llvm-project/llvm/tools/llvm-readobj/COFFDumper.cpp

1836 lines
71 KiB
C++
Raw Normal View History

//===-- COFFDumper.cpp - COFF-specific dumper -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements the COFF-specific dumper for llvm-readobj.
///
//===----------------------------------------------------------------------===//
#include "ARMWinEHPrinter.h"
#include "Error.h"
#include "ObjDumper.h"
#include "StackMapPrinter.h"
#include "Win64EHDumper.h"
#include "llvm-readobj.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
#include "llvm/DebugInfo/CodeView/CodeView.h"
#include "llvm/DebugInfo/CodeView/DebugChecksumsSubsection.h"
#include "llvm/DebugInfo/CodeView/DebugFrameDataSubsection.h"
#include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
#include "llvm/DebugInfo/CodeView/DebugLinesSubsection.h"
#include "llvm/DebugInfo/CodeView/DebugStringTableSubsection.h"
#include "llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h"
#include "llvm/DebugInfo/CodeView/Line.h"
#include "llvm/DebugInfo/CodeView/MergingTypeTableBuilder.h"
#include "llvm/DebugInfo/CodeView/RecordSerialization.h"
#include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
#include "llvm/DebugInfo/CodeView/SymbolDumpDelegate.h"
#include "llvm/DebugInfo/CodeView/SymbolDumper.h"
#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
[CodeView] Finish decoupling TypeDatabase from TypeDumper. Previously the type dumper itself was passed around to a lot of different places and manipulated in ways that were more appropriate on the type database. For example, the entire TypeDumper was passed into the symbol dumper, when all the symbol dumper wanted to do was lookup the name of a TypeIndex so it could print it. That's what the TypeDatabase is for -- mapping type indices to names. Another example is how if the user runs llvm-pdbdump with the option to dump symbols but not types, we still have to visit all types so that we can print minimal information about the type of a symbol, but just without dumping full symbol records. The way we did this before is by hacking it up so that we run everything through the type dumper with a null printer, so that the output goes to /dev/null. But really, we don't need to dump anything, all we want to do is build the type database. Since TypeDatabaseVisitor now exists independently of TypeDumper, we can do this. We just build a custom visitor callback pipeline that includes a database visitor but not a dumper. All the hackery around printers etc goes away. After this patch, we could probably even delete the entire CVTypeDumper class since really all it is at this point is a thin wrapper that hides the details of how to build a useful visitation pipeline. It's not a priority though, so CVTypeDumper remains for now. After this patch we will be able to easily plug in a different style of type dumper by only implementing the proper visitation methods to dump one-line output and then sticking it on the pipeline. Differential Revision: https://reviews.llvm.org/D28524 llvm-svn: 291724
2017-01-12 07:24:22 +08:00
#include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
#include "llvm/DebugInfo/CodeView/TypeHashing.h"
#include "llvm/DebugInfo/CodeView/TypeIndex.h"
#include "llvm/DebugInfo/CodeView/TypeRecord.h"
#include "llvm/DebugInfo/CodeView/TypeStreamMerger.h"
#include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
[CodeView] Provide a common interface for type collections. Right now we have multiple notions of things that represent collections of types. Most commonly used are TypeDatabase, which is supposed to keep mappings from TypeIndex to type name when reading a type stream, which happens when reading PDBs. And also TypeTableBuilder, which is used to build up a collection of types dynamically which we will later serialize (i.e. when writing PDBs). But often you just want to do some operation on a collection of types, and you may want to do the same operation on any kind of collection. For example, you might want to merge two TypeTableBuilders or you might want to merge two type streams that you loaded from various files. This dichotomy between reading and writing is responsible for a lot of the existing code duplication and overlapping responsibilities in the existing CodeView library classes. For example, after building up a TypeTableBuilder with a bunch of type records, if we want to dump it we have to re-invent a bunch of extra glue because our dumper takes a TypeDatabase or a CVTypeArray, which are both incompatible with TypeTableBuilder. This patch introduces an abstract base class called TypeCollection which is shared between the various type collection like things. Wherever we previously stored a TypeDatabase& in some common class, we now store a TypeCollection&. The advantage of this is that all the details of how the collection are implemented, such as lazy deserialization of partial type streams, is completely transparent and you can just treat any collection of types the same regardless of where it came from. Differential Revision: https://reviews.llvm.org/D33293 llvm-svn: 303388
2017-05-19 07:03:06 +08:00
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/Win64EH.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
#include <system_error>
#include <time.h>
using namespace llvm;
using namespace llvm::object;
using namespace llvm::codeview;
using namespace llvm::support;
using namespace llvm::Win64EH;
namespace {
struct LoadConfigTables {
uint64_t SEHTableVA = 0;
uint64_t SEHTableCount = 0;
uint32_t GuardFlags = 0;
uint64_t GuardFidTableVA = 0;
uint64_t GuardFidTableCount = 0;
};
class COFFDumper : public ObjDumper {
public:
friend class COFFObjectDumpDelegate;
COFFDumper(const llvm::object::COFFObjectFile *Obj, ScopedPrinter &Writer)
: ObjDumper(Writer), Obj(Obj), Writer(Writer), Types(100) {}
void printFileHeaders() override;
void printSections() override;
void printRelocations() override;
void printSymbols() override;
void printDynamicSymbols() override;
void printUnwindInfo() override;
void printCOFFImports() override;
void printCOFFExports() override;
void printCOFFDirectives() override;
void printCOFFBaseReloc() override;
void printCOFFDebugDirectory() override;
void printCOFFResources() override;
void printCOFFLoadConfig() override;
void printCodeViewDebugInfo() override;
void
mergeCodeViewTypes(llvm::codeview::MergingTypeTableBuilder &CVIDs,
llvm::codeview::MergingTypeTableBuilder &CVTypes) override;
void printStackMap() const override;
private:
void printSymbol(const SymbolRef &Sym);
void printRelocation(const SectionRef &Section, const RelocationRef &Reloc,
uint64_t Bias = 0);
void printDataDirectory(uint32_t Index, const std::string &FieldName);
void printDOSHeader(const dos_header *DH);
template <class PEHeader> void printPEHeader(const PEHeader *Hdr);
void printBaseOfDataField(const pe32_header *Hdr);
void printBaseOfDataField(const pe32plus_header *Hdr);
template <typename T>
void printCOFFLoadConfig(const T *Conf, LoadConfigTables &Tables);
typedef void (*PrintExtraCB)(raw_ostream &, const uint8_t *);
void printRVATable(uint64_t TableVA, uint64_t Count, uint64_t EntrySize,
PrintExtraCB PrintExtra = 0);
void printCodeViewSymbolSection(StringRef SectionName, const SectionRef &Section);
void printCodeViewTypeSection(StringRef SectionName, const SectionRef &Section);
StringRef getTypeName(TypeIndex Ty);
StringRef getFileNameForFileOffset(uint32_t FileOffset);
void printFileNameForOffset(StringRef Label, uint32_t FileOffset);
void printTypeIndex(StringRef FieldName, TypeIndex TI) {
// Forward to CVTypeDumper for simplicity.
