llvm-project/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp

1564 lines
55 KiB
C++
Raw Normal View History

//===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the Hexagon target.
//
//===----------------------------------------------------------------------===//
#include "Hexagon.h"
#include "HexagonISelLowering.h"
#include "HexagonMachineFunctionInfo.h"
#include "HexagonTargetMachine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "hexagon-isel"
static
cl::opt<unsigned>
MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders",
cl::Hidden, cl::init(2),
cl::desc("Maximum number of uses of a global address such that we still us a"
"constant extended instruction"));
//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//
namespace llvm {
void initializeHexagonDAGToDAGISelPass(PassRegistry&);
}
//===--------------------------------------------------------------------===//
/// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine
/// instructions for SelectionDAG operations.
///
namespace {
class HexagonDAGToDAGISel : public SelectionDAGISel {
const HexagonTargetMachine& HTM;
const HexagonSubtarget *HST;
const HexagonInstrInfo *HII;
const HexagonRegisterInfo *HRI;
public:
explicit HexagonDAGToDAGISel(HexagonTargetMachine &tm,
CodeGenOpt::Level OptLevel)
: SelectionDAGISel(tm, OptLevel), HTM(tm), HST(nullptr), HII(nullptr),
HRI(nullptr) {
initializeHexagonDAGToDAGISelPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override {
// Reset the subtarget each time through.
HST = &MF.getSubtarget<HexagonSubtarget>();
HII = HST->getInstrInfo();
HRI = HST->getRegisterInfo();
SelectionDAGISel::runOnMachineFunction(MF);
return true;
}
virtual void PreprocessISelDAG() override;
virtual void EmitFunctionEntryCode() override;
SDNode *Select(SDNode *N) override;
// Complex Pattern Selectors.
inline bool SelectAddrGA(SDValue &N, SDValue &R);
inline bool SelectAddrGP(SDValue &N, SDValue &R);
bool SelectGlobalAddress(SDValue &N, SDValue &R, bool UseGP);
bool SelectAddrFI(SDValue &N, SDValue &R);
const char *getPassName() const override {
return "Hexagon DAG->DAG Pattern Instruction Selection";
}
SDNode *SelectFrameIndex(SDNode *N);
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
unsigned ConstraintID,
std::vector<SDValue> &OutOps) override;
SDNode *SelectLoad(SDNode *N);
SDNode *SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl);
SDNode *SelectIndexedLoad(LoadSDNode *LD, SDLoc dl);
SDNode *SelectIndexedLoadZeroExtend64(LoadSDNode *LD, unsigned Opcode,
SDLoc dl);
SDNode *SelectIndexedLoadSignExtend64(LoadSDNode *LD, unsigned Opcode,
SDLoc dl);
SDNode *SelectBaseOffsetStore(StoreSDNode *ST, SDLoc dl);
SDNode *SelectIndexedStore(StoreSDNode *ST, SDLoc dl);
SDNode *SelectStore(SDNode *N);
SDNode *SelectSHL(SDNode *N);
SDNode *SelectMul(SDNode *N);
SDNode *SelectZeroExtend(SDNode *N);
SDNode *SelectIntrinsicWChain(SDNode *N);
SDNode *SelectIntrinsicWOChain(SDNode *N);
SDNode *SelectConstant(SDNode *N);
SDNode *SelectConstantFP(SDNode *N);
SDNode *SelectAdd(SDNode *N);
SDNode *SelectBitOp(SDNode *N);
// XformMskToBitPosU5Imm - Returns the bit position which
// the single bit 32 bit mask represents.
// Used in Clr and Set bit immediate memops.
SDValue XformMskToBitPosU5Imm(uint32_t Imm, SDLoc DL) {
int32_t bitPos;
bitPos = Log2_32(Imm);
assert(bitPos >= 0 && bitPos < 32 &&
"Constant out of range for 32 BitPos Memops");
return CurDAG->getTargetConstant(bitPos, DL, MVT::i32);
}
// XformMskToBitPosU4Imm - Returns the bit position which the single-bit
// 16 bit mask represents. Used in Clr and Set bit immediate memops.
SDValue XformMskToBitPosU4Imm(uint16_t Imm, SDLoc DL) {
return XformMskToBitPosU5Imm(Imm, DL);
}
// XformMskToBitPosU3Imm - Returns the bit position which the single-bit
// 8 bit mask represents. Used in Clr and Set bit immediate memops.
SDValue XformMskToBitPosU3Imm(uint8_t Imm, SDLoc DL) {
return XformMskToBitPosU5Imm(Imm, DL);
}
// Return true if there is exactly one bit set in V, i.e., if V is one of the
// following integers: 2^0, 2^1, ..., 2^31.
bool ImmIsSingleBit(uint32_t v) const {
return isPowerOf2_32(v);
}
// XformM5ToU5Imm - Return a target constant with the specified value, of
// type i32 where the negative literal is transformed into a positive literal
// for use in -= memops.
inline SDValue XformM5ToU5Imm(signed Imm, SDLoc DL) {
assert((Imm >= -31 && Imm <= -1) && "Constant out of range for Memops");
return CurDAG->getTargetConstant(-Imm, DL, MVT::i32);
}
// XformU7ToU7M1Imm - Return a target constant decremented by 1, in range
// [1..128], used in cmpb.gtu instructions.
inline SDValue XformU7ToU7M1Imm(signed Imm, SDLoc DL) {
assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op");
return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i8);
}
// XformS8ToS8M1Imm - Return a target constant decremented by 1.
inline SDValue XformSToSM1Imm(signed Imm, SDLoc DL) {
return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
}
// XformU8ToU8M1Imm - Return a target constant decremented by 1.
inline SDValue XformUToUM1Imm(unsigned Imm, SDLoc DL) {
assert((Imm >= 1) && "Cannot decrement unsigned int less than 1");
return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
}
// XformSToSM2Imm - Return a target constant decremented by 2.
inline SDValue XformSToSM2Imm(unsigned Imm, SDLoc DL) {
return CurDAG->getTargetConstant(Imm - 2, DL, MVT::i32);
}
// XformSToSM3Imm - Return a target constant decremented by 3.
inline SDValue XformSToSM3Imm(unsigned Imm, SDLoc DL) {
return CurDAG->getTargetConstant(Imm - 3, DL, MVT::i32);
}
// Include the pieces autogenerated from the target description.
