2018-07-12 04:26:20 +08:00
|
|
|
// RUN: %clang_cc1 -verify -fopenmp -x c++ -triple x86_64-apple-darwin10 -emit-llvm %s -o - | FileCheck -allow-deprecated-dag-overlap %s
|
2015-05-20 12:24:19 +08:00
|
|
|
// RUN: %clang_cc1 -fopenmp -x c++ -std=c++11 -triple x86_64-apple-darwin10 -emit-pch -o %t %s
|
2018-07-12 04:26:20 +08:00
|
|
|
// RUN: %clang_cc1 -fopenmp -x c++ -triple x86_64-apple-darwin10 -std=c++11 -include-pch %t -verify %s -emit-llvm -o - | FileCheck -allow-deprecated-dag-overlap %s
|
|
|
|
// RUN: %clang_cc1 -verify -fopenmp -x c++ -std=c++11 -DLAMBDA -triple x86_64-apple-darwin10 -emit-llvm %s -o - | FileCheck -allow-deprecated-dag-overlap -check-prefix=LAMBDA %s
|
|
|
|
// RUN: %clang_cc1 -verify -fopenmp -x c++ -fblocks -DBLOCKS -triple x86_64-apple-darwin10 -emit-llvm %s -o - | FileCheck -allow-deprecated-dag-overlap -check-prefix=BLOCKS %s
|
2017-12-30 02:07:07 +08:00
|
|
|
|
2018-07-12 04:26:20 +08:00
|
|
|
// RUN: %clang_cc1 -verify -fopenmp-simd -x c++ -triple x86_64-apple-darwin10 -emit-llvm %s -o - | FileCheck -allow-deprecated-dag-overlap --check-prefix SIMD-ONLY0 %s
|
2017-12-30 02:07:07 +08:00
|
|
|
// RUN: %clang_cc1 -fopenmp-simd -x c++ -std=c++11 -triple x86_64-apple-darwin10 -emit-pch -o %t %s
|
2018-07-12 04:26:20 +08:00
|
|
|
// RUN: %clang_cc1 -fopenmp-simd -x c++ -triple x86_64-apple-darwin10 -std=c++11 -include-pch %t -verify %s -emit-llvm -o - | FileCheck -allow-deprecated-dag-overlap --check-prefix SIMD-ONLY0 %s
|
|
|
|
// RUN: %clang_cc1 -verify -fopenmp-simd -x c++ -std=c++11 -DLAMBDA -triple x86_64-apple-darwin10 -emit-llvm %s -o - | FileCheck -allow-deprecated-dag-overlap --check-prefix SIMD-ONLY0 %s
|
|
|
|
// RUN: %clang_cc1 -verify -fopenmp-simd -x c++ -fblocks -DBLOCKS -triple x86_64-apple-darwin10 -emit-llvm %s -o - | FileCheck -allow-deprecated-dag-overlap --check-prefix SIMD-ONLY0 %s
|
2017-12-30 02:07:07 +08:00
|
|
|
// SIMD-ONLY0-NOT: {{__kmpc|__tgt}}
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// expected-no-diagnostics
|
|
|
|
#ifndef HEADER
|
|
|
|
#define HEADER
|
|
|
|
|
|
|
|
volatile double g;
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
struct S {
|
|
|
|
T f;
|
|
|
|
S(T a) : f(a + g) {}
|
|
|
|
S() : f(g) {}
|
|
|
|
operator T() { return T(); }
|
|
|
|
S &operator&(const S &) { return *this; }
|
|
|
|
~S() {}
|
|
|
|
};
|
|
|
|
|
|
|
|
// CHECK-DAG: [[S_FLOAT_TY:%.+]] = type { float }
|
|
|
|
// CHECK-DAG: [[S_INT_TY:%.+]] = type { i{{[0-9]+}} }
|
2018-08-29 23:45:11 +08:00
|
|
|
// CHECK-DAG: [[ATOMIC_REDUCE_BARRIER_LOC:@.+]] = private unnamed_addr global %{{.+}} { i32 0, i32 18, i32 0, i32 0, i8*
|
|
|
|
// CHECK-DAG: [[REDUCTION_LOC:@.+]] = private unnamed_addr global %{{.+}} { i32 0, i32 18, i32 0, i32 0, i8*
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK-DAG: [[REDUCTION_LOCK:@.+]] = common global [8 x i32] zeroinitializer
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
T tmain() {
|
|
|
|
T t;
|
|
|
|
S<T> test;
|
|
|
|
T t_var = T(), t_var1;
|
|
|
|
T vec[] = {1, 2};
|
|
|
|
S<T> s_arr[] = {1, 2};
|
|
|
|
S<T> var(3), var1;
|
|
|
|
#pragma omp parallel
|
|
|
|
#pragma omp sections reduction(+:t_var) reduction(&:var) reduction(&& : var1) reduction(min: t_var1) nowait
|
|
|
|
{
|
|
|
|
vec[0] = t_var;
|
|
|
|
#pragma omp section
|
|
|
|
s_arr[0] = var;
|
|
|
|
}
|
|
|
|
return T();
|
|
|
|
}
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
#ifdef LAMBDA
|
|
|
|
// LAMBDA: [[G:@.+]] = global double
|
|
|
|
// LAMBDA-LABEL: @main
|
|
|
|
// LAMBDA: call void [[OUTER_LAMBDA:@.+]](
|
|
|
|
[&]() {
|
|
|
|
// LAMBDA: define{{.*}} internal{{.*}} void [[OUTER_LAMBDA]](
|
2015-09-10 16:12:02 +08:00
|
|
|
// LAMBDA: call void {{.+}} @__kmpc_fork_call({{.+}}, i32 0, {{.+}}* [[OMP_REGION:@.+]] to {{.+}})
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
#pragma omp parallel
|
|
|
|
#pragma omp sections reduction(+:g)
|
|
|
|
{
|
2015-09-10 16:12:02 +08:00
|
|
|
// LAMBDA: define{{.*}} internal{{.*}} void [[OMP_REGION]](i32* noalias %{{.+}}, i32* noalias %{{.+}})
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// LAMBDA: [[G_PRIVATE_ADDR:%.+]] = alloca double,
|
|
|
|
|
|
|
|
// Reduction list for runtime.
