llvm-project/lldb/source/Symbol/UnwindTable.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

210 lines
6.5 KiB
C++
Raw Normal View History

//===-- UnwindTable.cpp ---------------------------------------------------===//
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/UnwindTable.h"
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
#include <cstdio>
#include "lldb/Core/Module.h"
#include "lldb/Core/Section.h"
#include "lldb/Symbol/ArmUnwindInfo.h"
[Windows] Use information from the PE32 exceptions directory to construct unwind plans This patch adds an implementation of unwinding using PE EH info. It allows to get almost ideal call stacks on 64-bit Windows systems (except some epilogue cases, but I believe that they can be fixed with unwind plan disassembly augmentation in the future). To achieve the goal the CallFrameInfo abstraction was made. It is based on the DWARFCallFrameInfo class interface with a few changes to make it less DWARF-specific. To implement the new interface for PECOFF object files the class PECallFrameInfo was written. It uses the next helper classes: - UnwindCodesIterator helps to iterate through UnwindCode structures (and processes chained infos transparently); - EHProgramBuilder with the use of UnwindCodesIterator constructs EHProgram; - EHProgram is, by fact, a vector of EHInstructions. It creates an abstraction over the low-level unwind codes and simplifies work with them. It contains only the information that is relevant to unwinding in the unified form. Also the required unwind codes are read from the object file only once with it; - EHProgramRange allows to take a range of EHProgram and to build an unwind row for it. So, PECallFrameInfo builds the EHProgram with EHProgramBuilder, takes the ranges corresponding to every offset in prologue and builds the rows of the resulted unwind plan. The resulted plan covers the whole range of the function except the epilogue. Reviewers: jasonmolenda, asmith, amccarth, clayborg, JDevlieghere, stella.stamenova, labath, espindola Reviewed By: jasonmolenda Subscribers: leonid.mashinskiy, emaste, mgorny, aprantl, arichardson, MaskRay, lldb-commits, llvm-commits Tags: #lldb Differential Revision: https://reviews.llvm.org/D67347 llvm-svn: 374528
2019-10-11 17:03:29 +08:00
#include "lldb/Symbol/CallFrameInfo.h"
#include "lldb/Symbol/CompactUnwindInfo.h"
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
#include "lldb/Symbol/DWARFCallFrameInfo.h"
#include "lldb/Symbol/FuncUnwinders.h"
#include "lldb/Symbol/ObjectFile.h"
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
#include "lldb/Symbol/SymbolContext.h"
FuncUnwinders: Add a new "SymbolFile" unwind plan Summary: some unwind formats are specific to a single symbol file and so it does not make sense for their parsing code live in the general Symbol library (as is the case with eh_frame for instance). This is the case for the unwind information in breakpad files, but the same will probably be true for PDB unwind info (once we are able to parse that). This patch adds the ability to fetch an unwind plan provided by a symbol file plugin, as discussed in the RFC at <http://lists.llvm.org/pipermail/lldb-dev/2019-February/014703.html>. I've kept the set of changes to a minimum, as there is no way to test them until we have a symbol file which implements this API -- that is comming in a follow-up patch, which will also implicitly test this change. The interesting part here is the introduction of the "RegisterInfoResolver" interface. The reason for this is that breakpad needs to be able to resolve register names (which are present as strings in the file) into register enums so that it can construct the unwind plan. This is normally done via the RegisterContext class, handing this over to the SymbolFile plugin would mean that it has full access to the debugged process, which is not something we want it to have. So instead, I create a facade, which only provides the ability to query register names, and hide the RegisterContext behind the facade. Also note that this only adds the ability to dump the unwind plan created by the symbol file plugin -- the plan is not used for unwinding yet -- this will be added in a third patch, which will add additional tests which makes sure the unwinding works as a whole. Reviewers: jasonmolenda, clayborg Subscribers: markmentovai, amccarth, lldb-commits Differential Revision: https://reviews.llvm.org/D61732 llvm-svn: 360409
2019-05-10 15:54:37 +08:00
#include "lldb/Symbol/SymbolVendor.h"
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
// There is one UnwindTable object per ObjectFile. It contains a list of Unwind
// objects -- one per function, populated lazily -- for the ObjectFile. Each
// Unwind object has multiple UnwindPlans for different scenarios.