#include "HexagonGenDAGISel.inc"
private:
bool isValueExtension(const SDValue &Val, unsigned FromBits, SDValue &Src);
}; // end HexagonDAGToDAGISel
} // end anonymous namespace
/// createHexagonISelDag - This pass converts a legalized DAG into a
/// Hexagon-specific DAG, ready for instruction scheduling.
///
namespace llvm {
FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new HexagonDAGToDAGISel(TM, OptLevel);
}
}
static void initializePassOnce(PassRegistry &Registry) {
const char *Name = "Hexagon DAG->DAG Pattern Instruction Selection";
PassInfo *PI = new PassInfo(Name, "hexagon-isel",
&SelectionDAGISel::ID, nullptr, false, false);
Registry.registerPass(*PI, true);
}
void llvm::initializeHexagonDAGToDAGISelPass(PassRegistry &Registry) {
CALL_ONCE_INITIALIZATION(initializePassOnce)
}
// Intrinsics that return a a predicate.
static bool doesIntrinsicReturnPredicate(unsigned ID) {
switch (ID) {
default:
return false;
case Intrinsic::hexagon_C2_cmpeq:
case Intrinsic::hexagon_C2_cmpgt:
case Intrinsic::hexagon_C2_cmpgtu:
case Intrinsic::hexagon_C2_cmpgtup:
case Intrinsic::hexagon_C2_cmpgtp:
case Intrinsic::hexagon_C2_cmpeqp:
case Intrinsic::hexagon_C2_bitsset:
case Intrinsic::hexagon_C2_bitsclr:
case Intrinsic::hexagon_C2_cmpeqi:
case Intrinsic::hexagon_C2_cmpgti:
case Intrinsic::hexagon_C2_cmpgtui:
case Intrinsic::hexagon_C2_cmpgei:
case Intrinsic::hexagon_C2_cmpgeui:
case Intrinsic::hexagon_C2_cmplt:
case Intrinsic::hexagon_C2_cmpltu:
case Intrinsic::hexagon_C2_bitsclri:
case Intrinsic::hexagon_C2_and:
case Intrinsic::hexagon_C2_or:
case Intrinsic::hexagon_C2_xor:
case Intrinsic::hexagon_C2_andn:
case Intrinsic::hexagon_C2_not:
case Intrinsic::hexagon_C2_orn:
case Intrinsic::hexagon_C2_pxfer_map:
case Intrinsic::hexagon_C2_any8:
case Intrinsic::hexagon_C2_all8:
case Intrinsic::hexagon_A2_vcmpbeq:
case Intrinsic::hexagon_A2_vcmpbgtu:
case Intrinsic::hexagon_A2_vcmpheq:
case Intrinsic::hexagon_A2_vcmphgt:
case Intrinsic::hexagon_A2_vcmphgtu:
case Intrinsic::hexagon_A2_vcmpweq:
case Intrinsic::hexagon_A2_vcmpwgt:
case Intrinsic::hexagon_A2_vcmpwgtu:
case Intrinsic::hexagon_C2_tfrrp:
case Intrinsic::hexagon_S2_tstbit_i:
case Intrinsic::hexagon_S2_tstbit_r:
return true;
}
}
SDNode *HexagonDAGToDAGISel::SelectIndexedLoadSignExtend64(LoadSDNode *LD,
unsigned Opcode,
SDLoc dl) {
SDValue Chain = LD->getChain();
EVT LoadedVT = LD->getMemoryVT();
SDValue Base = LD->getBasePtr();
SDValue Offset = LD->getOffset();
SDNode *OffsetNode = Offset.getNode();
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
if (HII->isValidAutoIncImm(LoadedVT, Val)) {
SDValue TargetConst = CurDAG->getTargetConstant(Val, dl, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::i32,
MVT::Other, Base, TargetConst,
Chain);
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
SDValue(Result_1, 0));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 1),
SDValue(LD, 2) };
const SDValue Tos[] = { SDValue(Result_2, 0),
SDValue(Result_1, 1),
SDValue(Result_1, 2) };
ReplaceUses(Froms, Tos, 3);
return Result_2;
}
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
Base, TargetConst0, Chain);
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
SDValue(Result_1, 0));
SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
Base, TargetConstVal,
SDValue(Result_1, 1));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 1),
SDValue(LD, 2) };
const SDValue Tos[] = { SDValue(Result_2, 0),
SDValue(Result_3, 0),
SDValue(Result_1, 1) };
ReplaceUses(Froms, Tos, 3);
return Result_2;
}
SDNode *HexagonDAGToDAGISel::SelectIndexedLoadZeroExtend64(LoadSDNode *LD,
unsigned Opcode,
SDLoc dl) {
SDValue Chain = LD->getChain();
EVT LoadedVT = LD->getMemoryVT();
SDValue Base = LD->getBasePtr();
SDValue Offset = LD->getOffset();
SDNode *OffsetNode = Offset.getNode();
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
if (HII->isValidAutoIncImm(LoadedVT, Val)) {
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
MVT::i32, MVT::Other, Base,
TargetConstVal, Chain);
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A4_combineir, dl,
MVT::i64, MVT::Other,
TargetConst0,
SDValue(Result_1,0));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 1),
SDValue(LD, 2) };
const SDValue Tos[] = { SDValue(Result_2, 0),
SDValue(Result_1, 1),
SDValue(Result_1, 2) };
ReplaceUses(Froms, Tos, 3);
return Result_2;
}
// Generate an indirect load.
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
MVT::Other, Base, TargetConst0,
Chain);
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A4_combineir, dl,
MVT::i64, MVT::Other,
TargetConst0,
SDValue(Result_1,0));
// Add offset to base.
SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
Base, TargetConstVal,
SDValue(Result_1, 1));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 1),
SDValue(LD, 2) };
const SDValue Tos[] = { SDValue(Result_2, 0), // Load value.
SDValue(Result_3, 0), // New address.
SDValue(Result_1, 1) };
ReplaceUses(Froms, Tos, 3);
return Result_2;
}
SDNode *HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, SDLoc dl) {
SDValue Chain = LD->getChain();
SDValue Base = LD->getBasePtr();
SDValue Offset = LD->getOffset();
SDNode *OffsetNode = Offset.getNode();
// Get the constant value.