|
|
|
|
// LAMBDA: [[RED_LIST:%.+]] = alloca [1 x i8*],
|
|
|
|
|
|
|
|
// LAMBDA: store double 0.0{{.+}}, double* [[G_PRIVATE_ADDR]]
|
|
|
|
// LAMBDA: call void @__kmpc_for_static_init_4(
|
|
|
|
g = 1;
|
2015-07-14 18:32:29 +08:00
|
|
|
// LAMBDA: store double 1.0{{.+}}, double* [[G_PRIVATE_ADDR]],
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// LAMBDA: [[G_PRIVATE_ADDR_REF:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[ARG:%.+]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
|
|
|
|
// LAMBDA: store double* [[G_PRIVATE_ADDR]], double** [[G_PRIVATE_ADDR_REF]]
|
|
|
|
// LAMBDA: call void [[INNER_LAMBDA:@.+]](%{{.+}}* [[ARG]])
|
|
|
|
// LAMBDA: call void @__kmpc_for_static_fini(
|
|
|
|
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// LAMBDA: [[G_PRIV_REF:%.+]] = getelementptr inbounds [1 x i8*], [1 x i8*]* [[RED_LIST]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// LAMBDA: [[BITCAST:%.+]] = bitcast double* [[G_PRIVATE_ADDR]] to i8*
|
|
|
|
// LAMBDA: store i8* [[BITCAST]], i8** [[G_PRIV_REF]],
|
|
|
|
// LAMBDA: call i32 @__kmpc_reduce(
|
|
|
|
// LAMBDA: switch i32 %{{.+}}, label %[[REDUCTION_DONE:.+]] [
|
|
|
|
// LAMBDA: i32 1, label %[[CASE1:.+]]
|
|
|
|
// LAMBDA: i32 2, label %[[CASE2:.+]]
|
|
|
|
// LAMBDA: [[CASE1]]
|
|
|
|
// LAMBDA: [[G_VAL:%.+]] = load double, double* [[G]]
|
|
|
|
// LAMBDA: [[G_PRIV_VAL:%.+]] = load double, double* [[G_PRIVATE_ADDR]]
|
|
|
|
// LAMBDA: [[ADD:%.+]] = fadd double [[G_VAL]], [[G_PRIV_VAL]]
|
|
|
|
// LAMBDA: store double [[ADD]], double* [[G]]
|
|
|
|
// LAMBDA: call void @__kmpc_end_reduce(
|
|
|
|
// LAMBDA: br label %[[REDUCTION_DONE]]
|
|
|
|
// LAMBDA: [[CASE2]]
|
|
|
|
// LAMBDA: [[G_PRIV_VAL:%.+]] = load double, double* [[G_PRIVATE_ADDR]]
|
|
|
|
// LAMBDA: fadd double
|
|
|
|
// LAMBDA: cmpxchg i64*
|
2015-05-07 11:54:03 +08:00
|
|
|
// LAMBDA: call void @__kmpc_end_reduce(
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// LAMBDA: br label %[[REDUCTION_DONE]]
|
|
|
|
// LAMBDA: [[REDUCTION_DONE]]
|
|
|
|
// LAMBDA: ret void
|
|
|
|
#pragma omp section
|
|
|
|
[&]() {
|
|
|
|
// LAMBDA: define {{.+}} void [[INNER_LAMBDA]](%{{.+}}* [[ARG_PTR:%.+]])
|
|
|
|
// LAMBDA: store %{{.+}}* [[ARG_PTR]], %{{.+}}** [[ARG_PTR_REF:%.+]],
|
|
|
|
g = 2;
|
|
|
|
// LAMBDA: [[ARG_PTR:%.+]] = load %{{.+}}*, %{{.+}}** [[ARG_PTR_REF]]
|
|
|
|
// LAMBDA: [[G_PTR_REF:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[ARG_PTR]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
|
|
|
|
// LAMBDA: [[G_REF:%.+]] = load double*, double** [[G_PTR_REF]]
|
2015-07-14 18:32:29 +08:00
|
|
|
// LAMBDA: store double 2.0{{.+}}, double* [[G_REF]]
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
}();
|
|
|
|
}
|
|
|
|
}();
|
|
|
|
return 0;
|
|
|
|
#elif defined(BLOCKS)
|
|
|
|
// BLOCKS: [[G:@.+]] = global double
|
|
|
|
// BLOCKS-LABEL: @main
|
|
|
|
// BLOCKS: call void {{%.+}}(i8
|
|
|
|
^{
|
|
|
|
// BLOCKS: define{{.*}} internal{{.*}} void {{.+}}(i8*
|
2015-09-10 16:12:02 +08:00
|
|
|
// BLOCKS: call void {{.+}} @__kmpc_fork_call({{.+}}, i32 0, {{.+}}* [[OMP_REGION:@.+]] to {{.+}})
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
#pragma omp parallel
|
|
|
|
#pragma omp sections reduction(-:g)
|
|
|
|
{
|
2015-09-10 16:12:02 +08:00
|
|
|
// BLOCKS: define{{.*}} internal{{.*}} void [[OMP_REGION]](i32* noalias %{{.+}}, i32* noalias %{{.+}})
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// BLOCKS: [[G_PRIVATE_ADDR:%.+]] = alloca double,
|
|
|
|
|
|
|
|
// Reduction list for runtime.
