llvm-project/lld/ELF/Arch/X86.cpp

406 lines
13 KiB
C++
Raw Normal View History

//===- X86.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class X86 final : public TargetInfo {
public:
X86();
RelExpr getRelExpr(RelType Type, const Symbol &S,
const uint8_t *Loc) const override;
int64_t getImplicitAddend(const uint8_t *Buf, RelType Type) const override;
void writeGotPltHeader(uint8_t *Buf) const override;
RelType getDynRel(RelType Type) const override;
void writeGotPlt(uint8_t *Buf, const Symbol &S) const override;
void writeIgotPlt(uint8_t *Buf, const Symbol &S) const override;
void writePltHeader(uint8_t *Buf) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const override;
RelExpr adjustRelaxExpr(RelType Type, const uint8_t *Data,
RelExpr Expr) const override;
void relaxTlsGdToIe(uint8_t *Loc, RelType Type, uint64_t Val) const override;
void relaxTlsGdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const override;
void relaxTlsIeToLe(uint8_t *Loc, RelType Type, uint64_t Val) const override;
void relaxTlsLdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const override;
};
} // namespace
X86::X86() {
GotBaseSymOff = -1;
CopyRel = R_386_COPY;
GotRel = R_386_GLOB_DAT;
PltRel = R_386_JUMP_SLOT;
IRelativeRel = R_386_IRELATIVE;
RelativeRel = R_386_RELATIVE;
TlsGotRel = R_386_TLS_TPOFF;
TlsModuleIndexRel = R_386_TLS_DTPMOD32;
TlsOffsetRel = R_386_TLS_DTPOFF32;
GotEntrySize = 4;
GotPltEntrySize = 4;
PltEntrySize = 16;
PltHeaderSize = 16;
TlsGdRelaxSkip = 2;
TrapInstr = 0xcccccccc; // 0xcc = INT3
}
static bool hasBaseReg(uint8_t ModRM) { return (ModRM & 0xc7) != 0x5; }
RelExpr X86::getRelExpr(RelType Type, const Symbol &S,
const uint8_t *Loc) const {
switch (Type) {
case R_386_8:
case R_386_16:
case R_386_32:
case R_386_TLS_LDO_32:
return R_ABS;
case R_386_TLS_GD:
return R_TLSGD;
case R_386_TLS_LDM:
return R_TLSLD;
case R_386_PLT32:
return R_PLT_PC;
case R_386_PC8:
case R_386_PC16:
case R_386_PC32:
return R_PC;
case R_386_GOTPC:
return R_GOTONLY_PC_FROM_END;
case R_386_TLS_IE:
return R_GOT;
case R_386_GOT32:
case R_386_GOT32X:
2017-10-12 10:09:11 +08:00
// These relocations are arguably mis-designed because their calculations
// depend on the instructions they are applied to. This is bad because we
// usually don't care about whether the target section contains valid
// machine instructions or not. But this is part of the documented ABI, so
// we had to implement as the standard requires.
//
2017-10-12 10:09:11 +08:00
// x86 does not support PC-relative data access. Therefore, in order to
// access GOT contents, a GOT address needs to be known at link-time
// (which means non-PIC) or compilers have to emit code to get a GOT
// address at runtime (which means code is position-independent but
// compilers need to emit extra code for each GOT access.) This decision
// is made at compile-time. In the latter case, compilers emit code to
// load an GOT address to a register, which is usually %ebx.
//
// So, there are two ways to refer to symbol foo's GOT entry: foo@GOT or
// foo@GOT(%reg).
//
// foo@GOT is not usable in PIC. If we are creating a PIC output and if we
// find such relocation, we should report an error. foo@GOT is resolved to
// an *absolute* address of foo's GOT entry, because both GOT address and
// foo's offset are known. In other words, it's G + A.
//
// foo@GOT(%reg) needs to be resolved to a *relative* offset from a GOT to
// foo's GOT entry in the table, because GOT address is not known but foo's
// offset in the table is known. It's G + A - GOT.
//
// It's unfortunate that compilers emit the same relocation for these
// different use cases. In order to distinguish them, we have to read a
// machine instruction.