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
EVT LoadedVT = LD->getMemoryVT();
unsigned Opcode = 0;
// Check for zero extended loads. Treat any-extend loads as zero extended
// loads.
ISD::LoadExtType ExtType = LD->getExtensionType();
bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
bool HasVecOffset = false;
// Figure out the opcode.
if (LoadedVT == MVT::i64) {
if (HII->isValidAutoIncImm(LoadedVT, Val))
Opcode = Hexagon::L2_loadrd_pi;
else
Opcode = Hexagon::L2_loadrd_io;
} else if (LoadedVT == MVT::i32) {
if (HII->isValidAutoIncImm(LoadedVT, Val))
Opcode = Hexagon::L2_loadri_pi;
else
Opcode = Hexagon::L2_loadri_io;
} else if (LoadedVT == MVT::i16) {
if (HII->isValidAutoIncImm(LoadedVT, Val))
Opcode = IsZeroExt ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadrh_pi;
else
Opcode = IsZeroExt ? Hexagon::L2_loadruh_io : Hexagon::L2_loadrh_io;
} else if (LoadedVT == MVT::i8) {
if (HII->isValidAutoIncImm(LoadedVT, Val))
Opcode = IsZeroExt ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrb_pi;
else
Opcode = IsZeroExt ? Hexagon::L2_loadrub_io : Hexagon::L2_loadrb_io;
} else if (LoadedVT == MVT::v16i32 || LoadedVT == MVT::v8i64 ||
LoadedVT == MVT::v32i16 || LoadedVT == MVT::v64i8) {
HasVecOffset = true;
if (HII->isValidAutoIncImm(LoadedVT, Val)) {
Opcode = Hexagon::V6_vL32b_pi;
}
else
Opcode = Hexagon::V6_vL32b_ai;
// 128B
} else if (LoadedVT == MVT::v32i32 || LoadedVT == MVT::v16i64 ||
LoadedVT == MVT::v64i16 || LoadedVT == MVT::v128i8) {
HasVecOffset = true;
if (HII->isValidAutoIncImm(LoadedVT, Val)) {
Opcode = Hexagon::V6_vL32b_pi_128B;
}
else
Opcode = Hexagon::V6_vL32b_ai_128B;
} else
llvm_unreachable("unknown memory type");
// For zero extended i64 loads, we need to add combine instructions.
if (LD->getValueType(0) == MVT::i64 && IsZeroExt)
return SelectIndexedLoadZeroExtend64(LD, Opcode, dl);
// Handle sign extended i64 loads.
if (LD->getValueType(0) == MVT::i64 && ExtType == ISD::SEXTLOAD)
return SelectIndexedLoadSignExtend64(LD, Opcode, dl);
if (HII->isValidAutoIncImm(LoadedVT, Val)) {
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
LD->getValueType(0),
MVT::i32, MVT::Other, Base,
TargetConstVal, Chain);
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
if (HasVecOffset) {
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 2)
};
const SDValue Tos[] = { SDValue(Result, 0),
SDValue(Result, 2)
};
ReplaceUses(Froms, Tos, 2);
} else {
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 1),
SDValue(LD, 2)
};
const SDValue Tos[] = { SDValue(Result, 0),
SDValue(Result, 1),
SDValue(Result, 2)
};
ReplaceUses(Froms, Tos, 3);
}
return Result;
} else {
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl,
LD->getValueType(0),
MVT::Other, Base, TargetConst0,
Chain);
SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
Base, TargetConstVal,
SDValue(Result_1, 1));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 1),
SDValue(LD, 2)
};
const SDValue Tos[] = { SDValue(Result_1, 0),
SDValue(Result_2, 0),
SDValue(Result_1, 1)
};
ReplaceUses(Froms, Tos, 3);
return Result_1;
}
}
SDNode *HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
SDNode *result;
SDLoc dl(N);
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::MemIndexedMode AM = LD->getAddressingMode();
// Handle indexed loads.
if (AM != ISD::UNINDEXED) {
result = SelectIndexedLoad(LD, dl);
} else {
result = SelectCode(LD);
}
return result;
}
SDNode *HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, SDLoc dl) {
SDValue Chain = ST->getChain();
SDValue Base = ST->getBasePtr();
SDValue Offset = ST->getOffset();
SDValue Value = ST->getValue();
SDNode *OffsetNode = Offset.getNode();
// Get the constant value.
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
EVT StoredVT = ST->getMemoryVT();
EVT ValueVT = Value.getValueType();
// Offset value must be within representable range
// and must have correct alignment properties.
if (HII->isValidAutoIncImm(StoredVT, Val)) {
unsigned Opcode = 0;
// Figure out the post inc version of opcode.
if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_pi;
else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_pi;
else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_pi;
else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_pi;
else if (StoredVT == MVT::v16i32 || StoredVT == MVT::v8i64 ||
StoredVT == MVT::v32i16 || StoredVT == MVT::v64i8) {
Opcode = Hexagon::V6_vS32b_pi;
}
// 128B
else if (StoredVT == MVT::v32i32 || StoredVT == MVT::v16i64 ||
StoredVT == MVT::v64i16 || StoredVT == MVT::v128i8) {
Opcode = Hexagon::V6_vS32b_pi_128B;
} else llvm_unreachable("unknown memory type");
if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
Value = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg,
dl, MVT::i32, Value);
}
SDValue Ops[] = {Base, CurDAG->getTargetConstant(Val, dl, MVT::i32), Value,
Chain};
// Build post increment store.
SDNode* Result = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
MVT::Other, Ops);
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = ST->getMemOperand();
cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
ReplaceUses(ST, Result);
ReplaceUses(SDValue(ST,1), SDValue(Result,1));
return Result;
}
// Note: Order of operands matches the def of instruction:
// def S2_storerd_io
// : STInst<(outs), (ins IntRegs:$base, imm:$offset, DoubleRegs:$src1), ...
// and it differs for POST_ST* for instance.
