InstrItinData<IIC_iMOVix2addpc,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>,
InstrStage<1, [SW_ALU0, SW_ALU1]>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[3]>,
InstrItinData<IIC_iMOVix2ld,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>,
InstrStage<1, [SW_ALU0, SW_ALU1]>,
InstrStage<1, [SW_LS]>],
[5]>,
//
// MVN instructions
InstrItinData<IIC_iMVNi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMVNr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMVNsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iMVNsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
//
// No operand cycles
InstrItinData<IIC_iALUx , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>]>,
//
// Binary Instructions that produce a result
InstrItinData<IIC_iALUi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iALUr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1, 1]>,
InstrItinData<IIC_iALUsi, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1]>,
InstrItinData<IIC_iALUsir,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1]>,
InstrItinData<IIC_iALUsr, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1, 1]>,
//
// Bitwise Instructions that produce a result
InstrItinData<IIC_iBITi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iBITr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1, 1]>,
InstrItinData<IIC_iBITsi, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1]>,
InstrItinData<IIC_iBITsr, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1, 1]>,
//
// Unary Instructions that produce a result
// CLZ, RBIT, etc.
InstrItinData<IIC_iUNAr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
// BFC, BFI, UBFX, SBFX
InstrItinData<IIC_iUNAsi, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1]>,
//
// Zero and sign extension instructions
InstrItinData<IIC_iEXTr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iEXTAr, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1, 1]>,
InstrItinData<IIC_iEXTAsr,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1, 1, 1]>,
//
// Compare instructions
InstrItinData<IIC_iCMPi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iCMPr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iCMPsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<2, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iCMPsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<2, [SW_ALU0, SW_ALU1]>],
[1, 1, 1]>,
//
// Test instructions
InstrItinData<IIC_iTSTi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iTSTr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iTSTsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<2, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iTSTsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<2, [SW_ALU0, SW_ALU1]>],
[1, 1, 1]>,
//
// Move instructions, conditional
// FIXME: Correctly model the extra input dep on the destination.
InstrItinData<IIC_iCMOVi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
InstrItinData<IIC_iCMOVr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iCMOVsi , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1, 1]>,
InstrItinData<IIC_iCMOVsr , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1]>,
InstrItinData<IIC_iCMOVix2, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2]>,
// Integer multiply pipeline
//
InstrItinData<IIC_iMUL16 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[3, 1, 1]>,
InstrItinData<IIC_iMAC16 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[3, 1, 1, 1]>,
InstrItinData<IIC_iMUL32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
InstrItinData<IIC_iMAC32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1, 1]>,
InstrItinData<IIC_iMUL64 , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0], 1>,
InstrStage<1, [SW_ALU0], 3>,
InstrStage<1, [SW_ALU0]>],
[5, 5, 1, 1]>,
InstrItinData<IIC_iMAC64 , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0], 1>,
InstrStage<1, [SW_ALU0], 1>,
InstrStage<1, [SW_ALU0, SW_ALU1], 3>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[5, 6, 1, 1]>,
//
// Integer divide
InstrItinData<IIC_iDIV , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0], 0>,
InstrStage<14, [SW_IDIV]>],
[14, 1, 1]>,
// Integer load pipeline
// FIXME: The timings are some rough approximations
//
// Immediate offset
InstrItinData<IIC_iLoad_i , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[3, 1]>,
InstrItinData<IIC_iLoad_bh_i, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[3, 1]>,
InstrItinData<IIC_iLoad_d_i , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 1>,
InstrStage<1, [SW_LS]>],
[3, 4, 1]>,
//
// Register offset
InstrItinData<IIC_iLoad_r , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[3, 1, 1]>,
InstrItinData<IIC_iLoad_bh_r, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[3, 1, 1]>,
InstrItinData<IIC_iLoad_d_r , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_LS], 1>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[3, 4, 1, 1]>,
//
// Scaled register offset
InstrItinData<IIC_iLoad_si , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS]>],
[5, 1, 1]>,
InstrItinData<IIC_iLoad_bh_si,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS]>],
[5, 1, 1]>,
//
// Immediate offset with update
InstrItinData<IIC_iLoad_iu , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[3, 1, 1]>,
InstrItinData<IIC_iLoad_bh_iu,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[3, 1, 1]>,
//
// Register offset with update
InstrItinData<IIC_iLoad_ru , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0], 1>,
InstrStage<1, [SW_LS]>],
[3, 1, 1, 1]>,
InstrItinData<IIC_iLoad_bh_ru,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0], 1>,
InstrStage<1, [SW_LS]>],
[3, 1, 1, 1]>,
InstrItinData<IIC_iLoad_d_ru, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 0>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_LS], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[3, 4, 1, 1]>,
//
// Scaled register offset with update
InstrItinData<IIC_iLoad_siu , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[5, 3, 1, 1]>,
InstrItinData<IIC_iLoad_bh_siu,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[5, 3, 1, 1]>,
//
// Load multiple, def is the 5th operand.