|
|
|
|
// BLOCKS: [[RED_LIST:%.+]] = alloca [1 x i8*],
|
|
|
|
|
|
|
|
// BLOCKS: store double 0.0{{.+}}, double* [[G_PRIVATE_ADDR]]
|
|
|
|
g = 1;
|
|
|
|
// BLOCKS: call void @__kmpc_for_static_init_4(
|
2015-07-14 18:32:29 +08:00
|
|
|
// BLOCKS: store double 1.0{{.+}}, double* [[G_PRIVATE_ADDR]],
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// BLOCKS-NOT: [[G]]{{[[^:word:]]}}
|
|
|
|
// BLOCKS: double* [[G_PRIVATE_ADDR]]
|
|
|
|
// BLOCKS-NOT: [[G]]{{[[^:word:]]}}
|
|
|
|
// BLOCKS: call void {{%.+}}(i8
|
|
|
|
// BLOCKS: call void @__kmpc_for_static_fini(
|
|
|
|
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// BLOCKS: [[G_PRIV_REF:%.+]] = getelementptr inbounds [1 x i8*], [1 x i8*]* [[RED_LIST]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// BLOCKS: [[BITCAST:%.+]] = bitcast double* [[G_PRIVATE_ADDR]] to i8*
|
|
|
|
// BLOCKS: store i8* [[BITCAST]], i8** [[G_PRIV_REF]],
|
|
|
|
// BLOCKS: call i32 @__kmpc_reduce(
|
|
|
|
// BLOCKS: switch i32 %{{.+}}, label %[[REDUCTION_DONE:.+]] [
|
|
|
|
// BLOCKS: i32 1, label %[[CASE1:.+]]
|
|
|
|
// BLOCKS: i32 2, label %[[CASE2:.+]]
|
|
|
|
// BLOCKS: [[CASE1]]
|
|
|
|
// BLOCKS: [[G_VAL:%.+]] = load double, double* [[G]]
|
|
|
|
// BLOCKS: [[G_PRIV_VAL:%.+]] = load double, double* [[G_PRIVATE_ADDR]]
|
|
|
|
// BLOCKS: [[ADD:%.+]] = fadd double [[G_VAL]], [[G_PRIV_VAL]]
|
|
|
|
// BLOCKS: store double [[ADD]], double* [[G]]
|
|
|
|
// BLOCKS: call void @__kmpc_end_reduce(
|
|
|
|
// BLOCKS: br label %[[REDUCTION_DONE]]
|
|
|
|
// BLOCKS: [[CASE2]]
|
|
|
|
// BLOCKS: [[G_PRIV_VAL:%.+]] = load double, double* [[G_PRIVATE_ADDR]]
|
|
|
|
// BLOCKS: fadd double
|
|
|
|
// BLOCKS: cmpxchg i64*
|
2015-05-07 11:54:03 +08:00
|
|
|
// BLOCKS: call void @__kmpc_end_reduce(
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// BLOCKS: br label %[[REDUCTION_DONE]]
|
|
|
|
// BLOCKS: [[REDUCTION_DONE]]
|
|
|
|
// BLOCKS: ret void
|
|
|
|
#pragma omp section
|
|
|
|
^{
|
|
|
|
// BLOCKS: define {{.+}} void {{@.+}}(i8*
|
|
|
|
g = 2;
|
|
|
|
// BLOCKS-NOT: [[G]]{{[[^:word:]]}}
|
2015-07-14 18:32:29 +08:00
|
|
|
// BLOCKS: store double 2.0{{.+}}, double*
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// BLOCKS-NOT: [[G]]{{[[^:word:]]}}
|
|
|
|
// BLOCKS: ret
|
|
|
|
}();
|
|
|
|
}
|
|
|
|
}();
|
|
|
|
return 0;
|
|
|
|
#else
|
|
|
|
S<float> test;
|
|
|
|
float t_var = 0, t_var1;
|
|
|
|
int vec[] = {1, 2};
|
|
|
|
S<float> s_arr[] = {1, 2};
|
|
|
|
S<float> var(3), var1;
|
|
|
|
#pragma omp parallel
|
|
|
|
#pragma omp sections reduction(+:t_var) reduction(&:var) reduction(&& : var1) reduction(min: t_var1)
|
|
|
|
{
|
|
|
|
{
|
|
|
|
vec[0] = t_var;
|
|
|
|
s_arr[0] = var;
|
|
|
|
vec[1] = t_var1;
|
|
|
|
s_arr[1] = var1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return tmain<int>();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECK: define {{.*}}i{{[0-9]+}} @main()
|
|
|
|
// CHECK: [[TEST:%.+]] = alloca [[S_FLOAT_TY]],
|