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
using namespace lldb;
using namespace lldb_private;
UnwindTable::UnwindTable(Module &module)
: m_module(module), m_unwinds(), m_initialized(false), m_mutex(),
[Windows] Use information from the PE32 exceptions directory to construct unwind plans This patch adds an implementation of unwinding using PE EH info. It allows to get almost ideal call stacks on 64-bit Windows systems (except some epilogue cases, but I believe that they can be fixed with unwind plan disassembly augmentation in the future). To achieve the goal the CallFrameInfo abstraction was made. It is based on the DWARFCallFrameInfo class interface with a few changes to make it less DWARF-specific. To implement the new interface for PECOFF object files the class PECallFrameInfo was written. It uses the next helper classes: - UnwindCodesIterator helps to iterate through UnwindCode structures (and processes chained infos transparently); - EHProgramBuilder with the use of UnwindCodesIterator constructs EHProgram; - EHProgram is, by fact, a vector of EHInstructions. It creates an abstraction over the low-level unwind codes and simplifies work with them. It contains only the information that is relevant to unwinding in the unified form. Also the required unwind codes are read from the object file only once with it; - EHProgramRange allows to take a range of EHProgram and to build an unwind row for it. So, PECallFrameInfo builds the EHProgram with EHProgramBuilder, takes the ranges corresponding to every offset in prologue and builds the rows of the resulted unwind plan. The resulted plan covers the whole range of the function except the epilogue. Reviewers: jasonmolenda, asmith, amccarth, clayborg, JDevlieghere, stella.stamenova, labath, espindola Reviewed By: jasonmolenda Subscribers: leonid.mashinskiy, emaste, mgorny, aprantl, arichardson, MaskRay, lldb-commits, llvm-commits Tags: #lldb Differential Revision: https://reviews.llvm.org/D67347 llvm-svn: 374528
2019-10-11 17:03:29 +08:00
m_object_file_unwind_up(), m_eh_frame_up(), m_compact_unwind_up(),
m_arm_unwind_up() {}
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
// We can't do some of this initialization when the ObjectFile is running its
// ctor; delay doing it until needed for something.
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
void UnwindTable::Initialize() {
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
if (m_initialized)
return;
std::lock_guard<std::mutex> guard(m_mutex);
if (m_initialized) // check again once we've acquired the lock
return;
m_initialized = true;
ObjectFile *object_file = m_module.GetObjectFile();
if (!object_file)
return;
[Windows] Use information from the PE32 exceptions directory to construct unwind plans This patch adds an implementation of unwinding using PE EH info. It allows to get almost ideal call stacks on 64-bit Windows systems (except some epilogue cases, but I believe that they can be fixed with unwind plan disassembly augmentation in the future). To achieve the goal the CallFrameInfo abstraction was made. It is based on the DWARFCallFrameInfo class interface with a few changes to make it less DWARF-specific. To implement the new interface for PECOFF object files the class PECallFrameInfo was written. It uses the next helper classes: - UnwindCodesIterator helps to iterate through UnwindCode structures (and processes chained infos transparently); - EHProgramBuilder with the use of UnwindCodesIterator constructs EHProgram; - EHProgram is, by fact, a vector of EHInstructions. It creates an abstraction over the low-level unwind codes and simplifies work with them. It contains only the information that is relevant to unwinding in the unified form. Also the required unwind codes are read from the object file only once with it; - EHProgramRange allows to take a range of EHProgram and to build an unwind row for it. So, PECallFrameInfo builds the EHProgram with EHProgramBuilder, takes the ranges corresponding to every offset in prologue and builds the rows of the resulted unwind plan. The resulted plan covers the whole range of the function except the epilogue. Reviewers: jasonmolenda, asmith, amccarth, clayborg, JDevlieghere, stella.stamenova, labath, espindola Reviewed By: jasonmolenda Subscribers: leonid.mashinskiy, emaste, mgorny, aprantl, arichardson, MaskRay, lldb-commits, llvm-commits Tags: #lldb Differential Revision: https://reviews.llvm.org/D67347 llvm-svn: 374528