// FIXME: This assumes 3 to 4 registers.
InstrItinData<IIC_iLoad_m , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1, 1, 3], [], -1>, // dynamic uops
//
// Load multiple + update, defs are the 1st and 5th operands.
InstrItinData<IIC_iLoad_mu , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 0>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1, 1, 3], [], -1>, // dynamic uops
//
// Load multiple plus branch
InstrItinData<IIC_iLoad_mBr, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1, 1, 3], [], -1>, // dynamic uops
//
// Pop, def is the 3rd operand.
InstrItinData<IIC_iPop , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 3], [], -1>, // dynamic uops
//
// Pop + branch, def is the 3rd operand.
InstrItinData<IIC_iPop_Br, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 3], [], -1>, // dynamic uops
//
// iLoadi + iALUr for t2LDRpci_pic.
InstrItinData<IIC_iLoadiALU, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[4, 1]>,
// Integer store pipeline
///
// Immediate offset
InstrItinData<IIC_iStore_i , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1]>,
InstrItinData<IIC_iStore_bh_i,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1]>,
InstrItinData<IIC_iStore_d_i, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_LS], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1]>,
//
// Register offset
InstrItinData<IIC_iStore_r , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
InstrItinData<IIC_iStore_bh_r,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
InstrItinData<IIC_iStore_d_r, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_LS], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
//
// Scaled register offset
InstrItinData<IIC_iStore_si , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
InstrItinData<IIC_iStore_bh_si,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
//
// Immediate offset with update
InstrItinData<IIC_iStore_iu , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
InstrItinData<IIC_iStore_bh_iu,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1]>,
//
// Register offset with update
InstrItinData<IIC_iStore_ru , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1, 1]>,
InstrItinData<IIC_iStore_bh_ru,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1, 1]>,
InstrItinData<IIC_iStore_d_ru, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[1, 1, 1, 1]>,
//
// Scaled register offset with update
InstrItinData<IIC_iStore_siu, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>],
[3, 1, 1, 1]>,
InstrItinData<IIC_iStore_bh_siu, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 2>,
InstrStage<1, [SW_LS], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>],
[3, 1, 1, 1]>,
//
// Store multiple
InstrItinData<IIC_iStore_m , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS], 1>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS], 1>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[], [], -1>, // dynamic uops
//
// Store multiple + update
InstrItinData<IIC_iStore_mu, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS], 1>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS], 1>,
InstrStage<1, [SW_ALU0, SW_ALU1], 1>,
InstrStage<1, [SW_LS]>],
[2], [], -1>, // dynamic uops
//
// Preload
InstrItinData<IIC_Preload, [InstrStage<1, [SW_DIS0], 0>], [1, 1]>,
// Branch
//
// no delay slots, so the latency of a branch is unimportant
InstrItinData<IIC_Br , [InstrStage<1, [SW_DIS0], 0>]>,
// FP Special Register to Integer Register File Move
InstrItinData<IIC_fpSTAT , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[1]>,
//
// Single-precision FP Unary
//
// Most floating-point moves get issued on ALU0.