SDValue Ops[] = { Base, CurDAG->getTargetConstant(0, dl, MVT::i32), Value,
Chain};
unsigned Opcode = 0;
// Figure out the opcode.
if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_io;
else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_io;
else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_io;
else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_io;
else if (StoredVT == MVT::v16i32 || StoredVT == MVT::v8i64 ||
StoredVT == MVT::v32i16 || StoredVT == MVT::v64i8)
Opcode = Hexagon::V6_vS32b_ai;
// 128B
else if (StoredVT == MVT::v32i32 || StoredVT == MVT::v16i64 ||
StoredVT == MVT::v64i16 || StoredVT == MVT::v128i8)
Opcode = Hexagon::V6_vS32b_ai_128B;
else llvm_unreachable("unknown memory type");
// Build regular store.
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
// Build splitted incriment instruction.
SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
Base,
TargetConstVal,
SDValue(Result_1, 0));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = ST->getMemOperand();
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
ReplaceUses(SDValue(ST,0), SDValue(Result_2,0));
ReplaceUses(SDValue(ST,1), SDValue(Result_1,0));
return Result_2;
}
SDNode *HexagonDAGToDAGISel::SelectStore(SDNode *N) {
SDLoc dl(N);
StoreSDNode *ST = cast<StoreSDNode>(N);
ISD::MemIndexedMode AM = ST->getAddressingMode();
// Handle indexed stores.
if (AM != ISD::UNINDEXED) {
return SelectIndexedStore(ST, dl);
}
return SelectCode(ST);
}
SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) {
SDLoc dl(N);
//
// %conv.i = sext i32 %tmp1 to i64
// %conv2.i = sext i32 %add to i64
// %mul.i = mul nsw i64 %conv2.i, %conv.i
//
// --- match with the following ---
//
// %mul.i = mpy (%tmp1, %add)
//
if (N->getValueType(0) == MVT::i64) {
// Shifting a i64 signed multiply.
SDValue MulOp0 = N->getOperand(0);
SDValue MulOp1 = N->getOperand(1);
SDValue OP0;
SDValue OP1;
// Handle sign_extend and sextload.
if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
SDValue Sext0 = MulOp0.getOperand(0);
if (Sext0.getNode()->getValueType(0) != MVT::i32) {
return SelectCode(N);
}
OP0 = Sext0;
} else if (MulOp0.getOpcode() == ISD::LOAD) {
LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
if (LD->getMemoryVT() != MVT::i32 ||
LD->getExtensionType() != ISD::SEXTLOAD ||
LD->getAddressingMode() != ISD::UNINDEXED) {
return SelectCode(N);
}
SDValue Chain = LD->getChain();
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
OP0 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
MVT::Other,
LD->getBasePtr(), TargetConst0,
Chain), 0);
} else {
return SelectCode(N);
}
// Same goes for the second operand.
if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
SDValue Sext1 = MulOp1.getOperand(0);
if (Sext1.getNode()->getValueType(0) != MVT::i32) {
return SelectCode(N);
}
OP1 = Sext1;
} else if (MulOp1.getOpcode() == ISD::LOAD) {
LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
if (LD->getMemoryVT() != MVT::i32 ||
LD->getExtensionType() != ISD::SEXTLOAD ||
LD->getAddressingMode() != ISD::UNINDEXED) {
return SelectCode(N);
}
SDValue Chain = LD->getChain();
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
OP1 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
MVT::Other,
LD->getBasePtr(), TargetConst0,
Chain), 0);
} else {
return SelectCode(N);
}
// Generate a mpy instruction.
SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_dpmpyss_s0, dl, MVT::i64,
OP0, OP1);
ReplaceUses(N, Result);
return Result;
}
return SelectCode(N);
}
SDNode *HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
SDLoc dl(N);
if (N->getValueType(0) == MVT::i32) {
SDValue Shl_0 = N->getOperand(0);
SDValue Shl_1 = N->getOperand(1);
// RHS is const.
if (Shl_1.getOpcode() == ISD::Constant) {
if (Shl_0.getOpcode() == ISD::MUL) {
SDValue Mul_0 = Shl_0.getOperand(0); // Val
SDValue Mul_1 = Shl_0.getOperand(1); // Const
// RHS of mul is const.
if (Mul_1.getOpcode() == ISD::Constant) {
int32_t ShlConst =
cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
int32_t MulConst =
cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue();
int32_t ValConst = MulConst << ShlConst;
SDValue Val = CurDAG->getTargetConstant(ValConst, dl,
MVT::i32);
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode()))
if (isInt<9>(CN->getSExtValue())) {
SDNode* Result =
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
MVT::i32, Mul_0, Val);
ReplaceUses(N, Result);
return Result;
}
}
} else if (Shl_0.getOpcode() == ISD::SUB) {
SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
SDValue Sub_1 = Shl_0.getOperand(1); // Val
if (Sub_0.getOpcode() == ISD::Constant) {
int32_t SubConst =
cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue();
if (SubConst == 0) {
if (Sub_1.getOpcode() == ISD::SHL) {
SDValue Shl2_0 = Sub_1.getOperand(0); // Val
SDValue Shl2_1 = Sub_1.getOperand(1); // Const
if (Shl2_1.getOpcode() == ISD::Constant) {
int32_t ShlConst =
cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
int32_t Shl2Const =
cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue();
int32_t ValConst = 1 << (ShlConst+Shl2Const);
SDValue Val = CurDAG->getTargetConstant(-ValConst, dl,
MVT::i32);
if (ConstantSDNode *CN =
dyn_cast<ConstantSDNode>(Val.getNode()))
if (isInt<9>(CN->getSExtValue())) {
SDNode* Result =
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, MVT::i32,
Shl2_0, Val);
ReplaceUses(N, Result);
return Result;
}
}
}
}
}
}
}
}
return SelectCode(N);
}
//
// If there is an zero_extend followed an intrinsic in DAG (this means - the
// result of the intrinsic is predicate); convert the zero_extend to
// transfer instruction.
//
// Zero extend -> transfer is lowered here. Otherwise, zero_extend will be
// converted into a MUX as predicate registers defined as 1 bit in the
// compiler. Architecture defines them as 8-bit registers.
// We want to preserve all the lower 8-bits and, not just 1 LSB bit.