2018-10-15 23:43:00 +08:00
|
|
|
// CHECK: call {{.*}} [[S_FLOAT_TY_CONSTR:@.+]]([[S_FLOAT_TY]]* [[TEST]])
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 6, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, float*, [[S_FLOAT_TY]]*, [[S_FLOAT_TY]]*, float*, [2 x i32]*, [2 x [[S_FLOAT_TY]]]*)* [[MAIN_MICROTASK:@.+]] to void
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: = call {{.*}}i{{.+}} [[TMAIN_INT:@.+]]()
|
|
|
|
// CHECK: call {{.*}} [[S_FLOAT_TY_DESTR:@.+]]([[S_FLOAT_TY]]*
|
|
|
|
// CHECK: ret
|
|
|
|
//
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: define internal void [[MAIN_MICROTASK]](i{{[0-9]+}}* noalias [[GTID_ADDR:%.+]], i{{[0-9]+}}* noalias %{{.+}},
|
2016-01-22 16:56:50 +08:00
|
|
|
// CHECK: alloca float,
|
|
|
|
// CHECK: alloca [[S_FLOAT_TY]],
|
|
|
|
// CHECK: alloca [[S_FLOAT_TY]],
|
|
|
|
// CHECK: alloca float,
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
|
|
|
|
// CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_ADDR:%.+]],
|
|
|
|
|
|
|
|
// CHECK: [[GTID_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[GTID_ADDR_ADDR]]
|
|
|
|
// CHECK: [[GTID:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[GTID_REF]]
|
|
|
|
|
|
|
|
// CHECK-NOT: call {{.*}} [[S_FLOAT_TY_DESTR]]([[S_FLOAT_TY]]* [[VAR_PRIV]])
|
|
|
|
// CHECK-NOT: call {{.*}} [[S_FLOAT_TY_DESTR]]([[S_FLOAT_TY]]*
|
|
|
|
|
2016-01-22 16:56:50 +08:00
|
|
|
// CHECK: call void @__kmpc_for_static_init_4(
|
|
|
|
// CHECK: call void @__kmpc_for_static_fini(
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
|
2016-01-22 16:56:50 +08:00
|
|
|
// CHECK: call void @__kmpc_barrier(
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
|
|
|
|
// CHECK: ret void
|
|
|
|
|
|
|
|
// CHECK: define {{.*}} i{{[0-9]+}} [[TMAIN_INT]]()
|
|
|
|
// CHECK: [[TEST:%.+]] = alloca [[S_INT_TY]],
|
2018-10-15 23:43:00 +08:00
|
|
|
// CHECK: call {{.*}} [[S_INT_TY_CONSTR:@.+]]([[S_INT_TY]]* [[TEST]])
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 6, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, i32*, [[S_INT_TY]]*, [[S_INT_TY]]*, i32*, [2 x i32]*, [2 x [[S_INT_TY]]]*)* [[TMAIN_MICROTASK:@.+]] to void
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: call {{.*}} [[S_INT_TY_DESTR:@.+]]([[S_INT_TY]]*
|
|
|
|
// CHECK: ret
|
|
|
|
//
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: define internal void [[TMAIN_MICROTASK]](i{{[0-9]+}}* noalias [[GTID_ADDR:%.+]], i{{[0-9]+}}* noalias %{{.+}},
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: alloca i{{[0-9]+}},
|
|
|
|
// CHECK: alloca i{{[0-9]+}},
|
|
|
|
// CHECK: alloca i{{[0-9]+}},
|
|
|
|
// CHECK: alloca i{{[0-9]+}},
|
|
|
|
// CHECK: alloca i{{[0-9]+}},
|
|
|
|
// CHECK: [[T_VAR_PRIV:%.+]] = alloca i{{[0-9]+}},
|
|
|
|
// CHECK: [[VAR_PRIV:%.+]] = alloca [[S_INT_TY]],
|
|
|
|
// CHECK: [[VAR1_PRIV:%.+]] = alloca [[S_INT_TY]],
|
|
|
|
// CHECK: [[T_VAR1_PRIV:%.+]] = alloca i{{[0-9]+}},
|
|
|
|
|
|
|
|
// Reduction list for runtime.