codeview::printTypeIndex(Writer, FieldName, TI, Types);
}
void printCodeViewSymbolsSubsection(StringRef Subsection,
const SectionRef &Section,
StringRef SectionContents);
void printCodeViewFileChecksums(StringRef Subsection);
void printCodeViewInlineeLines(StringRef Subsection);
void printRelocatedField(StringRef Label, const coff_section *Sec,
uint32_t RelocOffset, uint32_t Offset,
StringRef *RelocSym = nullptr);
uint32_t countTotalTableEntries(ResourceSectionRef RSF,
const coff_resource_dir_table &Table,
StringRef Level);
void printResourceDirectoryTable(ResourceSectionRef RSF,
const coff_resource_dir_table &Table,
StringRef Level);
void printBinaryBlockWithRelocs(StringRef Label, const SectionRef &Sec,
StringRef SectionContents, StringRef Block);
/// Given a .debug$S section, find the string table and file checksum table.
void initializeFileAndStringTables(BinaryStreamReader &Reader);
void cacheRelocations();
std::error_code resolveSymbol(const coff_section *Section, uint64_t Offset,
SymbolRef &Sym);
std::error_code resolveSymbolName(const coff_section *Section,
uint64_t Offset, StringRef &Name);
std::error_code resolveSymbolName(const coff_section *Section,
StringRef SectionContents,
const void *RelocPtr, StringRef &Name);
void printImportedSymbols(iterator_range<imported_symbol_iterator> Range);
void printDelayImportedSymbols(
const DelayImportDirectoryEntryRef &I,
iterator_range<imported_symbol_iterator> Range);
ErrorOr<const coff_resource_dir_entry &>
getResourceDirectoryTableEntry(const coff_resource_dir_table &Table,
uint32_t Index);
typedef DenseMap<const coff_section*, std::vector<RelocationRef> > RelocMapTy;
const llvm::object::COFFObjectFile *Obj;
bool RelocCached = false;
RelocMapTy RelocMap;
DebugChecksumsSubsectionRef CVFileChecksumTable;
DebugStringTableSubsectionRef CVStringTable;
[CodeView] Finish decoupling TypeDatabase from TypeDumper. Previously the type dumper itself was passed around to a lot of different places and manipulated in ways that were more appropriate on the type database. For example, the entire TypeDumper was passed into the symbol dumper, when all the symbol dumper wanted to do was lookup the name of a TypeIndex so it could print it. That's what the TypeDatabase is for -- mapping type indices to names. Another example is how if the user runs llvm-pdbdump with the option to dump symbols but not types, we still have to visit all types so that we can print minimal information about the type of a symbol, but just without dumping full symbol records. The way we did this before is by hacking it up so that we run everything through the type dumper with a null printer, so that the output goes to /dev/null. But really, we don't need to dump anything, all we want to do is build the type database. Since TypeDatabaseVisitor now exists independently of TypeDumper, we can do this. We just build a custom visitor callback pipeline that includes a database visitor but not a dumper. All the hackery around printers etc goes away. After this patch, we could probably even delete the entire CVTypeDumper class since really all it is at this point is a thin wrapper that hides the details of how to build a useful visitation pipeline. It's not a priority though, so CVTypeDumper remains for now. After this patch we will be able to easily plug in a different style of type dumper by only implementing the proper visitation methods to dump one-line output and then sticking it on the pipeline. Differential Revision: https://reviews.llvm.org/D28524 llvm-svn: 291724
2017-01-12 07:24:22 +08:00
ScopedPrinter &Writer;
BinaryByteStream TypeContents;
LazyRandomTypeCollection Types;
};
class COFFObjectDumpDelegate : public SymbolDumpDelegate {
public:
COFFObjectDumpDelegate(COFFDumper &CD, const SectionRef &SR,
const COFFObjectFile *Obj, StringRef SectionContents)
: CD(CD), SR(SR), SectionContents(SectionContents) {
Sec = Obj->getCOFFSection(SR);
}
uint32_t getRecordOffset(BinaryStreamReader Reader) override {
ArrayRef<uint8_t> Data;
if (auto EC = Reader.readLongestContiguousChunk(Data)) {
llvm::consumeError(std::move(EC));
return 0;
}
return Data.data() - SectionContents.bytes_begin();
}
void printRelocatedField(StringRef Label, uint32_t RelocOffset,
uint32_t Offset, StringRef *RelocSym) override {
CD.printRelocatedField(Label, Sec, RelocOffset, Offset, RelocSym);
}
void printBinaryBlockWithRelocs(StringRef Label,
ArrayRef<uint8_t> Block) override {
StringRef SBlock(reinterpret_cast<const char *>(Block.data()),
Block.size());
if (opts::CodeViewSubsectionBytes)
CD.printBinaryBlockWithRelocs(Label, SR, SectionContents, SBlock);
}
StringRef getFileNameForFileOffset(uint32_t FileOffset) override {
return CD.getFileNameForFileOffset(FileOffset);
}
DebugStringTableSubsectionRef getStringTable() override {
return CD.CVStringTable;
}
private:
COFFDumper &CD;
const SectionRef &SR;
const coff_section *Sec;
StringRef SectionContents;
};
} // end namespace
namespace llvm {
std::error_code createCOFFDumper(const object::ObjectFile *Obj,
ScopedPrinter &Writer,
std::unique_ptr<ObjDumper> &Result) {
const COFFObjectFile *COFFObj = dyn_cast<COFFObjectFile>(Obj);
if (!COFFObj)
return readobj_error::unsupported_obj_file_format;
Result.reset(new COFFDumper(COFFObj, Writer));
return readobj_error::success;
}
} // namespace llvm
// Given a a section and an offset into this section the function returns the
// symbol used for the relocation at the offset.
std::error_code COFFDumper::resolveSymbol(const coff_section *Section,
uint64_t Offset, SymbolRef &Sym) {
cacheRelocations();
const auto &Relocations = RelocMap[Section];
auto SymI = Obj->symbol_end();
for (const auto &Relocation : Relocations) {
uint64_t RelocationOffset = Relocation.getOffset();
if (RelocationOffset == Offset) {
SymI = Relocation.getSymbol();
break;
}
}
if (SymI == Obj->symbol_end())
return readobj_error::unknown_symbol;
Sym = *SymI;
return readobj_error::success;
}
// Given a section and an offset into this section the function returns the name
// of the symbol used for the relocation at the offset.
std::error_code COFFDumper::resolveSymbolName(const coff_section *Section,
uint64_t Offset,
StringRef &Name) {
SymbolRef Symbol;
if (std::error_code EC = resolveSymbol(Section, Offset, Symbol))
return EC;
Thread Expected<...> up from libObject’s getName() for symbols to allow llvm-objdump to produce a good error message. Produce another specific error message for a malformed Mach-O file when a symbol’s string index is past the end of the string table. The existing test case in test/Object/macho-invalid.test for macho-invalid-symbol-name-past-eof now reports the error with the message indicating that a symbol at a specific index has a bad sting index and that bad string index value. Again converting interfaces to Expected<> from ErrorOr<> does involve touching a number of places. Where the existing code reported the error with a string message or an error code it was converted to do the same. There is some code for this that could be factored into a routine but I would like to leave that for the code owners post-commit to do as they want for handling an llvm::Error. An example of how this could be done is shown in the diff in lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h which had a Check() routine already for std::error_code so I added one like it for llvm::Error . Also there some were bugs in the existing code that did not deal with the old ErrorOr<> return values.  So now with Expected<> since they must be checked and the error handled, I added a TODO and a comment: “// TODO: Actually report errors helpfully” and a call something like consumeError(NameOrErr.takeError()) so the buggy code will not crash since needed to deal with the Error. Note there fixes needed to lld that goes along with this that I will commit right after this. So expect lld not to built after this commit and before the next one. llvm-svn: 266919
2016-04-21 05:24:34 +08:00
Expected<StringRef> NameOrErr = Symbol.getName();
if (!NameOrErr)
return errorToErrorCode(NameOrErr.takeError());
Name = *NameOrErr;
return std::error_code();
}
// Helper for when you have a pointer to real data and you want to know about
// relocations against it.