2019-10-11 17:03:29 +08:00
m_object_file_unwind_up = object_file->CreateCallFrameInfo();
SectionList *sl = m_module.GetSectionList();
if (!sl)
return;
SectionSP sect = sl->FindSectionByType(eSectionTypeEHFrame, true);
if (sect.get()) {
m_eh_frame_up = std::make_unique<DWARFCallFrameInfo>(
*object_file, sect, DWARFCallFrameInfo::EH);
}
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
sect = sl->FindSectionByType(eSectionTypeDWARFDebugFrame, true);
if (sect) {
m_debug_frame_up = std::make_unique<DWARFCallFrameInfo>(
*object_file, sect, DWARFCallFrameInfo::DWARF);
}
sect = sl->FindSectionByType(eSectionTypeCompactUnwind, true);
if (sect) {
m_compact_unwind_up =
std::make_unique<CompactUnwindInfo>(*object_file, sect);
}
sect = sl->FindSectionByType(eSectionTypeARMexidx, true);
if (sect) {
SectionSP sect_extab = sl->FindSectionByType(eSectionTypeARMextab, true);
if (sect_extab.get()) {
m_arm_unwind_up =
std::make_unique<ArmUnwindInfo>(*object_file, sect, sect_extab);
}
}
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
}
UnwindTable::~UnwindTable() {}
llvm::Optional<AddressRange> UnwindTable::GetAddressRange(const Address &addr,
SymbolContext &sc) {
AddressRange range;
[Windows] Use information from the PE32 exceptions directory to construct unwind plans This patch adds an implementation of unwinding using PE EH info. It allows to get almost ideal call stacks on 64-bit Windows systems (except some epilogue cases, but I believe that they can be fixed with unwind plan disassembly augmentation in the future). To achieve the goal the CallFrameInfo abstraction was made. It is based on the DWARFCallFrameInfo class interface with a few changes to make it less DWARF-specific. To implement the new interface for PECOFF object files the class PECallFrameInfo was written. It uses the next helper classes: - UnwindCodesIterator helps to iterate through UnwindCode structures (and processes chained infos transparently); - EHProgramBuilder with the use of UnwindCodesIterator constructs EHProgram; - EHProgram is, by fact, a vector of EHInstructions. It creates an abstraction over the low-level unwind codes and simplifies work with them. It contains only the information that is relevant to unwinding in the unified form. Also the required unwind codes are read from the object file only once with it; - EHProgramRange allows to take a range of EHProgram and to build an unwind row for it. So, PECallFrameInfo builds the EHProgram with EHProgramBuilder, takes the ranges corresponding to every offset in prologue and builds the rows of the resulted unwind plan. The resulted plan covers the whole range of the function except the epilogue. Reviewers: jasonmolenda, asmith, amccarth, clayborg, JDevlieghere, stella.stamenova, labath, espindola Reviewed By: jasonmolenda Subscribers: leonid.mashinskiy, emaste, mgorny, aprantl, arichardson, MaskRay, lldb-commits, llvm-commits Tags: #lldb Differential Revision: https://reviews.llvm.org/D67347 llvm-svn: 374528
2019-10-11 17:03:29 +08:00
// First check the unwind info from the object file plugin
if (m_object_file_unwind_up &&
m_object_file_unwind_up->GetAddressRange(addr, range))
return range;
// Check the symbol context
if (sc.GetAddressRange(eSymbolContextFunction | eSymbolContextSymbol, 0,
false, range) &&
range.GetBaseAddress().IsValid())
return range;
// Does the eh_frame unwind info has a function bounds for this addr?