InstrItinData<IIC_fpUNA32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1]>,
//
// Double-precision FP Unary
InstrItinData<IIC_fpUNA64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1]>,
//
// Single-precision FP Compare
InstrItinData<IIC_fpCMP32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[1, 1]>,
//
// Double-precision FP Compare
InstrItinData<IIC_fpCMP64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[1, 1]>,
//
// Single to Double FP Convert
InstrItinData<IIC_fpCVTSD , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Double to Single FP Convert
InstrItinData<IIC_fpCVTDS , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Single to Half FP Convert
InstrItinData<IIC_fpCVTSH , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU1], 4>,
InstrStage<1, [SW_ALU1]>],
[6, 1]>,
//
// Half to Single FP Convert
InstrItinData<IIC_fpCVTHS , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Single-Precision FP to Integer Convert
InstrItinData<IIC_fpCVTSI , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Double-Precision FP to Integer Convert
InstrItinData<IIC_fpCVTDI , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Integer to Single-Precision FP Convert
InstrItinData<IIC_fpCVTIS , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Integer to Double-Precision FP Convert
InstrItinData<IIC_fpCVTID , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1]>,
//
// Single-precision FP ALU
InstrItinData<IIC_fpALU32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Double-precision FP ALU
InstrItinData<IIC_fpALU64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Single-precision FP Multiply
InstrItinData<IIC_fpMUL32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Double-precision FP Multiply
InstrItinData<IIC_fpMUL64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[6, 1, 1]>,
//
// Single-precision FP MAC
InstrItinData<IIC_fpMAC32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Double-precision FP MAC
InstrItinData<IIC_fpMAC64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[12, 1, 1]>,
//
// Single-precision Fused FP MAC
InstrItinData<IIC_fpFMAC32, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Double-precision Fused FP MAC
InstrItinData<IIC_fpFMAC64, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[12, 1, 1]>,
//
// Single-precision FP DIV
InstrItinData<IIC_fpDIV32 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 0>,
InstrStage<15, [SW_FDIV]>],
[17, 1, 1]>,
//
// Double-precision FP DIV
InstrItinData<IIC_fpDIV64 , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 0>,
InstrStage<30, [SW_FDIV]>],
[32, 1, 1]>,
//
// Single-precision FP SQRT
InstrItinData<IIC_fpSQRT32, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 0>,
InstrStage<15, [SW_FDIV]>],
[17, 1]>,
//
// Double-precision FP SQRT
InstrItinData<IIC_fpSQRT64, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 0>,
InstrStage<30, [SW_FDIV]>],
[32, 1, 1]>,
//
// Integer to Single-precision Move
InstrItinData<IIC_fpMOVIS, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 4>,
InstrStage<1, [SW_ALU0]>],
[6, 1]>,
//
// Integer to Double-precision Move
InstrItinData<IIC_fpMOVID, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[4, 1]>,
//
// Single-precision to Integer Move
InstrItinData<IIC_fpMOVSI, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[3, 1]>,
//
// Double-precision to Integer Move
InstrItinData<IIC_fpMOVDI, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_LS]>],
[3, 4, 1]>,
//
// Single-precision FP Load
InstrItinData<IIC_fpLoad32, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[4, 1]>,
//
// Double-precision FP Load
InstrItinData<IIC_fpLoad64, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[4, 1]>,
//
// FP Load Multiple
// FIXME: Assumes a single Q register.
InstrItinData<IIC_fpLoad_m, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1, 1, 4], [], -1>, // dynamic uops
//
// FP Load Multiple + update
// FIXME: Assumes a single Q register.