std::error_code COFFDumper::resolveSymbolName(const coff_section *Section,
StringRef SectionContents,
const void *RelocPtr,
StringRef &Name) {
assert(SectionContents.data() < RelocPtr &&
RelocPtr < SectionContents.data() + SectionContents.size() &&
"pointer to relocated object is not in section");
uint64_t Offset = ptrdiff_t(reinterpret_cast<const char *>(RelocPtr) -
SectionContents.data());
return resolveSymbolName(Section, Offset, Name);
}
void COFFDumper::printRelocatedField(StringRef Label, const coff_section *Sec,
uint32_t RelocOffset, uint32_t Offset,
StringRef *RelocSym) {
StringRef SymStorage;
StringRef &Symbol = RelocSym ? *RelocSym : SymStorage;
if (!resolveSymbolName(Sec, RelocOffset, Symbol))
W.printSymbolOffset(Label, Symbol, Offset);
else
W.printHex(Label, RelocOffset);
}
void COFFDumper::printBinaryBlockWithRelocs(StringRef Label,
const SectionRef &Sec,
StringRef SectionContents,
StringRef Block) {
W.printBinaryBlock(Label, Block);
assert(SectionContents.begin() < Block.begin() &&
SectionContents.end() >= Block.end() &&
"Block is not contained in SectionContents");
uint64_t OffsetStart = Block.data() - SectionContents.data();
uint64_t OffsetEnd = OffsetStart + Block.size();
W.flush();
cacheRelocations();
ListScope D(W, "BlockRelocations");
const coff_section *Section = Obj->getCOFFSection(Sec);
const auto &Relocations = RelocMap[Section];
for (const auto &Relocation : Relocations) {
uint64_t RelocationOffset = Relocation.getOffset();
if (OffsetStart <= RelocationOffset && RelocationOffset < OffsetEnd)
printRelocation(Sec, Relocation, OffsetStart);
}
}
static const EnumEntry<COFF::MachineTypes> ImageFileMachineType[] = {
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_UNKNOWN ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_AM33 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_AMD64 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_ARM ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_ARM64 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_ARMNT ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_EBC ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_I386 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_IA64 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_M32R ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_MIPS16 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_MIPSFPU ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_MIPSFPU16),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_POWERPC ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_POWERPCFP),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_R4000 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_SH3 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_SH3DSP ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_SH4 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_SH5 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_THUMB ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_WCEMIPSV2)
};
static const EnumEntry<COFF::Characteristics> ImageFileCharacteristics[] = {
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_RELOCS_STRIPPED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_EXECUTABLE_IMAGE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_LINE_NUMS_STRIPPED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_LOCAL_SYMS_STRIPPED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_AGGRESSIVE_WS_TRIM ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_LARGE_ADDRESS_AWARE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_BYTES_REVERSED_LO ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_32BIT_MACHINE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_DEBUG_STRIPPED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_NET_RUN_FROM_SWAP ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_SYSTEM ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_DLL ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_UP_SYSTEM_ONLY ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_BYTES_REVERSED_HI )
};
static const EnumEntry<COFF::WindowsSubsystem> PEWindowsSubsystem[] = {
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_UNKNOWN ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_NATIVE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_WINDOWS_GUI ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_WINDOWS_CUI ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_POSIX_CUI ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_WINDOWS_CE_GUI ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_EFI_APPLICATION ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_EFI_ROM ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_XBOX ),
};
static const EnumEntry<COFF::DLLCharacteristics> PEDLLCharacteristics[] = {
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_NX_COMPAT ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_NO_SEH ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_NO_BIND ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_APPCONTAINER ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_GUARD_CF ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE),
};
static const EnumEntry<COFF::SectionCharacteristics>
ImageSectionCharacteristics[] = {
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_TYPE_NOLOAD ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_TYPE_NO_PAD ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_CNT_CODE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_CNT_INITIALIZED_DATA ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_CNT_UNINITIALIZED_DATA),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_OTHER ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_INFO ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_REMOVE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_COMDAT ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_GPREL ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_PURGEABLE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_16BIT ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_LOCKED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_PRELOAD ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_1BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_2BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_4BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_8BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_16BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_32BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_64BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_128BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_256BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_512BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_1024BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_2048BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_4096BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_8192BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_NRELOC_OVFL ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_DISCARDABLE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_NOT_CACHED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_NOT_PAGED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_SHARED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_EXECUTE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_READ ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_WRITE )