|
|
|
|
// CHECK: [[RED_LIST:%.+]] = alloca [4 x i8*],
|
|
|
|
|
|
|
|
// CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_ADDR:%.+]],
|
|
|
|
|
2015-09-10 16:12:02 +08:00
|
|
|
// CHECK: [[T_VAR_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** %
|
|
|
|
// CHECK: [[VAR_REF:%.+]] = load [[S_INT_TY]]*, [[S_INT_TY]]** %
|
|
|
|
// CHECK: [[VAR1_REF:%.+]] = load [[S_INT_TY]]*, [[S_INT_TY]]** %
|
|
|
|
// CHECK: [[T_VAR1_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** %
|
|
|
|
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// For + reduction operation initial value of private variable is 0.
|
|
|
|
// CHECK: store i{{[0-9]+}} 0, i{{[0-9]+}}* [[T_VAR_PRIV]],
|
|
|
|
|
|
|
|
// For & reduction operation initial value of private variable is ones in all bits.
|
2018-10-15 23:43:00 +08:00
|
|
|
// CHECK: call {{.*}} [[S_INT_TY_CONSTR:@.+]]([[S_INT_TY]]* [[VAR_PRIV]])
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
|
|
|
|
// For && reduction operation initial value of private variable is 1.0.
|
2018-10-15 23:43:00 +08:00
|
|
|
// CHECK: call {{.*}} [[S_INT_TY_CONSTR:@.+]]([[S_INT_TY]]* [[VAR1_PRIV]])
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
|
|
|
|
// For min reduction operation initial value of private variable is largest repesentable value.
|
|
|
|
// CHECK: store i{{[0-9]+}} 2147483647, i{{[0-9]+}}* [[T_VAR1_PRIV]],
|
|
|
|
|
|
|
|
// CHECK: [[GTID_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[GTID_ADDR_ADDR]]
|
|
|
|
// CHECK: [[GTID:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[GTID_REF]]
|
|
|
|
// CHECK: call void @__kmpc_for_static_init_4(
|
|
|
|
// Skip checks for internal operations.
|
|
|
|
// CHECK: call void @__kmpc_for_static_fini(
|
|
|
|
|
|
|
|
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
|
|
|
|
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast i{{[0-9]+}}* [[T_VAR_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[T_VAR_PRIV_REF]],
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 1
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_INT_TY]]* [[VAR_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[VAR_PRIV_REF]],
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR1_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 2
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [[S_INT_TY]]* [[VAR1_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[VAR1_PRIV_REF]],
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR1_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 3
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast i{{[0-9]+}}* [[T_VAR1_PRIV]] to i8*
|
|
|
|
// CHECK: store i8* [[BITCAST]], i8** [[T_VAR1_PRIV_REF]],
|
|
|
|
|
|
|
|
// res = __kmpc_reduce_nowait(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>);
|
|
|
|
|
|
|
|
// CHECK: [[BITCAST:%.+]] = bitcast [4 x i8*]* [[RED_LIST]] to i8*
|
|
|
|
// CHECK: [[RES:%.+]] = call i32 @__kmpc_reduce_nowait(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], i32 4, i64 32, i8* [[BITCAST]], void (i8*, i8*)* [[REDUCTION_FUNC:@.+]], [8 x i32]* [[REDUCTION_LOCK]])
|
|
|
|
|
|
|
|
// switch(res)
|
|
|
|
// CHECK: switch i32 [[RES]], label %[[RED_DONE:.+]] [
|
|
|
|
// CHECK: i32 1, label %[[CASE1:.+]]
|
|
|
|
// CHECK: i32 2, label %[[CASE2:.+]]
|
|
|
|
// CHECK: ]
|
|
|
|
|
|
|
|
// case 1:
|
|
|
|
// t_var += t_var_reduction;
|
|
|
|
// CHECK: [[T_VAR_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_REF]],
|
|
|
|
// CHECK: [[T_VAR_PRIV_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_PRIV]],
|
|
|
|
// CHECK: [[UP:%.+]] = add nsw i{{[0-9]+}} [[T_VAR_VAL]], [[T_VAR_PRIV_VAL]]
|
|
|
|
// CHECK: store i{{[0-9]+}} [[UP]], i{{[0-9]+}}* [[T_VAR_REF]],
|
|
|
|
|
|
|
|
// var = var.operator &(var_reduction);
|
|
|
|
// CHECK: [[UP:%.+]] = call dereferenceable(4) [[S_INT_TY]]* @{{.+}}([[S_INT_TY]]* [[VAR_REF]], [[S_INT_TY]]* dereferenceable(4) [[VAR_PRIV]])
|
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR_REF]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[UP]] to i8*
|
Change memcpy/memove/memset to have dest and source alignment attributes (Step 1).
Summary:
Upstream LLVM is changing the the prototypes of the @llvm.memcpy/memmove/memset
intrinsics. This change updates the Clang tests for this change.
The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.
This change removes the alignment argument in favour of placing the alignment
attribute on the source and destination pointers of the memory intrinsic call.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)
At this time the source and destination alignments must be the same (Step 1).