InstrItinData<IIC_fpLoad_mu,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 4>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1, 1, 4], [], -1>, // dynamic uops
//
// Single-precision FP Store
InstrItinData<IIC_fpStore32,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1]>,
//
// Double-precision FP Store
InstrItinData<IIC_fpStore64,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1]>,
//
// FP Store Multiple
// FIXME: Assumes a single Q register.
InstrItinData<IIC_fpStore_m,[InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[1, 1, 1], [], -1>, // dynamic uops
//
// FP Store Multiple + update
// FIXME: Assumes a single Q register.
InstrItinData<IIC_fpStore_mu,[InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 4>,
InstrStage<1, [SW_ALU0, SW_ALU1]>],
[2, 1, 1, 1], [], -1>, // dynamic uops
// NEON
//
// Double-register Integer Unary
InstrItinData<IIC_VUNAiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1]>,
//
// Quad-register Integer Unary
InstrItinData<IIC_VUNAiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1]>,
//
// Double-register Integer Q-Unary
InstrItinData<IIC_VQUNAiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1]>,
//
// Quad-register Integer CountQ-Unary
InstrItinData<IIC_VQUNAiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1]>,
//
// Double-register Integer Binary
InstrItinData<IIC_VBINiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Quad-register Integer Binary
InstrItinData<IIC_VBINiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Double-register Integer Subtract
InstrItinData<IIC_VSUBiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Quad-register Integer Subtract
InstrItinData<IIC_VSUBiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Double-register Integer Shift
InstrItinData<IIC_VSHLiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Quad-register Integer Shift
InstrItinData<IIC_VSHLiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Double-register Integer Shift (4 cycle)
InstrItinData<IIC_VSHLi4D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Quad-register Integer Shift (4 cycle)
InstrItinData<IIC_VSHLi4Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Double-register Integer Binary (4 cycle)
InstrItinData<IIC_VBINi4D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Quad-register Integer Binary (4 cycle)
InstrItinData<IIC_VBINi4Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Double-register Integer Subtract (4 cycle)
InstrItinData<IIC_VSUBi4D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Quad-register Integer Subtract (4 cycle)
InstrItinData<IIC_VSUBi4Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Double-register Integer Count
InstrItinData<IIC_VCNTiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Quad-register Integer Count
InstrItinData<IIC_VCNTiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1, 1]>,
//
// Double-register Absolute Difference and Accumulate
InstrItinData<IIC_VABAD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1, 1]>,
//
// Quad-register Absolute Difference and Accumulate
InstrItinData<IIC_VABAQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1, 1]>,
//
// Double-register Integer Pair Add Long
InstrItinData<IIC_VPALiD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Quad-register Integer Pair Add Long
InstrItinData<IIC_VPALiQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Double-register Integer Multiply (.8, .16)
InstrItinData<IIC_VMULi16D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Quad-register Integer Multiply (.8, .16)
InstrItinData<IIC_VMULi16Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Double-register Integer Multiply (.32)
InstrItinData<IIC_VMULi32D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Quad-register Integer Multiply (.32)
InstrItinData<IIC_VMULi32Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Double-register Integer Multiply-Accumulate (.8, .16)
InstrItinData<IIC_VMACi16D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1, 1]>,
//
// Double-register Integer Multiply-Accumulate (.32)
InstrItinData<IIC_VMACi32D, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1, 1]>,
//
// Quad-register Integer Multiply-Accumulate (.8, .16)
InstrItinData<IIC_VMACi16Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1, 1]>,
//
// Quad-register Integer Multiply-Accumulate (.32)
InstrItinData<IIC_VMACi32Q, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1, 1]>,
//
// Move
InstrItinData<IIC_VMOV, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1]>,
//
// Move Immediate
InstrItinData<IIC_VMOVImm, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2]>,
//
// Double-register Permute Move
InstrItinData<IIC_VMOVD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1]>,
//
// Quad-register Permute Move
InstrItinData<IIC_VMOVQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1]>,
//
// Integer to Single-precision Move
InstrItinData<IIC_VMOVIS , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 4>,
InstrStage<1, [SW_ALU0]>],
[6, 1]>,
//
// Integer to Double-precision Move
InstrItinData<IIC_VMOVID , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[4, 1, 1]>,
//
// Single-precision to Integer Move
InstrItinData<IIC_VMOVSI , [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_LS]>],
[3, 1]>,
//
// Double-precision to Integer Move
InstrItinData<IIC_VMOVDI , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 3>,
InstrStage<1, [SW_LS]>],
[3, 4, 1]>,
//
// Integer to Lane Move
// FIXME: I think this is correct, but it is not clear from the tuning guide.