};
static const EnumEntry<COFF::SymbolBaseType> ImageSymType[] = {
{ "Null" , COFF::IMAGE_SYM_TYPE_NULL },
{ "Void" , COFF::IMAGE_SYM_TYPE_VOID },
{ "Char" , COFF::IMAGE_SYM_TYPE_CHAR },
{ "Short" , COFF::IMAGE_SYM_TYPE_SHORT },
{ "Int" , COFF::IMAGE_SYM_TYPE_INT },
{ "Long" , COFF::IMAGE_SYM_TYPE_LONG },
{ "Float" , COFF::IMAGE_SYM_TYPE_FLOAT },
{ "Double", COFF::IMAGE_SYM_TYPE_DOUBLE },
{ "Struct", COFF::IMAGE_SYM_TYPE_STRUCT },
{ "Union" , COFF::IMAGE_SYM_TYPE_UNION },
{ "Enum" , COFF::IMAGE_SYM_TYPE_ENUM },
{ "MOE" , COFF::IMAGE_SYM_TYPE_MOE },
{ "Byte" , COFF::IMAGE_SYM_TYPE_BYTE },
{ "Word" , COFF::IMAGE_SYM_TYPE_WORD },
{ "UInt" , COFF::IMAGE_SYM_TYPE_UINT },
{ "DWord" , COFF::IMAGE_SYM_TYPE_DWORD }
};
static const EnumEntry<COFF::SymbolComplexType> ImageSymDType[] = {
{ "Null" , COFF::IMAGE_SYM_DTYPE_NULL },
{ "Pointer" , COFF::IMAGE_SYM_DTYPE_POINTER },
{ "Function", COFF::IMAGE_SYM_DTYPE_FUNCTION },
{ "Array" , COFF::IMAGE_SYM_DTYPE_ARRAY }
};
static const EnumEntry<COFF::SymbolStorageClass> ImageSymClass[] = {
{ "EndOfFunction" , COFF::IMAGE_SYM_CLASS_END_OF_FUNCTION },
{ "Null" , COFF::IMAGE_SYM_CLASS_NULL },
{ "Automatic" , COFF::IMAGE_SYM_CLASS_AUTOMATIC },
{ "External" , COFF::IMAGE_SYM_CLASS_EXTERNAL },
{ "Static" , COFF::IMAGE_SYM_CLASS_STATIC },
{ "Register" , COFF::IMAGE_SYM_CLASS_REGISTER },
{ "ExternalDef" , COFF::IMAGE_SYM_CLASS_EXTERNAL_DEF },
{ "Label" , COFF::IMAGE_SYM_CLASS_LABEL },
{ "UndefinedLabel" , COFF::IMAGE_SYM_CLASS_UNDEFINED_LABEL },
{ "MemberOfStruct" , COFF::IMAGE_SYM_CLASS_MEMBER_OF_STRUCT },
{ "Argument" , COFF::IMAGE_SYM_CLASS_ARGUMENT },
{ "StructTag" , COFF::IMAGE_SYM_CLASS_STRUCT_TAG },
{ "MemberOfUnion" , COFF::IMAGE_SYM_CLASS_MEMBER_OF_UNION },
{ "UnionTag" , COFF::IMAGE_SYM_CLASS_UNION_TAG },
{ "TypeDefinition" , COFF::IMAGE_SYM_CLASS_TYPE_DEFINITION },
{ "UndefinedStatic", COFF::IMAGE_SYM_CLASS_UNDEFINED_STATIC },
{ "EnumTag" , COFF::IMAGE_SYM_CLASS_ENUM_TAG },
{ "MemberOfEnum" , COFF::IMAGE_SYM_CLASS_MEMBER_OF_ENUM },
{ "RegisterParam" , COFF::IMAGE_SYM_CLASS_REGISTER_PARAM },
{ "BitField" , COFF::IMAGE_SYM_CLASS_BIT_FIELD },
{ "Block" , COFF::IMAGE_SYM_CLASS_BLOCK },
{ "Function" , COFF::IMAGE_SYM_CLASS_FUNCTION },
{ "EndOfStruct" , COFF::IMAGE_SYM_CLASS_END_OF_STRUCT },
{ "File" , COFF::IMAGE_SYM_CLASS_FILE },
{ "Section" , COFF::IMAGE_SYM_CLASS_SECTION },
{ "WeakExternal" , COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL },
{ "CLRToken" , COFF::IMAGE_SYM_CLASS_CLR_TOKEN }
};
static const EnumEntry<COFF::COMDATType> ImageCOMDATSelect[] = {
{ "NoDuplicates", COFF::IMAGE_COMDAT_SELECT_NODUPLICATES },
{ "Any" , COFF::IMAGE_COMDAT_SELECT_ANY },
{ "SameSize" , COFF::IMAGE_COMDAT_SELECT_SAME_SIZE },
{ "ExactMatch" , COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH },
{ "Associative" , COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE },
{ "Largest" , COFF::IMAGE_COMDAT_SELECT_LARGEST },
{ "Newest" , COFF::IMAGE_COMDAT_SELECT_NEWEST }
};
static const EnumEntry<COFF::DebugType> ImageDebugType[] = {
{ "Unknown" , COFF::IMAGE_DEBUG_TYPE_UNKNOWN },
{ "COFF" , COFF::IMAGE_DEBUG_TYPE_COFF },
{ "CodeView" , COFF::IMAGE_DEBUG_TYPE_CODEVIEW },
{ "FPO" , COFF::IMAGE_DEBUG_TYPE_FPO },
{ "Misc" , COFF::IMAGE_DEBUG_TYPE_MISC },
{ "Exception" , COFF::IMAGE_DEBUG_TYPE_EXCEPTION },
{ "Fixup" , COFF::IMAGE_DEBUG_TYPE_FIXUP },
{ "OmapToSrc" , COFF::IMAGE_DEBUG_TYPE_OMAP_TO_SRC },
{ "OmapFromSrc", COFF::IMAGE_DEBUG_TYPE_OMAP_FROM_SRC },
{ "Borland" , COFF::IMAGE_DEBUG_TYPE_BORLAND },
{ "Reserved10" , COFF::IMAGE_DEBUG_TYPE_RESERVED10 },
{ "CLSID" , COFF::IMAGE_DEBUG_TYPE_CLSID },
{ "VCFeature" , COFF::IMAGE_DEBUG_TYPE_VC_FEATURE },
{ "POGO" , COFF::IMAGE_DEBUG_TYPE_POGO },
{ "ILTCG" , COFF::IMAGE_DEBUG_TYPE_ILTCG },
{ "MPX" , COFF::IMAGE_DEBUG_TYPE_MPX },
{ "Repro" , COFF::IMAGE_DEBUG_TYPE_REPRO },
};
static const EnumEntry<COFF::WeakExternalCharacteristics>
WeakExternalCharacteristics[] = {
{ "NoLibrary", COFF::IMAGE_WEAK_EXTERN_SEARCH_NOLIBRARY },
{ "Library" , COFF::IMAGE_WEAK_EXTERN_SEARCH_LIBRARY },
{ "Alias" , COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS }
};
static const EnumEntry<uint32_t> SubSectionTypes[] = {
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, Symbols),
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, Lines),
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, StringTable),
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, FileChecksums),
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, FrameData),
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, InlineeLines),
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, CrossScopeImports),
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, CrossScopeExports),
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, ILLines),
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, FuncMDTokenMap),
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, TypeMDTokenMap),
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, MergedAssemblyInput),
LLVM_READOBJ_ENUM_CLASS_ENT(DebugSubsectionKind, CoffSymbolRVA),
};
static const EnumEntry<uint32_t> FrameDataFlags[] = {
LLVM_READOBJ_ENUM_ENT(FrameData, HasSEH),
LLVM_READOBJ_ENUM_ENT(FrameData, HasEH),
LLVM_READOBJ_ENUM_ENT(FrameData, IsFunctionStart),
};
static const EnumEntry<uint8_t> FileChecksumKindNames[] = {
LLVM_READOBJ_ENUM_CLASS_ENT(FileChecksumKind, None),
LLVM_READOBJ_ENUM_CLASS_ENT(FileChecksumKind, MD5),
LLVM_READOBJ_ENUM_CLASS_ENT(FileChecksumKind, SHA1),
LLVM_READOBJ_ENUM_CLASS_ENT(FileChecksumKind, SHA256),
};
static const EnumEntry<COFF::ResourceTypeID> ResourceTypeNames[]{
{"kRT_CURSOR (ID 1)", COFF::RID_Cursor},
{"kRT_BITMAP (ID 2)", COFF::RID_Bitmap},
{"kRT_ICON (ID 3)", COFF::RID_Icon},
{"kRT_MENU (ID 4)", COFF::RID_Menu},
{"kRT_DIALOG (ID 5)", COFF::RID_Dialog},
{"kRT_STRING (ID 6)", COFF::RID_String},
{"kRT_FONTDIR (ID 7)", COFF::RID_FontDir},
{"kRT_FONT (ID 8)", COFF::RID_Font},
{"kRT_ACCELERATOR (ID 9)", COFF::RID_Accelerator},
{"kRT_RCDATA (ID 10)", COFF::RID_RCData},
{"kRT_MESSAGETABLE (ID 11)", COFF::RID_MessageTable},
{"kRT_GROUP_CURSOR (ID 12)", COFF::RID_Group_Cursor},
{"kRT_GROUP_ICON (ID 14)", COFF::RID_Group_Icon},
{"kRT_VERSION (ID 16)", COFF::RID_Version},
{"kRT_DLGINCLUDE (ID 17)", COFF::RID_DLGInclude},
{"kRT_PLUGPLAY (ID 19)", COFF::RID_PlugPlay},
{"kRT_VXD (ID 20)", COFF::RID_VXD},
{"kRT_ANICURSOR (ID 21)", COFF::RID_AniCursor},
{"kRT_ANIICON (ID 22)", COFF::RID_AniIcon},
{"kRT_HTML (ID 23)", COFF::RID_HTML},
{"kRT_MANIFEST (ID 24)", COFF::RID_Manifest}};
template <typename T>
static std::error_code getSymbolAuxData(const COFFObjectFile *Obj,
COFFSymbolRef Symbol,
uint8_t AuxSymbolIdx, const T *&Aux) {
ArrayRef<uint8_t> AuxData = Obj->getSymbolAuxData(Symbol);
AuxData = AuxData.slice(AuxSymbolIdx * Obj->getSymbolTableEntrySize());
Aux = reinterpret_cast<const T*>(AuxData.data());
return readobj_error::success;
}
void COFFDumper::cacheRelocations() {
if (RelocCached)
return;
RelocCached = true;
for (const SectionRef &S : Obj->sections()) {
const coff_section *Section = Obj->getCOFFSection(S);
for (const RelocationRef &Reloc : S.relocations())
RelocMap[Section].push_back(Reloc);
// Sort relocations by address.