Step 2 of the change, to be landed shortly, will relax that contraint and allow
the source and destination to have different alignments.
llvm-svn: 322964
2018-01-20 01:12:54 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 [[BC1]], i8* align 4 [[BC2]], i64 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
|
|
|
|
// var1 = var1.operator &&(var1_reduction);
|
|
|
|
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_REF]])
|
|
|
|
// CHECK: [[VAR1_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[VAR1_BOOL]], label %[[TRUE:.+]], label %[[END2:.+]]
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[TRUE]]
|
|
|
|
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_PRIV]])
|
|
|
|
// CHECK: [[VAR1_REDUCTION_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
|
|
|
|
// CHECK: br label %[[END2]]
|
|
|
|
// CHECK: [[END2]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: [[COND_LVALUE:%.+]] = phi i1 [ false, %{{.+}} ], [ [[VAR1_REDUCTION_BOOL]], %[[TRUE]] ]
|
|
|
|
// CHECK: [[CONV:%.+]] = zext i1 [[COND_LVALUE]] to i32
|
2018-10-15 23:43:00 +08:00
|
|
|
// CHECK: call void @{{.+}}([[S_INT_TY]]* [[COND_LVALUE:%.+]], i32 [[CONV]])
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR1_REF]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[COND_LVALUE]] to i8*
|
Change memcpy/memove/memset to have dest and source alignment attributes (Step 1).
Summary:
Upstream LLVM is changing the the prototypes of the @llvm.memcpy/memmove/memset
intrinsics. This change updates the Clang tests for this change.
The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.
This change removes the alignment argument in favour of placing the alignment
attribute on the source and destination pointers of the memory intrinsic call.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)
At this time the source and destination alignments must be the same (Step 1).
Step 2 of the change, to be landed shortly, will relax that contraint and allow
the source and destination to have different alignments.
llvm-svn: 322964
2018-01-20 01:12:54 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 [[BC1]], i8* align 4 [[BC2]], i64 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
|
|
|
|
// t_var1 = min(t_var1, t_var1_reduction);
|
|
|
|
// CHECK: [[T_VAR1_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_REF]],
|
|
|
|
// CHECK: [[T_VAR1_PRIV_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_PRIV]],
|
|
|
|
// CHECK: [[CMP:%.+]] = icmp slt i{{[0-9]+}} [[T_VAR1_VAL]], [[T_VAR1_PRIV_VAL]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[CMP]]
|
|
|
|
// CHECK: [[UP:%.+]] = phi i32
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: store i{{[0-9]+}} [[UP]], i{{[0-9]+}}* [[T_VAR1_REF]],
|
|
|
|
|
|
|
|
// __kmpc_end_reduce_nowait(<loc>, <gtid>, &<lock>);
|
|
|
|
// CHECK: call void @__kmpc_end_reduce_nowait(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], [8 x i32]* [[REDUCTION_LOCK]])
|
|
|
|
|
|
|
|
// break;
|
|
|
|
// CHECK: br label %[[RED_DONE]]
|
|
|
|
|
|
|
|
// case 2:
|
|
|
|
// t_var += t_var_reduction;
|
|
|
|
// CHECK: [[T_VAR_PRIV_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_PRIV]]
|
|
|
|
// CHECK: atomicrmw add i32* [[T_VAR_REF]], i32 [[T_VAR_PRIV_VAL]] monotonic
|
|
|
|
|
|
|
|
// var = var.operator &(var_reduction);
|
|
|
|
// CHECK: call void @__kmpc_critical(
|
|
|
|
// CHECK: [[UP:%.+]] = call dereferenceable(4) [[S_INT_TY]]* @{{.+}}([[S_INT_TY]]* [[VAR_REF]], [[S_INT_TY]]* dereferenceable(4) [[VAR_PRIV]])
|
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR_REF]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[UP]] to i8*
|
Change memcpy/memove/memset to have dest and source alignment attributes (Step 1).
Summary:
Upstream LLVM is changing the the prototypes of the @llvm.memcpy/memmove/memset
intrinsics. This change updates the Clang tests for this change.
The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.
This change removes the alignment argument in favour of placing the alignment
attribute on the source and destination pointers of the memory intrinsic call.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)
At this time the source and destination alignments must be the same (Step 1).
Step 2 of the change, to be landed shortly, will relax that contraint and allow
the source and destination to have different alignments.
llvm-svn: 322964
2018-01-20 01:12:54 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 [[BC1]], i8* align 4 [[BC2]], i64 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: call void @__kmpc_end_critical(
|
|
|
|
|
|
|
|
// var1 = var1.operator &&(var1_reduction);
|
|
|
|
// CHECK: call void @__kmpc_critical(
|
|
|
|
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_REF]])
|
|
|
|
// CHECK: [[VAR1_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
|
2015-05-07 12:09:41 +08:00
|
|
|
// CHECK: br i1 [[VAR1_BOOL]], label %[[TRUE:.+]], label %[[END2:.+]]
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[TRUE]]
|
|
|
|
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_PRIV]])
|
|
|
|
// CHECK: [[VAR1_REDUCTION_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
|
|
|
|
// CHECK: br label %[[END2]]
|
|
|
|
// CHECK: [[END2]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: [[COND_LVALUE:%.+]] = phi i1 [ false, %{{.+}} ], [ [[VAR1_REDUCTION_BOOL]], %[[TRUE]] ]
|
|
|
|
// CHECK: [[CONV:%.+]] = zext i1 [[COND_LVALUE]] to i32
|
2018-10-15 23:43:00 +08:00
|
|
|
// CHECK: call void @{{.+}}([[S_INT_TY]]* [[COND_LVALUE:%.+]], i32 [[CONV]])
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR1_REF]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[COND_LVALUE]] to i8*
|
Change memcpy/memove/memset to have dest and source alignment attributes (Step 1).