InstrItinData<IIC_VMOVISL , [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_LS], 4>,
InstrStage<1, [SW_ALU0]>],
[6, 1]>,
//
// Vector narrow move
InstrItinData<IIC_VMOVN, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1]>,
//
// Double-register FP Unary
// FIXME: VRECPE / VRSQRTE has a longer latency than VABS, which is used here,
// and they issue on a different pipeline.
InstrItinData<IIC_VUNAD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1]>,
//
// Quad-register FP Unary
// FIXME: VRECPE / VRSQRTE has a longer latency than VABS, which is used here,
// and they issue on a different pipeline.
InstrItinData<IIC_VUNAQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[2, 1]>,
//
// Double-register FP Binary
// FIXME: We're using this itin for many instructions.
InstrItinData<IIC_VBIND, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// VPADD, etc.
InstrItinData<IIC_VPBIND, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Double-register FP VMUL
InstrItinData<IIC_VFMULD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Quad-register FP Binary
InstrItinData<IIC_VBINQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU0]>],
[4, 1, 1]>,
//
// Quad-register FP VMUL
InstrItinData<IIC_VFMULQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 1]>,
//
// Double-register FP Multiple-Accumulate
InstrItinData<IIC_VMACD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Quad-register FP Multiple-Accumulate
InstrItinData<IIC_VMACQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Double-register Fused FP Multiple-Accumulate
InstrItinData<IIC_VFMACD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Quad-register FusedF P Multiple-Accumulate
InstrItinData<IIC_VFMACQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Double-register Reciprical Step
InstrItinData<IIC_VRECSD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Quad-register Reciprical Step
InstrItinData<IIC_VRECSQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 1]>,
//
// Double-register Permute
// FIXME: The latencies are unclear from the documentation.
InstrItinData<IIC_VPERMD, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[3, 4, 3, 4]>,
//
// Quad-register Permute
// FIXME: The latencies are unclear from the documentation.
InstrItinData<IIC_VPERMQ, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[3, 4, 3, 4]>,
//
// Quad-register Permute (3 cycle issue on A9)
InstrItinData<IIC_VPERMQ3, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[3, 4, 3, 4]>,
//
// Double-register VEXT
InstrItinData<IIC_VEXTD, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1, 1]>,
//
// Quad-register VEXT
InstrItinData<IIC_VEXTQ, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1, 1]>,
//
// VTB
InstrItinData<IIC_VTB1, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1, 1]>,
InstrItinData<IIC_VTB2, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 3, 3]>,
InstrItinData<IIC_VTB3, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[6, 1, 3, 5, 5]>,
InstrItinData<IIC_VTB4, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 3, 5, 7, 7]>,
//
// VTBX
InstrItinData<IIC_VTBX1, [InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>,
InstrStage<1, [SW_ALU1]>],
[2, 1, 1]>,
InstrItinData<IIC_VTBX2, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[4, 1, 3, 3]>,
InstrItinData<IIC_VTBX3, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[6, 1, 3, 5, 5]>,
InstrItinData<IIC_VTBX4, [InstrStage<1, [SW_DIS0], 0>,
InstrStage<1, [SW_DIS1], 0>,
InstrStage<1, [SW_DIS2], 0>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1], 2>,
InstrStage<1, [SW_ALU1]>],
[8, 1, 3, 5, 7, 7]>
]>;
// ===---------------------------------------------------------------------===//
// This following definitions describe the simple machine model which
// will replace itineraries.