std::sort(RelocMap[Section].begin(), RelocMap[Section].end(),
relocAddressLess);
}
}
void COFFDumper::printDataDirectory(uint32_t Index, const std::string &FieldName) {
const data_directory *Data;
if (Obj->getDataDirectory(Index, Data))
return;
W.printHex(FieldName + "RVA", Data->RelativeVirtualAddress);
W.printHex(FieldName + "Size", Data->Size);
}
void COFFDumper::printFileHeaders() {
time_t TDS = Obj->getTimeDateStamp();
char FormattedTime[20] = { };
strftime(FormattedTime, 20, "%Y-%m-%d %H:%M:%S", gmtime(&TDS));
{
DictScope D(W, "ImageFileHeader");
W.printEnum ("Machine", Obj->getMachine(),
makeArrayRef(ImageFileMachineType));
W.printNumber("SectionCount", Obj->getNumberOfSections());
W.printHex ("TimeDateStamp", FormattedTime, Obj->getTimeDateStamp());
W.printHex ("PointerToSymbolTable", Obj->getPointerToSymbolTable());
W.printNumber("SymbolCount", Obj->getNumberOfSymbols());
W.printNumber("OptionalHeaderSize", Obj->getSizeOfOptionalHeader());
W.printFlags ("Characteristics", Obj->getCharacteristics(),
makeArrayRef(ImageFileCharacteristics));
}
// Print PE header. This header does not exist if this is an object file and
// not an executable.
const pe32_header *PEHeader = nullptr;
error(Obj->getPE32Header(PEHeader));
if (PEHeader)
printPEHeader<pe32_header>(PEHeader);
const pe32plus_header *PEPlusHeader = nullptr;
error(Obj->getPE32PlusHeader(PEPlusHeader));
if (PEPlusHeader)
printPEHeader<pe32plus_header>(PEPlusHeader);
if (const dos_header *DH = Obj->getDOSHeader())
printDOSHeader(DH);
}
void COFFDumper::printDOSHeader(const dos_header *DH) {
DictScope D(W, "DOSHeader");
W.printString("Magic", StringRef(DH->Magic, sizeof(DH->Magic)));
W.printNumber("UsedBytesInTheLastPage", DH->UsedBytesInTheLastPage);
W.printNumber("FileSizeInPages", DH->FileSizeInPages);
W.printNumber("NumberOfRelocationItems", DH->NumberOfRelocationItems);
W.printNumber("HeaderSizeInParagraphs", DH->HeaderSizeInParagraphs);
W.printNumber("MinimumExtraParagraphs", DH->MinimumExtraParagraphs);
W.printNumber("MaximumExtraParagraphs", DH->MaximumExtraParagraphs);
W.printNumber("InitialRelativeSS", DH->InitialRelativeSS);
W.printNumber("InitialSP", DH->InitialSP);
W.printNumber("Checksum", DH->Checksum);
W.printNumber("InitialIP", DH->InitialIP);
W.printNumber("InitialRelativeCS", DH->InitialRelativeCS);
W.printNumber("AddressOfRelocationTable", DH->AddressOfRelocationTable);
W.printNumber("OverlayNumber", DH->OverlayNumber);
W.printNumber("OEMid", DH->OEMid);
W.printNumber("OEMinfo", DH->OEMinfo);
W.printNumber("AddressOfNewExeHeader", DH->AddressOfNewExeHeader);
}
template <class PEHeader>
void COFFDumper::printPEHeader(const PEHeader *Hdr) {
DictScope D(W, "ImageOptionalHeader");
W.printHex ("Magic", Hdr->Magic);
W.printNumber("MajorLinkerVersion", Hdr->MajorLinkerVersion);
W.printNumber("MinorLinkerVersion", Hdr->MinorLinkerVersion);
W.printNumber("SizeOfCode", Hdr->SizeOfCode);
W.printNumber("SizeOfInitializedData", Hdr->SizeOfInitializedData);
W.printNumber("SizeOfUninitializedData", Hdr->SizeOfUninitializedData);
W.printHex ("AddressOfEntryPoint", Hdr->AddressOfEntryPoint);
W.printHex ("BaseOfCode", Hdr->BaseOfCode);
printBaseOfDataField(Hdr);
W.printHex ("ImageBase", Hdr->ImageBase);
W.printNumber("SectionAlignment", Hdr->SectionAlignment);
W.printNumber("FileAlignment", Hdr->FileAlignment);
W.printNumber("MajorOperatingSystemVersion",
Hdr->MajorOperatingSystemVersion);
W.printNumber("MinorOperatingSystemVersion",
Hdr->MinorOperatingSystemVersion);
W.printNumber("MajorImageVersion", Hdr->MajorImageVersion);
W.printNumber("MinorImageVersion", Hdr->MinorImageVersion);
W.printNumber("MajorSubsystemVersion", Hdr->MajorSubsystemVersion);
W.printNumber("MinorSubsystemVersion", Hdr->MinorSubsystemVersion);
W.printNumber("SizeOfImage", Hdr->SizeOfImage);
W.printNumber("SizeOfHeaders", Hdr->SizeOfHeaders);
W.printEnum ("Subsystem", Hdr->Subsystem, makeArrayRef(PEWindowsSubsystem));
W.printFlags ("Characteristics", Hdr->DLLCharacteristics,
makeArrayRef(PEDLLCharacteristics));
W.printNumber("SizeOfStackReserve", Hdr->SizeOfStackReserve);
W.printNumber("SizeOfStackCommit", Hdr->SizeOfStackCommit);
W.printNumber("SizeOfHeapReserve", Hdr->SizeOfHeapReserve);
W.printNumber("SizeOfHeapCommit", Hdr->SizeOfHeapCommit);
W.printNumber("NumberOfRvaAndSize", Hdr->NumberOfRvaAndSize);
if (Hdr->NumberOfRvaAndSize > 0) {
DictScope D(W, "DataDirectory");
static const char * const directory[] = {
"ExportTable", "ImportTable", "ResourceTable", "ExceptionTable",
"CertificateTable", "BaseRelocationTable", "Debug", "Architecture",
"GlobalPtr", "TLSTable", "LoadConfigTable", "BoundImport", "IAT",
"DelayImportDescriptor", "CLRRuntimeHeader", "Reserved"
};
for (uint32_t i = 0; i < Hdr->NumberOfRvaAndSize; ++i)
printDataDirectory(i, directory[i]);
}
}
void COFFDumper::printCOFFDebugDirectory() {
ListScope LS(W, "DebugDirectory");
for (const debug_directory &D : Obj->debug_directories()) {
char FormattedTime[20] = {};
time_t TDS = D.TimeDateStamp;
strftime(FormattedTime, 20, "%Y-%m-%d %H:%M:%S", gmtime(&TDS));
DictScope S(W, "DebugEntry");
W.printHex("Characteristics", D.Characteristics);
W.printHex("TimeDateStamp", FormattedTime, D.TimeDateStamp);
W.printHex("MajorVersion", D.MajorVersion);
W.printHex("MinorVersion", D.MinorVersion);
W.printEnum("Type", D.Type, makeArrayRef(ImageDebugType));
W.printHex("SizeOfData", D.SizeOfData);
W.printHex("AddressOfRawData", D.AddressOfRawData);
W.printHex("PointerToRawData", D.PointerToRawData);
if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) {
const codeview::DebugInfo *DebugInfo;
StringRef PDBFileName;
error(Obj->getDebugPDBInfo(&D, DebugInfo, PDBFileName));
DictScope PDBScope(W, "PDBInfo");
W.printHex("PDBSignature", DebugInfo->Signature.CVSignature);
if (DebugInfo->Signature.CVSignature == OMF::Signature::PDB70) {
W.printBinary("PDBGUID", makeArrayRef(DebugInfo->PDB70.Signature));
W.printNumber("PDBAge", DebugInfo->PDB70.Age);
W.printString("PDBFileName", PDBFileName);
}
} else {
// FIXME: Type values of 12 and 13 are commonly observed but are not in
// the documented type enum. Figure out what they mean.