Summary:
Upstream LLVM is changing the the prototypes of the @llvm.memcpy/memmove/memset
intrinsics. This change updates the Clang tests for this change.
The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.
This change removes the alignment argument in favour of placing the alignment
attribute on the source and destination pointers of the memory intrinsic call.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)
At this time the source and destination alignments must be the same (Step 1).
Step 2 of the change, to be landed shortly, will relax that contraint and allow
the source and destination to have different alignments.
llvm-svn: 322964
2018-01-20 01:12:54 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 [[BC1]], i8* align 4 [[BC2]], i64 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: call void @__kmpc_end_critical(
|
|
|
|
|
|
|
|
// t_var1 = min(t_var1, t_var1_reduction);
|
|
|
|
// CHECK: [[T_VAR1_PRIV_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_PRIV]]
|
|
|
|
// CHECK: atomicrmw min i32* [[T_VAR1_REF]], i32 [[T_VAR1_PRIV_VAL]] monotonic
|
|
|
|
|
|
|
|
// break;
|
|
|
|
// CHECK: br label %[[RED_DONE]]
|
|
|
|
// CHECK: [[RED_DONE]]
|
|
|
|
// CHECK-DAG: call {{.*}} [[S_INT_TY_DESTR]]([[S_INT_TY]]* [[VAR_PRIV]])
|
|
|
|
// CHECK-DAG: call {{.*}} [[S_INT_TY_DESTR]]([[S_INT_TY]]*
|
|
|
|
// CHECK: ret void
|
|
|
|
|
|
|
|
// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
|
|
|
|
// *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
|
|
|
|
// ...
|
|
|
|
// *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
|
|
|
|
// *(Type<n>-1*)rhs[<n>-1]);
|
|
|
|
// }
|
|
|
|
// CHECK: define internal void [[REDUCTION_FUNC]](i8*, i8*)
|
|
|
|
// t_var_lhs = (i{{[0-9]+}}*)lhs[0];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS:%.+]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[T_VAR_RHS_VOID:%.+]] = load i8*, i8** [[T_VAR_RHS_REF]],
|
|
|
|
// CHECK: [[T_VAR_RHS:%.+]] = bitcast i8* [[T_VAR_RHS_VOID]] to i{{[0-9]+}}*
|
|
|
|
// t_var_rhs = (i{{[0-9]+}}*)rhs[0];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS:%.+]], i64 0, i64 0
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[T_VAR_LHS_VOID:%.+]] = load i8*, i8** [[T_VAR_LHS_REF]],
|
|
|
|
// CHECK: [[T_VAR_LHS:%.+]] = bitcast i8* [[T_VAR_LHS_VOID]] to i{{[0-9]+}}*
|
|
|
|
|
|
|
|
// var_lhs = (S<i{{[0-9]+}}>*)lhs[1];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 1
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[VAR_RHS_VOID:%.+]] = load i8*, i8** [[VAR_RHS_REF]],
|
|
|
|
// CHECK: [[VAR_RHS:%.+]] = bitcast i8* [[VAR_RHS_VOID]] to [[S_INT_TY]]*
|
|
|
|
// var_rhs = (S<i{{[0-9]+}}>*)rhs[1];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 1
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[VAR_LHS_VOID:%.+]] = load i8*, i8** [[VAR_LHS_REF]],
|
|
|
|
// CHECK: [[VAR_LHS:%.+]] = bitcast i8* [[VAR_LHS_VOID]] to [[S_INT_TY]]*
|
|
|
|
|
|
|
|
// var1_lhs = (S<i{{[0-9]+}}>*)lhs[2];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR1_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 2
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[VAR1_RHS_VOID:%.+]] = load i8*, i8** [[VAR1_RHS_REF]],
|
|
|
|
// CHECK: [[VAR1_RHS:%.+]] = bitcast i8* [[VAR1_RHS_VOID]] to [[S_INT_TY]]*
|
|
|
|
// var1_rhs = (S<i{{[0-9]+}}>*)rhs[2];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[VAR1_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 2
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[VAR1_LHS_VOID:%.+]] = load i8*, i8** [[VAR1_LHS_REF]],
|
|
|
|
// CHECK: [[VAR1_LHS:%.+]] = bitcast i8* [[VAR1_LHS_VOID]] to [[S_INT_TY]]*
|
|
|
|
|
|
|
|
// t_var1_lhs = (i{{[0-9]+}}*)lhs[3];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR1_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 3
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[T_VAR1_RHS_VOID:%.+]] = load i8*, i8** [[T_VAR1_RHS_REF]],
|
|
|
|
// CHECK: [[T_VAR1_RHS:%.+]] = bitcast i8* [[T_VAR1_RHS_VOID]] to i{{[0-9]+}}*
|
|
|
|
// t_var1_rhs = (i{{[0-9]+}}*)rhs[3];
|
Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
2015-09-08 16:05:57 +08:00
|
|
|
// CHECK: [[T_VAR1_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 3
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[T_VAR1_LHS_VOID:%.+]] = load i8*, i8** [[T_VAR1_LHS_REF]],
|