//
// The following code implements it. We assume that Loc[0] is the first
// byte of a displacement or an immediate field of a valid machine
// instruction. That means a ModRM byte is at Loc[-1]. By taking a look at
// the byte, we can determine whether the instruction is register-relative
// (i.e. it was generated for foo@GOT(%reg)) or absolute (i.e. foo@GOT).
return hasBaseReg(Loc[-1]) ? R_GOT_FROM_END : R_GOT;
case R_386_TLS_GOTIE:
return R_GOT_FROM_END;
case R_386_GOTOFF:
return R_GOTREL_FROM_END;
case R_386_TLS_LE:
return R_TLS;
case R_386_TLS_LE_32:
return R_NEG_TLS;
case R_386_NONE:
return R_NONE;
default:
return R_INVALID;
}
}
RelExpr X86::adjustRelaxExpr(RelType Type, const uint8_t *Data,
RelExpr Expr) const {
switch (Expr) {
default:
return Expr;
case R_RELAX_TLS_GD_TO_IE:
return R_RELAX_TLS_GD_TO_IE_END;
case R_RELAX_TLS_GD_TO_LE:
return R_RELAX_TLS_GD_TO_LE_NEG;
}
}
void X86::writeGotPltHeader(uint8_t *Buf) const {
write32le(Buf, InX::Dynamic->getVA());
}
void X86::writeGotPlt(uint8_t *Buf, const Symbol &S) const {
// Entries in .got.plt initially points back to the corresponding
// PLT entries with a fixed offset to skip the first instruction.
write32le(Buf, S.getPltVA() + 6);
}
void X86::writeIgotPlt(uint8_t *Buf, const Symbol &S) const {
// An x86 entry is the address of the ifunc resolver function.
write32le(Buf, S.getVA());
}
RelType X86::getDynRel(RelType Type) const {
if (Type == R_386_TLS_LE)
return R_386_TLS_TPOFF;
if (Type == R_386_TLS_LE_32)
return R_386_TLS_TPOFF32;
return Type;
}
void X86::writePltHeader(uint8_t *Buf) const {
if (Config->Pic) {
const uint8_t V[] = {
0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl GOTPLT+4(%ebx)
0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *GOTPLT+8(%ebx)
0x90, 0x90, 0x90, 0x90 // nop
};
memcpy(Buf, V, sizeof(V));
uint32_t Ebx = InX::Got->getVA() + InX::Got->getSize();
uint32_t GotPlt = InX::GotPlt->getVA() - Ebx;
write32le(Buf + 2, GotPlt + 4);
write32le(Buf + 8, GotPlt + 8);
return;
}
const uint8_t PltData[] = {
0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOTPLT+4)
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOTPLT+8)
0x90, 0x90, 0x90, 0x90 // nop
};
memcpy(Buf, PltData, sizeof(PltData));
uint32_t GotPlt = InX::GotPlt->getVA();
write32le(Buf + 2, GotPlt + 4);
write32le(Buf + 8, GotPlt + 8);
}
void X86::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
const uint8_t Inst[] = {
0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
0x68, 0x00, 0x00, 0x00, 0x00, // pushl $reloc_offset
0xe9, 0x00, 0x00, 0x00, 0x00 // jmp .PLT0@PC
};
memcpy(Buf, Inst, sizeof(Inst));
if (Config->Pic) {
// jmp *foo@GOT(%ebx)
uint32_t Ebx = InX::Got->getVA() + InX::Got->getSize();
Buf[1] = 0xa3;
write32le(Buf + 2, GotPltEntryAddr - Ebx);
} else {
// jmp *foo_in_GOT
Buf[1] = 0x25;
write32le(Buf + 2, GotPltEntryAddr);
}
write32le(Buf + 7, RelOff);
write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
}
int64_t X86::getImplicitAddend(const uint8_t *Buf, RelType Type) const {
switch (Type) {
case R_386_8:
case R_386_PC8:
return SignExtend64<8>(*Buf);
case R_386_16:
case R_386_PC16:
return SignExtend64<16>(read16le(Buf));
case R_386_32:
case R_386_GOT32:
case R_386_GOT32X:
case R_386_GOTOFF:
case R_386_GOTPC:
case R_386_PC32:
case R_386_PLT32:
case R_386_TLS_LDO_32:
case R_386_TLS_LE:
return SignExtend64<32>(read32le(Buf));
default:
return 0;
}
}
void X86::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const {
switch (Type) {
case R_386_8:
// R_386_{PC,}{8,16} are not part of the i386 psABI, but they are
// being used for some 16-bit programs such as boot loaders, so
// we want to support them.
checkUInt<8>(Loc, Val, Type);
*Loc = Val;
break;
case R_386_PC8:
checkInt<8>(Loc, Val, Type);
*Loc = Val;
break;
case R_386_16:
checkUInt<16>(Loc, Val, Type);
write16le(Loc, Val);
break;
case R_386_PC16:
// R_386_PC16 is normally used with 16 bit code. In that situation
// the PC is 16 bits, just like the addend. This means that it can
// point from any 16 bit address to any other if the possibility
// of wrapping is included.