//
SDNode *HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
SDLoc dl(N);
SDValue Op0 = N->getOperand(0);
EVT OpVT = Op0.getValueType();
unsigned OpBW = OpVT.getSizeInBits();
// Special handling for zero-extending a vector of booleans.
if (OpVT.isVector() && OpVT.getVectorElementType() == MVT::i1 && OpBW <= 64) {
SDNode *Mask = CurDAG->getMachineNode(Hexagon::C2_mask, dl, MVT::i64, Op0);
unsigned NE = OpVT.getVectorNumElements();
EVT ExVT = N->getValueType(0);
unsigned ES = ExVT.getVectorElementType().getSizeInBits();
uint64_t MV = 0, Bit = 1;
for (unsigned i = 0; i < NE; ++i) {
MV |= Bit;
Bit <<= ES;
}
SDValue Ones = CurDAG->getTargetConstant(MV, dl, MVT::i64);
SDNode *OnesReg = CurDAG->getMachineNode(Hexagon::CONST64_Int_Real, dl,
MVT::i64, Ones);
if (ExVT.getSizeInBits() == 32) {
SDNode *And = CurDAG->getMachineNode(Hexagon::A2_andp, dl, MVT::i64,
SDValue(Mask,0), SDValue(OnesReg,0));
SDValue SubR = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
MVT::i32);
return CurDAG->getMachineNode(Hexagon::EXTRACT_SUBREG, dl, ExVT,
SDValue(And,0), SubR);
}
return CurDAG->getMachineNode(Hexagon::A2_andp, dl, ExVT,
SDValue(Mask,0), SDValue(OnesReg,0));
}
SDNode *IsIntrinsic = N->getOperand(0).getNode();
if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) {
unsigned ID =
cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue();
if (doesIntrinsicReturnPredicate(ID)) {
// Now we need to differentiate target data types.
if (N->getValueType(0) == MVT::i64) {
// Convert the zero_extend to Rs = Pd followed by A2_combinew(0,Rs).
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
MVT::i32,
SDValue(IsIntrinsic, 0));
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl,
MVT::i32,
TargetConst0);
SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
MVT::i64, MVT::Other,
SDValue(Result_2, 0),
SDValue(Result_1, 0));
ReplaceUses(N, Result_3);
return Result_3;
}
if (N->getValueType(0) == MVT::i32) {
// Convert the zero_extend to Rs = Pd
SDNode* RsPd = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
MVT::i32,
SDValue(IsIntrinsic, 0));
ReplaceUses(N, RsPd);
return RsPd;
}
llvm_unreachable("Unexpected value type");
}
}
return SelectCode(N);
}
//
// Checking for intrinsics circular load/store, and bitreverse load/store
// instrisics in order to select the correct lowered operation.
//
SDNode *HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
if (IntNo == Intrinsic::hexagon_circ_ldd ||
IntNo == Intrinsic::hexagon_circ_ldw ||
IntNo == Intrinsic::hexagon_circ_lduh ||
IntNo == Intrinsic::hexagon_circ_ldh ||
IntNo == Intrinsic::hexagon_circ_ldub ||
IntNo == Intrinsic::hexagon_circ_ldb) {
SDLoc dl(N);
SDValue Chain = N->getOperand(0);
SDValue Base = N->getOperand(2);
SDValue Load = N->getOperand(3);
SDValue ModifierExpr = N->getOperand(4);
SDValue Offset = N->getOperand(5);
// We need to add the rerurn type for the load. This intrinsic has
// two return types, one for the load and one for the post-increment.
// Only the *_ld instructions push the extra return type, and bump the
// result node operand number correspondingly.
std::vector<EVT> ResTys;
unsigned opc;
unsigned memsize, align;
MVT MvtSize = MVT::i32;
if (IntNo == Intrinsic::hexagon_circ_ldd) {
ResTys.push_back(MVT::i32);
ResTys.push_back(MVT::i64);
opc = Hexagon::L2_loadrd_pci_pseudo;
memsize = 8;
align = 8;
} else if (IntNo == Intrinsic::hexagon_circ_ldw) {
ResTys.push_back(MVT::i32);
ResTys.push_back(MVT::i32);
opc = Hexagon::L2_loadri_pci_pseudo;
memsize = 4;
align = 4;
} else if (IntNo == Intrinsic::hexagon_circ_ldh) {
ResTys.push_back(MVT::i32);
ResTys.push_back(MVT::i32);
opc = Hexagon::L2_loadrh_pci_pseudo;
memsize = 2;
align = 2;
MvtSize = MVT::i16;
} else if (IntNo == Intrinsic::hexagon_circ_lduh) {
ResTys.push_back(MVT::i32);
ResTys.push_back(MVT::i32);
opc = Hexagon::L2_loadruh_pci_pseudo;
memsize = 2;
align = 2;
MvtSize = MVT::i16;
} else if (IntNo == Intrinsic::hexagon_circ_ldb) {
ResTys.push_back(MVT::i32);
ResTys.push_back(MVT::i32);
opc = Hexagon::L2_loadrb_pci_pseudo;
memsize = 1;
align = 1;
MvtSize = MVT::i8;
} else if (IntNo == Intrinsic::hexagon_circ_ldub) {
ResTys.push_back(MVT::i32);
ResTys.push_back(MVT::i32);
opc = Hexagon::L2_loadrub_pci_pseudo;
memsize = 1;
align = 1;
MvtSize = MVT::i8;
} else
llvm_unreachable("no opc");
ResTys.push_back(MVT::Other);
// Copy over the arguments, which are the same mostly.