ArrayRef<uint8_t> RawData;
error(
Obj->getRvaAndSizeAsBytes(D.AddressOfRawData, D.SizeOfData, RawData));
W.printBinaryBlock("RawData", RawData);
}
}
}
void COFFDumper::printRVATable(uint64_t TableVA, uint64_t Count,
uint64_t EntrySize, PrintExtraCB PrintExtra) {
uintptr_t TableStart, TableEnd;
error(Obj->getVaPtr(TableVA, TableStart));
error(Obj->getVaPtr(TableVA + Count * EntrySize - 1, TableEnd));
TableEnd++;
for (uintptr_t I = TableStart; I < TableEnd; I += EntrySize) {
uint32_t RVA = *reinterpret_cast<const ulittle32_t *>(I);
raw_ostream &OS = W.startLine();
OS << "0x" << utohexstr(Obj->getImageBase() + RVA);
if (PrintExtra)
PrintExtra(OS, reinterpret_cast<const uint8_t *>(I));
OS << '\n';
}
}
void COFFDumper::printCOFFLoadConfig() {
LoadConfigTables Tables;
if (Obj->is64())
printCOFFLoadConfig(Obj->getLoadConfig64(), Tables);
else
printCOFFLoadConfig(Obj->getLoadConfig32(), Tables);
if (Tables.SEHTableVA) {
ListScope LS(W, "SEHTable");
printRVATable(Tables.SEHTableVA, Tables.SEHTableCount, 4);
}
if (Tables.GuardFidTableVA) {
ListScope LS(W, "GuardFidTable");
if (Tables.GuardFlags & uint32_t(coff_guard_flags::FidTableHasFlags)) {
auto PrintGuardFlags = [](raw_ostream &OS, const uint8_t *Entry) {
uint8_t Flags = *reinterpret_cast<const uint8_t *>(Entry + 4);
if (Flags)
OS << " flags " << utohexstr(Flags);
};
printRVATable(Tables.GuardFidTableVA, Tables.GuardFidTableCount, 5,
PrintGuardFlags);
} else {
printRVATable(Tables.GuardFidTableVA, Tables.GuardFidTableCount, 4);
}
}
}
template <typename T>
void COFFDumper::printCOFFLoadConfig(const T *Conf, LoadConfigTables &Tables) {
if (!Conf)
return;
ListScope LS(W, "LoadConfig");
char FormattedTime[20] = {};
time_t TDS = Conf->TimeDateStamp;
strftime(FormattedTime, 20, "%Y-%m-%d %H:%M:%S", gmtime(&TDS));
W.printHex("Size", Conf->Size);
// Print everything before SecurityCookie. The vast majority of images today
// have all these fields.
if (Conf->Size < offsetof(T, SEHandlerTable))
return;
W.printHex("TimeDateStamp", FormattedTime, TDS);
W.printHex("MajorVersion", Conf->MajorVersion);
W.printHex("MinorVersion", Conf->MinorVersion);
W.printHex("GlobalFlagsClear", Conf->GlobalFlagsClear);
W.printHex("GlobalFlagsSet", Conf->GlobalFlagsSet);
W.printHex("CriticalSectionDefaultTimeout",
Conf->CriticalSectionDefaultTimeout);
W.printHex("DeCommitFreeBlockThreshold", Conf->DeCommitFreeBlockThreshold);
W.printHex("DeCommitTotalFreeThreshold", Conf->DeCommitTotalFreeThreshold);
W.printHex("LockPrefixTable", Conf->LockPrefixTable);
W.printHex("MaximumAllocationSize", Conf->MaximumAllocationSize);
W.printHex("VirtualMemoryThreshold", Conf->VirtualMemoryThreshold);
W.printHex("ProcessHeapFlags", Conf->ProcessHeapFlags);
W.printHex("ProcessAffinityMask", Conf->ProcessAffinityMask);
W.printHex("CSDVersion", Conf->CSDVersion);
W.printHex("DependentLoadFlags", Conf->DependentLoadFlags);
W.printHex("EditList", Conf->EditList);
W.printHex("SecurityCookie", Conf->SecurityCookie);
// Print the safe SEH table if present.