// The only restriction we have to check then is that the destination
// address fits in 16 bits. That is impossible to do here. The problem is
// that we are passed the final value, which already had the
// current location subtracted from it.
// We just check that Val fits in 17 bits. This misses some cases, but
// should have no false positives.
checkInt<17>(Loc, Val, Type);
write16le(Loc, Val);
break;
case R_386_32:
case R_386_GLOB_DAT:
case R_386_GOT32:
case R_386_GOT32X:
case R_386_GOTOFF:
case R_386_GOTPC:
case R_386_PC32:
case R_386_PLT32:
case R_386_RELATIVE:
case R_386_TLS_DTPMOD32:
case R_386_TLS_DTPOFF32:
case R_386_TLS_GD:
case R_386_TLS_GOTIE:
case R_386_TLS_IE:
case R_386_TLS_LDM:
case R_386_TLS_LDO_32:
case R_386_TLS_LE:
case R_386_TLS_LE_32:
case R_386_TLS_TPOFF:
case R_386_TLS_TPOFF32:
checkInt<32>(Loc, Val, Type);
write32le(Loc, Val);
break;
default:
error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
}
}
void X86::relaxTlsGdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const {
// Convert
// leal x@tlsgd(, %ebx, 1),
// call __tls_get_addr@plt
// to
// movl %gs:0,%eax
// subl $x@ntpoff,%eax
const uint8_t Inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
0x81, 0xe8, 0x00, 0x00, 0x00, 0x00 // subl 0(%ebx), %eax
};
memcpy(Loc - 3, Inst, sizeof(Inst));
write32le(Loc + 5, Val);
}
void X86::relaxTlsGdToIe(uint8_t *Loc, RelType Type, uint64_t Val) const {
// Convert
// leal x@tlsgd(, %ebx, 1),
// call __tls_get_addr@plt
// to
// movl %gs:0, %eax
// addl x@gotntpoff(%ebx), %eax
const uint8_t Inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
0x03, 0x83, 0x00, 0x00, 0x00, 0x00 // addl 0(%ebx), %eax
};
memcpy(Loc - 3, Inst, sizeof(Inst));
write32le(Loc + 5, Val);
}
// In some conditions, relocations can be optimized to avoid using GOT.
// This function does that for Initial Exec to Local Exec case.
void X86::relaxTlsIeToLe(uint8_t *Loc, RelType Type, uint64_t Val) const {
// Ulrich's document section 6.2 says that @gotntpoff can
// be used with MOVL or ADDL instructions.
// @indntpoff is similar to @gotntpoff, but for use in
// position dependent code.
uint8_t Reg = (Loc[-1] >> 3) & 7;
if (Type == R_386_TLS_IE) {
if (Loc[-1] == 0xa1) {
// "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
// This case is different from the generic case below because
// this is a 5 byte instruction while below is 6 bytes.
Loc[-1] = 0xb8;
} else if (Loc[-2] == 0x8b) {
// "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
Loc[-2] = 0xc7;
Loc[-1] = 0xc0 | Reg;
} else {
// "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
Loc[-2] = 0x81;
Loc[-1] = 0xc0 | Reg;
}
} else {
assert(Type == R_386_TLS_GOTIE);
if (Loc[-2] == 0x8b) {
// "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
Loc[-2] = 0xc7;
Loc[-1] = 0xc0 | Reg;
} else {
// "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
Loc[-2] = 0x8d;
Loc[-1] = 0x80 | (Reg << 3) | Reg;
}
}
write32le(Loc, Val);
}
void X86::relaxTlsLdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const {
if (Type == R_386_TLS_LDO_32) {
write32le(Loc, Val);
return;
}
// Convert
// leal foo(%reg),%eax
// call ___tls_get_addr
// to
// movl %gs:0,%eax
// nop
// leal 0(%esi,1),%esi
const uint8_t Inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
0x90, // nop
0x8d, 0x74, 0x26, 0x00 // leal 0(%esi,1),%esi
};
memcpy(Loc - 2, Inst, sizeof(Inst));
}
TargetInfo *elf::getX86TargetInfo() {
static X86 Target;
return &Target;
}