SmallVector<SDValue, 5> Ops;
Ops.push_back(Base);
Ops.push_back(Load);
Ops.push_back(ModifierExpr);
int32_t Val = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
Ops.push_back(CurDAG->getTargetConstant(Val, dl, MVT::i32));
Ops.push_back(Chain);
SDNode* Result = CurDAG->getMachineNode(opc, dl, ResTys, Ops);
SDValue ST;
MachineMemOperand *Mem =
MF->getMachineMemOperand(MachinePointerInfo(),
MachineMemOperand::MOStore, memsize, align);
if (MvtSize != MVT::i32)
ST = CurDAG->getTruncStore(Chain, dl, SDValue(Result, 1), Load,
MvtSize, Mem);
else
ST = CurDAG->getStore(Chain, dl, SDValue(Result, 1), Load, Mem);
SDNode* Store = SelectStore(ST.getNode());
const SDValue Froms[] = { SDValue(N, 0),
SDValue(N, 1) };
const SDValue Tos[] = { SDValue(Result, 0),
SDValue(Store, 0) };
ReplaceUses(Froms, Tos, 2);
return Result;
}
if (IntNo == Intrinsic::hexagon_brev_ldd ||
IntNo == Intrinsic::hexagon_brev_ldw ||
IntNo == Intrinsic::hexagon_brev_ldh ||
IntNo == Intrinsic::hexagon_brev_lduh ||
IntNo == Intrinsic::hexagon_brev_ldb ||
IntNo == Intrinsic::hexagon_brev_ldub) {
SDLoc dl(N);
SDValue Chain = N->getOperand(0);
SDValue Base = N->getOperand(2);
SDValue Load = N->getOperand(3);
SDValue ModifierExpr = N->getOperand(4);
// We need to add the rerurn type for the load. This intrinsic has
// two return types, one for the load and one for the post-increment.
std::vector<EVT> ResTys;
unsigned opc;
unsigned memsize, align;
MVT MvtSize = MVT::i32;
if (IntNo == Intrinsic::hexagon_brev_ldd) {
ResTys.push_back(MVT::i32);
ResTys.push_back(MVT::i64);
opc = Hexagon::L2_loadrd_pbr_pseudo;
memsize = 8;
align = 8;
} else if (IntNo == Intrinsic::hexagon_brev_ldw) {
ResTys.push_back(MVT::i32);
ResTys.push_back(MVT::i32);
opc = Hexagon::L2_loadri_pbr_pseudo;
memsize = 4;
align = 4;
} else if (IntNo == Intrinsic::hexagon_brev_ldh) {
ResTys.push_back(MVT::i32);
ResTys.push_back(MVT::i32);
opc = Hexagon::L2_loadrh_pbr_pseudo;
memsize = 2;
align = 2;
MvtSize = MVT::i16;
} else if (IntNo == Intrinsic::hexagon_brev_lduh) {
ResTys.push_back(MVT::i32);
ResTys.push_back(MVT::i32);
opc = Hexagon::L2_loadruh_pbr_pseudo;
memsize = 2;
align = 2;
MvtSize = MVT::i16;
} else if (IntNo == Intrinsic::hexagon_brev_ldb) {
ResTys.push_back(MVT::i32);
ResTys.push_back(MVT::i32);
opc = Hexagon::L2_loadrb_pbr_pseudo;
memsize = 1;
align = 1;
MvtSize = MVT::i8;
} else if (IntNo == Intrinsic::hexagon_brev_ldub) {
ResTys.push_back(MVT::i32);
ResTys.push_back(MVT::i32);
opc = Hexagon::L2_loadrub_pbr_pseudo;
memsize = 1;
align = 1;
MvtSize = MVT::i8;
} else
llvm_unreachable("no opc");
ResTys.push_back(MVT::Other);
// Copy over the arguments, which are the same mostly.
SmallVector<SDValue, 4> Ops;
Ops.push_back(Base);
Ops.push_back(Load);
Ops.push_back(ModifierExpr);
Ops.push_back(Chain);
SDNode* Result = CurDAG->getMachineNode(opc, dl, ResTys, Ops);
SDValue ST;
MachineMemOperand *Mem =
MF->getMachineMemOperand(MachinePointerInfo(),
MachineMemOperand::MOStore, memsize, align);
if (MvtSize != MVT::i32)
ST = CurDAG->getTruncStore(Chain, dl, SDValue(Result, 1), Load,
MvtSize, Mem);
else
ST = CurDAG->getStore(Chain, dl, SDValue(Result, 1), Load, Mem);
SDNode* Store = SelectStore(ST.getNode());
const SDValue Froms[] = { SDValue(N, 0),
SDValue(N, 1) };
const SDValue Tos[] = { SDValue(Result, 0),
SDValue(Store, 0) };
ReplaceUses(Froms, Tos, 2);
return Result;
}
return SelectCode(N);
}
//
// Checking for intrinsics which have predicate registers as operand(s)
// and lowering to the actual intrinsic.
//
SDNode *HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
unsigned Bits;
switch (IID) {
case Intrinsic::hexagon_S2_vsplatrb:
Bits = 8;
break;
case Intrinsic::hexagon_S2_vsplatrh:
Bits = 16;
break;
default:
return SelectCode(N);
}
SDValue const &V = N->getOperand(1);
SDValue U;
if (isValueExtension(V, Bits, U)) {
SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
N->getOperand(0), U);
return SelectCode(R.getNode());
}
return SelectCode(N);
}
//
// Map floating point constant values.
//
SDNode *HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
SDLoc dl(N);
ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
APFloat APF = CN->getValueAPF();
if (N->getValueType(0) == MVT::f32) {
return CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32,
CurDAG->getTargetConstantFP(APF.convertToFloat(), dl, MVT::f32));
}
else if (N->getValueType(0) == MVT::f64) {
return CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64,
CurDAG->getTargetConstantFP(APF.convertToDouble(), dl, MVT::f64));
}
return SelectCode(N);
}
//
// Map predicate true (encoded as -1 in LLVM) to a XOR.
//
SDNode *HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
SDLoc dl(N);
if (N->getValueType(0) == MVT::i1) {
SDNode* Result = 0;
int32_t Val = cast<ConstantSDNode>(N)->getSExtValue();
if (Val == -1) {
Result = CurDAG->getMachineNode(Hexagon::TFR_PdTrue, dl, MVT::i1);
} else if (Val == 0) {
Result = CurDAG->getMachineNode(Hexagon::TFR_PdFalse, dl, MVT::i1);
}
if (Result) {
ReplaceUses(N, Result);
return Result;
}
}
return SelectCode(N);
}
//
// Map add followed by a asr -> asr +=.
//
SDNode *HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
SDLoc dl(N);
if (N->getValueType(0) != MVT::i32) {
return SelectCode(N);
}
// Identify nodes of the form: add(asr(...)).
SDNode* Src1 = N->getOperand(0).getNode();
if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse()
|| Src1->getValueType(0) != MVT::i32) {
return SelectCode(N);
}
// Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
// Rd and Rd' are assigned to the same register
SDNode* Result = CurDAG->getMachineNode(Hexagon::S2_asr_r_r_acc, dl, MVT::i32,
N->getOperand(1),
Src1->getOperand(0),
Src1->getOperand(1));
ReplaceUses(N, Result);
return Result;
}
//
// Map the following, where possible.