|
|
|
// CHECK: [[T_VAR1_LHS:%.+]] = bitcast i8* [[T_VAR1_LHS_VOID]] to i{{[0-9]+}}*
|
|
|
|
|
|
|
|
// t_var_lhs += t_var_rhs;
|
|
|
|
// CHECK: [[T_VAR_LHS_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_LHS]],
|
|
|
|
// CHECK: [[T_VAR_RHS_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_RHS]],
|
|
|
|
// CHECK: [[UP:%.+]] = add nsw i{{[0-9]+}} [[T_VAR_LHS_VAL]], [[T_VAR_RHS_VAL]]
|
|
|
|
// CHECK: store i{{[0-9]+}} [[UP]], i{{[0-9]+}}* [[T_VAR_LHS]],
|
|
|
|
|
|
|
|
// var_lhs = var_lhs.operator &(var_rhs);
|
|
|
|
// CHECK: [[UP:%.+]] = call dereferenceable(4) [[S_INT_TY]]* @{{.+}}([[S_INT_TY]]* [[VAR_LHS]], [[S_INT_TY]]* dereferenceable(4) [[VAR_RHS]])
|
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR_LHS]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[UP]] to i8*
|
Change memcpy/memove/memset to have dest and source alignment attributes (Step 1).
Summary:
Upstream LLVM is changing the the prototypes of the @llvm.memcpy/memmove/memset
intrinsics. This change updates the Clang tests for this change.
The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.
This change removes the alignment argument in favour of placing the alignment
attribute on the source and destination pointers of the memory intrinsic call.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)
At this time the source and destination alignments must be the same (Step 1).
Step 2 of the change, to be landed shortly, will relax that contraint and allow
the source and destination to have different alignments.
llvm-svn: 322964
2018-01-20 01:12:54 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 [[BC1]], i8* align 4 [[BC2]], i64 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
|
|
|
|
// var1_lhs = var1_lhs.operator &&(var1_rhs);
|
|
|
|
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_LHS]])
|
|
|
|
// CHECK: [[VAR1_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[VAR1_BOOL]], label %[[TRUE:.+]], label %[[END2:.+]]
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[TRUE]]
|
|
|
|
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_RHS]])
|
|
|
|
// CHECK: [[VAR1_REDUCTION_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
|
|
|
|
// CHECK: br label %[[END2]]
|
|
|
|
// CHECK: [[END2]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: [[COND_LVALUE:%.+]] = phi i1 [ false, %{{.+}} ], [ [[VAR1_REDUCTION_BOOL]], %[[TRUE]] ]
|
|
|
|
// CHECK: [[CONV:%.+]] = zext i1 [[COND_LVALUE]] to i32
|
2018-10-15 23:43:00 +08:00
|
|
|
// CHECK: call void @{{.+}}([[S_INT_TY]]* [[COND_LVALUE:%.+]], i32 [[CONV]])
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR1_LHS]] to i8*
|
|
|
|
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[COND_LVALUE]] to i8*
|
Change memcpy/memove/memset to have dest and source alignment attributes (Step 1).
Summary:
Upstream LLVM is changing the the prototypes of the @llvm.memcpy/memmove/memset
intrinsics. This change updates the Clang tests for this change.
The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.
This change removes the alignment argument in favour of placing the alignment
attribute on the source and destination pointers of the memory intrinsic call.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)
At this time the source and destination alignments must be the same (Step 1).
Step 2 of the change, to be landed shortly, will relax that contraint and allow
the source and destination to have different alignments.
llvm-svn: 322964
2018-01-20 01:12:54 +08:00
|
|
|
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 [[BC1]], i8* align 4 [[BC2]], i64 4, i1 false)
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
|
|
|
|
// t_var1_lhs = min(t_var1_lhs, t_var1_rhs);
|
|
|
|
// CHECK: [[T_VAR1_LHS_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_LHS]],
|
|
|
|
// CHECK: [[T_VAR1_RHS_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_RHS]],
|
|
|
|
// CHECK: [[CMP:%.+]] = icmp slt i{{[0-9]+}} [[T_VAR1_LHS_VAL]], [[T_VAR1_RHS_VAL]]
|
2015-05-07 11:54:03 +08:00
|
|
|
// CHECK: br i1 [[CMP]]
|
|
|
|
// CHECK: [[UP:%.+]] = phi i32
|
[OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
2015-04-27 13:04:13 +08:00
|
|
|
// CHECK: store i{{[0-9]+}} [[UP]], i{{[0-9]+}}* [[T_VAR1_LHS]],
|
|
|
|
// CHECK: ret void
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|