// Swift machine model for scheduling and other instruction cost heuristics.
def SwiftModel : SchedMachineModel {
let IssueWidth = 3; // 3 micro-ops are dispatched per cycle.
let MinLatency = 0; // Data dependencies are allowed within dispatch groups.
let LoadLatency = 3;
let MispredictPenalty = 14; // A branch direction mispredict.
let Itineraries = SwiftItineraries;
}
// Swift predicates.
def IsFastImmShiftSwiftPred : SchedPredicate<[{TII->isSwiftFastImmShift(MI)}]>;
// Swift resource mapping.
let SchedModel = SwiftModel in {
// Processor resources.
def SwiftUnitP01 : ProcResource<2>; // ALU unit.
def SwiftUnitP0 : ProcResource<1> { let Super = SwiftUnitP01; } // Mul unit.
def SwiftUnitP1 : ProcResource<1> { let Super = SwiftUnitP01; } // Br unit.
def SwiftUnitP2 : ProcResource<1>; // LS unit.
def SwiftUnitDiv : ProcResource<1>;
// Generic resource requirements.
def SwiftWriteP01TwoCycle : SchedWriteRes<[SwiftUnitP01]> { let Latency = 2; }
def SwiftWriteP01ThreeCycleTwoUops :
SchedWriteRes<[SwiftUnitP01, SwiftUnitP01]> {
let Latency = 3;
let NumMicroOps = 2;
}
def SwiftWriteP0ThreeCycleThreeUops : SchedWriteRes<[SwiftUnitP0]> {
let Latency = 3;
let NumMicroOps = 3;
let ResourceCycles = [3];
}
// 4.2.4 Arithmetic and Logical.
// ALU operation register shifted by immediate variant.
def SwiftWriteALUsi : SchedWriteVariant<[
// lsl #2, lsl #1, or lsr #1.
SchedVar<IsFastImmShiftSwiftPred, [SwiftWriteP01TwoCycle]>,
SchedVar<NoSchedPred, [WriteALU]>
]>;
def SwiftWriteALUsr : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [SwiftWriteP01ThreeCycleTwoUops]>,
SchedVar<NoSchedPred, [SwiftWriteP01TwoCycle]>
]>;
def SwiftWriteALUSsr : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [SwiftWriteP0ThreeCycleThreeUops]>,
SchedVar<NoSchedPred, [SwiftWriteP01TwoCycle]>
]>;
def SwiftReadAdvanceALUsr : SchedReadVariant<[
SchedVar<IsPredicatedPred, [SchedReadAdvance<2>]>,
SchedVar<NoSchedPred, [NoReadAdvance]>
]>;
// ADC,ADD,NEG,RSB,RSC,SBC,SUB,ADR
// AND,BIC,EOR,ORN,ORR
// CLZ,RBIT,REV,REV16,REVSH,PKH
def : WriteRes<WriteALU, [SwiftUnitP01]>;
def : SchedAlias<WriteALUsi, SwiftWriteALUsi>;
def : SchedAlias<WriteALUsr, SwiftWriteALUsr>;
def : SchedAlias<WriteALUSsr, SwiftWriteALUSsr>;
def : ReadAdvance<ReadALU, 0>;
def : SchedAlias<ReadALUsr, SwiftReadAdvanceALUsr>;
// 4.2.5 Integer comparison
def : WriteRes<WriteCMP, [SwiftUnitP01]>;
def : WriteRes<WriteCMPsi, [SwiftUnitP01]>;
def : WriteRes<WriteCMPsr, [SwiftUnitP01]>;
}