if (m_eh_frame_up && m_eh_frame_up->GetAddressRange(addr, range))
return range;
// Try debug_frame as well
if (m_debug_frame_up && m_debug_frame_up->GetAddressRange(addr, range))
return range;
return llvm::None;
}
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
FuncUnwindersSP
UnwindTable::GetFuncUnwindersContainingAddress(const Address &addr,
SymbolContext &sc) {
Initialize();
std::lock_guard<std::mutex> guard(m_mutex);
// There is an UnwindTable per object file, so we can safely use file handles
addr_t file_addr = addr.GetFileAddress();
iterator end = m_unwinds.end();
iterator insert_pos = end;
if (!m_unwinds.empty()) {
insert_pos = m_unwinds.lower_bound(file_addr);
iterator pos = insert_pos;
if ((pos == m_unwinds.end()) ||
(pos != m_unwinds.begin() &&
pos->second->GetFunctionStartAddress() != addr))
--pos;
if (pos->second->ContainsAddress(addr))
return pos->second;
}
auto range_or = GetAddressRange(addr, sc);
if (!range_or)
return nullptr;
FuncUnwindersSP func_unwinder_sp(new FuncUnwinders(*this, *range_or));
m_unwinds.insert(insert_pos,
std::make_pair(range_or->GetBaseAddress().GetFileAddress(),
func_unwinder_sp));
return func_unwinder_sp;
}
// Ignore any existing FuncUnwinders for this function, create a new one and
// don't add it to the UnwindTable. This is intended for use by target modules
// show-unwind where we want to create new UnwindPlans, not re-use existing
// ones.
FuncUnwindersSP
UnwindTable::GetUncachedFuncUnwindersContainingAddress(const Address &addr,
SymbolContext &sc) {
Initialize();
auto range_or = GetAddressRange(addr, sc);
if (!range_or)
return nullptr;
return std::make_shared<FuncUnwinders>(*this, *range_or);
}
void UnwindTable::Dump(Stream &s) {
std::lock_guard<std::mutex> guard(m_mutex);
s.Format("UnwindTable for '{0}':\n", m_module.GetFileSpec());
const_iterator begin = m_unwinds.begin();
const_iterator end = m_unwinds.end();
for (const_iterator pos = begin; pos != end; ++pos) {
s.Printf("[%u] 0x%16.16" PRIx64 "\n", (unsigned)std::distance(begin, pos),
pos->first);
}
s.EOL();
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
}
[Windows] Use information from the PE32 exceptions directory to construct unwind plans This patch adds an implementation of unwinding using PE EH info. It allows to get almost ideal call stacks on 64-bit Windows systems (except some epilogue cases, but I believe that they can be fixed with unwind plan disassembly augmentation in the future). To achieve the goal the CallFrameInfo abstraction was made. It is based on the DWARFCallFrameInfo class interface with a few changes to make it less DWARF-specific. To implement the new interface for PECOFF object files the class PECallFrameInfo was written. It uses the next helper classes: - UnwindCodesIterator helps to iterate through UnwindCode structures (and processes chained infos transparently); - EHProgramBuilder with the use of UnwindCodesIterator constructs EHProgram; - EHProgram is, by fact, a vector of EHInstructions. It creates an abstraction over the low-level unwind codes and simplifies work with them. It contains only the information that is relevant to unwinding in the unified form. Also the required unwind codes are read from the object file only once with it; - EHProgramRange allows to take a range of EHProgram and to build an unwind row for it. So, PECallFrameInfo builds the EHProgram with EHProgramBuilder, takes the ranges corresponding to every offset in prologue and builds the rows of the resulted unwind plan. The resulted plan covers the whole range of the function except the epilogue. Reviewers: jasonmolenda, asmith, amccarth, clayborg, JDevlieghere, stella.stamenova, labath, espindola Reviewed By: jasonmolenda Subscribers: leonid.mashinskiy, emaste, mgorny, aprantl, arichardson, MaskRay, lldb-commits, llvm-commits Tags: #lldb Differential Revision: https://reviews.llvm.org/D67347 llvm-svn: 374528
2019-10-11 17:03:29 +08:00
lldb_private::CallFrameInfo *UnwindTable::GetObjectFileUnwindInfo() {
Initialize();
return m_object_file_unwind_up.get();
}
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
DWARFCallFrameInfo *UnwindTable::GetEHFrameInfo() {
Initialize();
return m_eh_frame_up.get();