// AND/FABS -> clrbit
// OR -> setbit
// XOR/FNEG ->toggle_bit.
//
SDNode *HexagonDAGToDAGISel::SelectBitOp(SDNode *N) {
SDLoc dl(N);
EVT ValueVT = N->getValueType(0);
// We handle only 32 and 64-bit bit ops.
if (!(ValueVT == MVT::i32 || ValueVT == MVT::i64 ||
ValueVT == MVT::f32 || ValueVT == MVT::f64))
return SelectCode(N);
// We handly only fabs and fneg for V5.
unsigned Opc = N->getOpcode();
if ((Opc == ISD::FABS || Opc == ISD::FNEG) && !HST->hasV5TOps())
return SelectCode(N);
int64_t Val = 0;
if (Opc != ISD::FABS && Opc != ISD::FNEG) {
if (N->getOperand(1).getOpcode() == ISD::Constant)
Val = cast<ConstantSDNode>((N)->getOperand(1))->getSExtValue();
else
return SelectCode(N);
}
if (Opc == ISD::AND) {
// Check if this is a bit-clearing AND, if not select code the usual way.
if ((ValueVT == MVT::i32 && isPowerOf2_32(~Val)) ||
(ValueVT == MVT::i64 && isPowerOf2_64(~Val)))
Val = ~Val;
else
return SelectCode(N);
}
// If OR or AND is being fed by shl, srl and, sra don't do this change,
// because Hexagon provide |= &= on shl, srl, and sra.
// Traverse the DAG to see if there is shl, srl and sra.
if (Opc == ISD::OR || Opc == ISD::AND) {
switch (N->getOperand(0)->getOpcode()) {
default:
break;
case ISD::SRA:
case ISD::SRL:
case ISD::SHL:
return SelectCode(N);
}
}
// Make sure it's power of 2.
unsigned BitPos = 0;
if (Opc != ISD::FABS && Opc != ISD::FNEG) {
if ((ValueVT == MVT::i32 && !isPowerOf2_32(Val)) ||
(ValueVT == MVT::i64 && !isPowerOf2_64(Val)))
return SelectCode(N);
// Get the bit position.
BitPos = countTrailingZeros(uint64_t(Val));
} else {
// For fabs and fneg, it's always the 31st bit.
BitPos = 31;
}
unsigned BitOpc = 0;
// Set the right opcode for bitwise operations.
switch (Opc) {
default:
llvm_unreachable("Only bit-wise/abs/neg operations are allowed.");
case ISD::AND:
case ISD::FABS:
BitOpc = Hexagon::S2_clrbit_i;
break;
case ISD::OR:
BitOpc = Hexagon::S2_setbit_i;
break;
case ISD::XOR:
case ISD::FNEG:
BitOpc = Hexagon::S2_togglebit_i;
break;
}
SDNode *Result;
// Get the right SDVal for the opcode.
SDValue SDVal = CurDAG->getTargetConstant(BitPos, dl, MVT::i32);
if (ValueVT == MVT::i32 || ValueVT == MVT::f32) {
Result = CurDAG->getMachineNode(BitOpc, dl, ValueVT,
N->getOperand(0), SDVal);
} else {
// 64-bit gymnastic to use REG_SEQUENCE. But it's worth it.
EVT SubValueVT;
if (ValueVT == MVT::i64)
SubValueVT = MVT::i32;
else
SubValueVT = MVT::f32;
SDNode *Reg = N->getOperand(0).getNode();
SDValue RegClass = CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID,
dl, MVT::i64);
SDValue SubregHiIdx = CurDAG->getTargetConstant(Hexagon::subreg_hireg, dl,
MVT::i32);
SDValue SubregLoIdx = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
MVT::i32);
SDValue SubregHI = CurDAG->getTargetExtractSubreg(Hexagon::subreg_hireg, dl,
MVT::i32, SDValue(Reg, 0));
SDValue SubregLO = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg, dl,
MVT::i32, SDValue(Reg, 0));
// Clear/set/toggle hi or lo registers depending on the bit position.
if (SubValueVT != MVT::f32 && BitPos < 32) {
SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
SubregLO, SDVal);
const SDValue Ops[] = { RegClass, SubregHI, SubregHiIdx,
SDValue(Result0, 0), SubregLoIdx };
Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
dl, ValueVT, Ops);
} else {
if (Opc != ISD::FABS && Opc != ISD::FNEG)
SDVal = CurDAG->getTargetConstant(BitPos-32, dl, MVT::i32);
SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
SubregHI, SDVal);
const SDValue Ops[] = { RegClass, SDValue(Result0, 0), SubregHiIdx,
SubregLO, SubregLoIdx };
Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
dl, ValueVT, Ops);
}
}
ReplaceUses(N, Result);
return Result;
}
SDNode *HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
MachineFrameInfo *MFI = MF->getFrameInfo();
const HexagonFrameLowering *HFI = HST->getFrameLowering();
int FX = cast<FrameIndexSDNode>(N)->getIndex();
unsigned StkA = HFI->getStackAlignment();
unsigned MaxA = MFI->getMaxAlignment();
SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
SDLoc DL(N);
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
SDNode *R = 0;
// Use TFR_FI when:
// - the object is fixed, or
// - there are no objects with higher-than-default alignment, or
// - there are no dynamically allocated objects.
// Otherwise, use TFR_FIA.
if (FX < 0 || MaxA <= StkA || !MFI->hasVarSizedObjects()) {
R = CurDAG->getMachineNode(Hexagon::TFR_FI, DL, MVT::i32, FI, Zero);
} else {
auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
unsigned AR = HMFI.getStackAlignBaseVReg();
SDValue CH = CurDAG->getEntryNode();
SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
R = CurDAG->getMachineNode(Hexagon::TFR_FIA, DL, MVT::i32, Ops);
}
if (N->getHasDebugValue())
CurDAG->TransferDbgValues(SDValue(N, 0), SDValue(R, 0));
return R;
}
SDNode *HexagonDAGToDAGISel::Select(SDNode *N) {
if (N->isMachineOpcode()) {
N->setNodeId(-1);
return nullptr; // Already selected.