if (Conf->Size < offsetof(coff_load_configuration32, GuardCFCheckFunction))
return;
W.printHex("SEHandlerTable", Conf->SEHandlerTable);
W.printNumber("SEHandlerCount", Conf->SEHandlerCount);
Tables.SEHTableVA = Conf->SEHandlerTable;
Tables.SEHTableCount = Conf->SEHandlerCount;
// Print everything before CodeIntegrity. (2015)
if (Conf->Size < offsetof(T, CodeIntegrity))
return;
W.printHex("GuardCFCheckFunction", Conf->GuardCFCheckFunction);
W.printHex("GuardCFCheckDispatch", Conf->GuardCFCheckDispatch);
W.printHex("GuardCFFunctionTable", Conf->GuardCFFunctionTable);
W.printNumber("GuardCFFunctionCount", Conf->GuardCFFunctionCount);
W.printHex("GuardFlags", Conf->GuardFlags);
Tables.GuardFidTableVA = Conf->GuardCFFunctionTable;
Tables.GuardFidTableCount = Conf->GuardCFFunctionCount;
Tables.GuardFlags = Conf->GuardFlags;
// Print the rest. (2017)
if (Conf->Size < sizeof(T))
return;
W.printHex("GuardAddressTakenIatEntryTable",
Conf->GuardAddressTakenIatEntryTable);
W.printNumber("GuardAddressTakenIatEntryCount",
Conf->GuardAddressTakenIatEntryCount);
W.printHex("GuardLongJumpTargetTable", Conf->GuardLongJumpTargetTable);
W.printNumber("GuardLongJumpTargetCount", Conf->GuardLongJumpTargetCount);
W.printHex("DynamicValueRelocTable", Conf->DynamicValueRelocTable);
W.printHex("CHPEMetadataPointer", Conf->CHPEMetadataPointer);
W.printHex("GuardRFFailureRoutine", Conf->GuardRFFailureRoutine);
W.printHex("GuardRFFailureRoutineFunctionPointer",
Conf->GuardRFFailureRoutineFunctionPointer);
W.printHex("DynamicValueRelocTableOffset",
Conf->DynamicValueRelocTableOffset);
W.printNumber("DynamicValueRelocTableSection",
Conf->DynamicValueRelocTableSection);
W.printHex("GuardRFVerifyStackPointerFunctionPointer",
Conf->GuardRFVerifyStackPointerFunctionPointer);
W.printHex("HotPatchTableOffset", Conf->HotPatchTableOffset);
}
void COFFDumper::printBaseOfDataField(const pe32_header *Hdr) {
W.printHex("BaseOfData", Hdr->BaseOfData);
}
void COFFDumper::printBaseOfDataField(const pe32plus_header *) {}
void COFFDumper::printCodeViewDebugInfo() {
// Print types first to build CVUDTNames, then print symbols.
for (const SectionRef &S : Obj->sections()) {
StringRef SectionName;
error(S.getName(SectionName));
if (SectionName == ".debug$T")
printCodeViewTypeSection(SectionName, S);
}
for (const SectionRef &S : Obj->sections()) {
StringRef SectionName;
error(S.getName(SectionName));
if (SectionName == ".debug$S")
printCodeViewSymbolSection(SectionName, S);
}
}
void COFFDumper::initializeFileAndStringTables(BinaryStreamReader &Reader) {
while (Reader.bytesRemaining() > 0 &&
(!CVFileChecksumTable.valid() || !CVStringTable.valid())) {
// The section consists of a number of subsection in the following format:
// |SubSectionType|SubSectionSize|Contents...|
uint32_t SubType, SubSectionSize;
error(Reader.readInteger(SubType));
error(Reader.readInteger(SubSectionSize));
StringRef Contents;
error(Reader.readFixedString(Contents, SubSectionSize));
BinaryStreamRef ST(Contents, support::little);
switch (DebugSubsectionKind(SubType)) {
case DebugSubsectionKind::FileChecksums:
error(CVFileChecksumTable.initialize(ST));
break;
case DebugSubsectionKind::StringTable:
[BinaryStream] Reduce the amount of boiler plate needed to use. Often you have an array and you just want to use it. With the current design, you have to first construct a `BinaryByteStream`, and then create a `BinaryStreamRef` from it. Worse, the `BinaryStreamRef` holds a pointer to the `BinaryByteStream`, so you can't just create a temporary one to appease the compiler, you have to actually hold onto both the `ArrayRef` as well as the `BinaryByteStream` *AND* the `BinaryStreamReader` on top of that. This makes for very cumbersome code, often requiring one to store a `BinaryByteStream` in a class just to circumvent this. At the cost of some added complexity (not exposed to users, but internal to the library), we can do better than this. This patch allows us to construct `BinaryStreamReaders` and `BinaryStreamWriters` directly from source data (e.g. `StringRef`, `MutableArrayRef<uint8_t>`, etc). Not only does this reduce the amount of code you have to type and make it more obvious how to use it, but it solves real lifetime issues when it's inconvenient to hold onto a `BinaryByteStream` for a long time. The additional complexity is in the form of an added layer of indirection. Whereas before we simply stored a `BinaryStream*` in the ref, we now store both a `BinaryStream*` **and** a `std::shared_ptr<BinaryStream>`. When the user wants to construct a `BinaryStreamRef` directly from an `ArrayRef` etc, we allocate an internal object that holds ownership over a `BinaryByteStream` and forwards all calls, and store this in the `shared_ptr<>`. This also maintains the ref semantics, as you can copy it by value and references refer to the same underlying stream -- the one being held in the object stored in the `shared_ptr`. Differential Revision: https://reviews.llvm.org/D33293 llvm-svn: 303294
2017-05-18 04:23:31 +08:00
error(CVStringTable.initialize(ST));
break;
default:
break;
}
uint32_t PaddedSize = alignTo(SubSectionSize, 4);
error(Reader.skip(PaddedSize - SubSectionSize));
}
}
void COFFDumper::printCodeViewSymbolSection(StringRef SectionName,
const SectionRef &Section) {
StringRef SectionContents;
error(Section.getContents(SectionContents));
StringRef Data = SectionContents;
SmallVector<StringRef, 10> FunctionNames;
StringMap<StringRef> FunctionLineTables;
ListScope D(W, "CodeViewDebugInfo");
// Print the section to allow correlation with printSections.
W.printNumber("Section", SectionName, Obj->getSectionID(Section));
uint32_t Magic;
error(consume(Data, Magic));
W.printHex("Magic", Magic);
if (Magic != COFF::DEBUG_SECTION_MAGIC)
return error(object_error::parse_failed);
[BinaryStream] Reduce the amount of boiler plate needed to use. Often you have an array and you just want to use it. With the current design, you have to first construct a `BinaryByteStream`, and then create a `BinaryStreamRef` from it. Worse, the `BinaryStreamRef` holds a pointer to the `BinaryByteStream`, so you can't just create a temporary one to appease the compiler, you have to actually hold onto both the `ArrayRef` as well as the `BinaryByteStream` *AND* the `BinaryStreamReader` on top of that. This makes for very cumbersome code, often requiring one to store a `BinaryByteStream` in a class just to circumvent this. At the cost of some added complexity (not exposed to users, but internal to the library), we can do better than this. This patch allows us to construct `BinaryStreamReaders` and `BinaryStreamWriters` directly from source data (e.g. `StringRef`, `MutableArrayRef<uint8_t>`, etc). Not only does this reduce the amount of code you have to type and make it more obvious how to use it, but it solves real lifetime issues when it's inconvenient to hold onto a `BinaryByteStream` for a long time. The additional complexity is in the form of an added layer of indirection. Whereas before we simply stored a `BinaryStream*` in the ref, we now store both a `BinaryStream*` **and** a `std::shared_ptr<BinaryStream>`. When the user wants to construct a `BinaryStreamRef` directly from an `ArrayRef` etc, we allocate an internal object that holds ownership over a `BinaryByteStream` and forwards all calls, and store this in the `shared_ptr<>`. This also maintains the ref semantics, as you can copy it by value and references refer to the same underlying stream -- the one being held in the object stored in the `shared_ptr`. Differential Revision: https://reviews.llvm.org/D33293 llvm-svn: 303294
2017-05-18 04:23:31 +08:00
BinaryStreamReader FSReader(Data, support::little);
initializeFileAndStringTables(FSReader);
// TODO: Convert this over to using ModuleSubstreamVisitor.