The first part of an lldb native stack unwinder. The Unwind and RegisterContext subclasses still need to be finished; none of this code is used by lldb at this point (unless you call into it by hand). The ObjectFile class now has an UnwindTable object. The UnwindTable object has a series of FuncUnwinders objects (Function Unwinders) -- one for each function in that ObjectFile we've backtraced through during this debug session. The FuncUnwinders object has a few different UnwindPlans. UnwindPlans are a generic way of describing how to find the canonical address of a given function's stack frame (the CFA idea from DWARF/eh_frame) and how to restore the caller frame's register values, if they have been saved by this function. UnwindPlans are created from different sources. One source is the eh_frame exception handling information generated by the compiler for unwinding an exception throw. Another source is an assembly language inspection class (UnwindAssemblyProfiler, uses the Plugin architecture) which looks at the instructions in the funciton prologue and describes the stack movements/register saves that are done. Two additional types of UnwindPlans that are worth noting are the "fast" stack UnwindPlan which is useful for making a first pass over a thread's stack, determining how many stack frames there are and retrieving the pc and CFA values for each frame (enough to create StackFrameIDs). Only a minimal set of registers is recovered during a fast stack walk. The final UnwindPlan is an architectural default unwind plan. These are provided by the ArchDefaultUnwindPlan class (which uses the plugin architecture). When no symbol/function address range can be found for a given pc value -- when we have no eh_frame information and when we don't have a start address so we can't examine the assembly language instrucitons -- we have to make a best guess about how to unwind. That's when we use the architectural default UnwindPlan. On x86_64, this would be to assume that rbp is used as a stack pointer and we can use that to find the caller's frame pointer and pc value. It's a last-ditch best guess about how to unwind out of a frame. There are heuristics about when to use one UnwindPlan versues the other -- this will all happen in the still-begin-written UnwindLLDB subclass of Unwind which runs the UnwindPlans. llvm-svn: 113581
2010-09-10 15:49:16 +08:00
}
DWARFCallFrameInfo *UnwindTable::GetDebugFrameInfo() {
Initialize();
return m_debug_frame_up.get();
}
CompactUnwindInfo *UnwindTable::GetCompactUnwindInfo() {
Initialize();
return m_compact_unwind_up.get();
}
ArmUnwindInfo *UnwindTable::GetArmUnwindInfo() {
Initialize();
return m_arm_unwind_up.get();
}
SymbolFile *UnwindTable::GetSymbolFile() { return m_module.GetSymbolFile(); }
FuncUnwinders: Add a new "SymbolFile" unwind plan Summary: some unwind formats are specific to a single symbol file and so it does not make sense for their parsing code live in the general Symbol library (as is the case with eh_frame for instance). This is the case for the unwind information in breakpad files, but the same will probably be true for PDB unwind info (once we are able to parse that). This patch adds the ability to fetch an unwind plan provided by a symbol file plugin, as discussed in the RFC at <http://lists.llvm.org/pipermail/lldb-dev/2019-February/014703.html>. I've kept the set of changes to a minimum, as there is no way to test them until we have a symbol file which implements this API -- that is comming in a follow-up patch, which will also implicitly test this change. The interesting part here is the introduction of the "RegisterInfoResolver" interface. The reason for this is that breakpad needs to be able to resolve register names (which are present as strings in the file) into register enums so that it can construct the unwind plan. This is normally done via the RegisterContext class, handing this over to the SymbolFile plugin would mean that it has full access to the debugged process, which is not something we want it to have. So instead, I create a facade, which only provides the ability to query register names, and hide the RegisterContext behind the facade. Also note that this only adds the ability to dump the unwind plan created by the symbol file plugin -- the plan is not used for unwinding yet -- this will be added in a third patch, which will add additional tests which makes sure the unwinding works as a whole. Reviewers: jasonmolenda, clayborg Subscribers: markmentovai, amccarth, lldb-commits Differential Revision: https://reviews.llvm.org/D61732 llvm-svn: 360409
2019-05-10 15:54:37 +08:00
ArchSpec UnwindTable::GetArchitecture() { return m_module.GetArchitecture(); }
bool UnwindTable::GetAllowAssemblyEmulationUnwindPlans() {
if (ObjectFile *object_file = m_module.GetObjectFile())
return object_file->AllowAssemblyEmulationUnwindPlans();
return false;
}