}
switch (N->getOpcode()) {
case ISD::Constant:
return SelectConstant(N);
case ISD::ConstantFP:
return SelectConstantFP(N);
case ISD::FrameIndex:
return SelectFrameIndex(N);
case ISD::ADD:
return SelectAdd(N);
case ISD::SHL:
return SelectSHL(N);
case ISD::LOAD:
return SelectLoad(N);
case ISD::STORE:
return SelectStore(N);
case ISD::MUL:
return SelectMul(N);
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::FABS:
case ISD::FNEG:
return SelectBitOp(N);
case ISD::ZERO_EXTEND:
return SelectZeroExtend(N);
case ISD::INTRINSIC_W_CHAIN:
return SelectIntrinsicWChain(N);
case ISD::INTRINSIC_WO_CHAIN:
return SelectIntrinsicWOChain(N);
}
return SelectCode(N);
}
bool HexagonDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
std::vector<SDValue> &OutOps) {
SDValue Inp = Op, Res;
switch (ConstraintID) {
default:
return true;
case InlineAsm::Constraint_i:
case InlineAsm::Constraint_o: // Offsetable.
case InlineAsm::Constraint_v: // Not offsetable.
case InlineAsm::Constraint_m: // Memory.
if (SelectAddrFI(Inp, Res))
OutOps.push_back(Res);
else
OutOps.push_back(Inp);
break;
}
OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
return false;
}
void HexagonDAGToDAGISel::PreprocessISelDAG() {
SelectionDAG &DAG = *CurDAG;
std::vector<SDNode*> Nodes;
for (SDNode &Node : DAG.allnodes())
Nodes.push_back(&Node);
// Simplify: (or (select c x 0) z) -> (select c (or x z) z)
// (or (select c 0 y) z) -> (select c z (or y z))
// This may not be the right thing for all targets, so do it here.
for (auto I: Nodes) {
if (I->getOpcode() != ISD::OR)
continue;
auto IsZero = [] (const SDValue &V) -> bool {
if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
return SC->isNullValue();
return false;
};
auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
if (Op.getOpcode() != ISD::SELECT)
return false;
return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
};
SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
EVT VT = I->getValueType(0);
bool SelN0 = IsSelect0(N0);
SDValue SOp = SelN0 ? N0 : N1;
SDValue VOp = SelN0 ? N1 : N0;
if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
SDValue SC = SOp.getOperand(0);
SDValue SX = SOp.getOperand(1);
SDValue SY = SOp.getOperand(2);
SDLoc DLS = SOp;
if (IsZero(SY)) {
SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
DAG.ReplaceAllUsesWith(I, NewSel.getNode());
} else if (IsZero(SX)) {
SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
DAG.ReplaceAllUsesWith(I, NewSel.getNode());
}
}
}
}
void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget());
auto &HFI = *HST.getFrameLowering();
if (!HFI.needsAligna(*MF))
return;
MachineFrameInfo *MFI = MF->getFrameInfo();
MachineBasicBlock *EntryBB = &MF->front();
unsigned AR = FuncInfo->CreateReg(MVT::i32);
unsigned MaxA = MFI->getMaxAlignment();
BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::ALIGNA), AR)
.addImm(MaxA);
MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
}
// Match a frame index that can be used in an addressing mode.
bool HexagonDAGToDAGISel::SelectAddrFI(SDValue& N, SDValue &R) {
if (N.getOpcode() != ISD::FrameIndex)
return false;
auto &HFI = *HST->getFrameLowering();
MachineFrameInfo *MFI = MF->getFrameInfo();
int FX = cast<FrameIndexSDNode>(N)->getIndex();
if (!MFI->isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
return false;
R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
return true;
}
inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
return SelectGlobalAddress(N, R, false);
}
inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
return SelectGlobalAddress(N, R, true);
}
bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
bool UseGP) {
switch (N.getOpcode()) {
case ISD::ADD: {
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
unsigned GAOpc = N0.getOpcode();
if (UseGP && GAOpc != HexagonISD::CONST32_GP)
return false;
if (!UseGP && GAOpc != HexagonISD::CONST32)
return false;
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
SDValue Addr = N0.getOperand(0);
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
if (GA->getOpcode() == ISD::TargetGlobalAddress) {
uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
N.getValueType(), NewOff);
return true;
}
}
}
break;
}
case HexagonISD::CONST32:
// The operand(0) of CONST32 is TargetGlobalAddress, which is what we
// want in the instruction.
if (!UseGP)
R = N.getOperand(0);
return !UseGP;
case HexagonISD::CONST32_GP:
if (UseGP)
R = N.getOperand(0);
return UseGP;
default:
return false;
}
return false;
}
bool HexagonDAGToDAGISel::isValueExtension(const SDValue &Val,
unsigned FromBits, SDValue &Src) {
unsigned Opc = Val.getOpcode();
switch (Opc) {
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: {
SDValue const &Op0 = Val.getOperand(0);
EVT T = Op0.getValueType();
if (T.isInteger() && T.getSizeInBits() == FromBits) {
Src = Op0;
return true;
}
break;
}
case ISD::SIGN_EXTEND_INREG:
case ISD::AssertSext:
case ISD::AssertZext:
if (Val.getOperand(0).getValueType().isInteger()) {
VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
if (T->getVT().getSizeInBits() == FromBits) {
Src = Val.getOperand(0);
return true;
}
}
break;
case ISD::AND: {
// Check if this is an AND with "FromBits" of lower bits set to 1.
uint64_t FromMask = (1 << FromBits) - 1;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
if (C->getZExtValue() == FromMask) {
Src = Val.getOperand(1);
return true;
}
}
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
if (C->getZExtValue() == FromMask) {
Src = Val.getOperand(0);
return true;
}
}
break;
}
case ISD::OR:
case ISD::XOR: {
// OR/XOR with the lower "FromBits" bits set to 0.
uint64_t FromMask = (1 << FromBits) - 1;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
if ((C->getZExtValue() & FromMask) == 0) {
Src = Val.getOperand(1);
return true;
}
}
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
if ((C->getZExtValue() & FromMask) == 0) {
Src = Val.getOperand(0);
return true;
}
}
}
default:
break;
}
return false;
}