while (!Data.empty()) {
// The section consists of a number of subsection in the following format:
// |SubSectionType|SubSectionSize|Contents...|
uint32_t SubType, SubSectionSize;
error(consume(Data, SubType));
error(consume(Data, SubSectionSize));
ListScope S(W, "Subsection");
W.printEnum("SubSectionType", SubType, makeArrayRef(SubSectionTypes));
W.printHex("SubSectionSize", SubSectionSize);
// Get the contents of the subsection.
if (SubSectionSize > Data.size())
return error(object_error::parse_failed);
StringRef Contents = Data.substr(0, SubSectionSize);
// Add SubSectionSize to the current offset and align that offset to find
// the next subsection.
size_t SectionOffset = Data.data() - SectionContents.data();
size_t NextOffset = SectionOffset + SubSectionSize;
NextOffset = alignTo(NextOffset, 4);
if (NextOffset > SectionContents.size())
return error(object_error::parse_failed);
Data = SectionContents.drop_front(NextOffset);
// Optionally print the subsection bytes in case our parsing gets confused
// later.
if (opts::CodeViewSubsectionBytes)
printBinaryBlockWithRelocs("SubSectionContents", Section, SectionContents,
Contents);
switch (DebugSubsectionKind(SubType)) {
case DebugSubsectionKind::Symbols:
printCodeViewSymbolsSubsection(Contents, Section, SectionContents);
break;
case DebugSubsectionKind::InlineeLines:
printCodeViewInlineeLines(Contents);
break;
case DebugSubsectionKind::FileChecksums:
printCodeViewFileChecksums(Contents);
break;
case DebugSubsectionKind::Lines: {
// Holds a PC to file:line table. Some data to parse this subsection is
// stored in the other subsections, so just check sanity and store the
// pointers for deferred processing.
if (SubSectionSize < 12) {
// There should be at least three words to store two function
// relocations and size of the code.
error(object_error::parse_failed);
return;
}
StringRef LinkageName;
error(resolveSymbolName(Obj->getCOFFSection(Section), SectionOffset,
LinkageName));
W.printString("LinkageName", LinkageName);
if (FunctionLineTables.count(LinkageName) != 0) {
// Saw debug info for this function already?
error(object_error::parse_failed);
return;
}
FunctionLineTables[LinkageName] = Contents;
FunctionNames.push_back(LinkageName);
break;
}
case DebugSubsectionKind::FrameData: {
// First four bytes is a relocation against the function.
[BinaryStream] Reduce the amount of boiler plate needed to use. Often you have an array and you just want to use it. With the current design, you have to first construct a `BinaryByteStream`, and then create a `BinaryStreamRef` from it. Worse, the `BinaryStreamRef` holds a pointer to the `BinaryByteStream`, so you can't just create a temporary one to appease the compiler, you have to actually hold onto both the `ArrayRef` as well as the `BinaryByteStream` *AND* the `BinaryStreamReader` on top of that. This makes for very cumbersome code, often requiring one to store a `BinaryByteStream` in a class just to circumvent this. At the cost of some added complexity (not exposed to users, but internal to the library), we can do better than this. This patch allows us to construct `BinaryStreamReaders` and `BinaryStreamWriters` directly from source data (e.g. `StringRef`, `MutableArrayRef<uint8_t>`, etc). Not only does this reduce the amount of code you have to type and make it more obvious how to use it, but it solves real lifetime issues when it's inconvenient to hold onto a `BinaryByteStream` for a long time. The additional complexity is in the form of an added layer of indirection. Whereas before we simply stored a `BinaryStream*` in the ref, we now store both a `BinaryStream*` **and** a `std::shared_ptr<BinaryStream>`. When the user wants to construct a `BinaryStreamRef` directly from an `ArrayRef` etc, we allocate an internal object that holds ownership over a `BinaryByteStream` and forwards all calls, and store this in the `shared_ptr<>`. This also maintains the ref semantics, as you can copy it by value and references refer to the same underlying stream -- the one being held in the object stored in the `shared_ptr`. Differential Revision: https://reviews.llvm.org/D33293 llvm-svn: 303294
2017-05-18 04:23:31 +08:00
BinaryStreamReader SR(Contents, llvm::support::little);
DebugFrameDataSubsectionRef FrameData;
error(FrameData.initialize(SR));
StringRef LinkageName;
error(resolveSymbolName(Obj->getCOFFSection(Section), SectionContents,
FrameData.getRelocPtr(), LinkageName));
W.printString("LinkageName", LinkageName);
// To find the active frame description, search this array for the
// smallest PC range that includes the current PC.
for (const auto &FD : FrameData) {
StringRef FrameFunc = error(CVStringTable.getString(FD.FrameFunc));
DictScope S(W, "FrameData");
W.printHex("RvaStart", FD.RvaStart);
W.printHex("CodeSize", FD.CodeSize);
W.printHex("LocalSize", FD.LocalSize);
W.printHex("ParamsSize", FD.ParamsSize);
W.printHex("MaxStackSize", FD.MaxStackSize);
W.printString("FrameFunc", FrameFunc);
W.printHex("PrologSize", FD.PrologSize);
W.printHex("SavedRegsSize", FD.SavedRegsSize);
W.printFlags("Flags", FD.Flags, makeArrayRef(FrameDataFlags));
}
break;
}
// Do nothing for unrecognized subsections.
default:
break;
}
W.flush();
}
// Dump the line tables now that we've read all the subsections and know all
// the required information.
for (unsigned I = 0, E = FunctionNames.size(); I != E; ++I) {
StringRef Name = FunctionNames[I];
ListScope S(W, "FunctionLineTable");
W.printString("LinkageName", Name);
[BinaryStream] Reduce the amount of boiler plate needed to use. Often you have an array and you just want to use it. With the current design, you have to first construct a `BinaryByteStream`, and then create a `BinaryStreamRef` from it. Worse, the `BinaryStreamRef` holds a pointer to the `BinaryByteStream`, so you can't just create a temporary one to appease the compiler, you have to actually hold onto both the `ArrayRef` as well as the `BinaryByteStream` *AND* the `BinaryStreamReader` on top of that. This makes for very cumbersome code, often requiring one to store a `BinaryByteStream` in a class just to circumvent this. At the cost of some added complexity (not exposed to users, but internal to the library), we can do better than this. This patch allows us to construct `BinaryStreamReaders` and `BinaryStreamWriters` directly from source data (e.g. `StringRef`, `MutableArrayRef<uint8_t>`, etc). Not only does this reduce the amount of code you have to type and make it more obvious how to use it, but it solves real lifetime issues when it's inconvenient to hold onto a `BinaryByteStream` for a long time. The additional complexity is in the form of an added layer of indirection. Whereas before we simply stored a `BinaryStream*` in the ref, we now store both a `BinaryStream*` **and** a `std::shared_ptr<BinaryStream>`. When the user wants to construct a `BinaryStreamRef` directly from an `ArrayRef` etc, we allocate an internal object that holds ownership over a `BinaryByteStream` and forwards all calls, and store this in the `shared_ptr<>`. This also maintains the ref semantics, as you can copy it by value and references refer to the same underlying stream -- the one being held in the object stored in the `shared_ptr`. Differential Revision: https://reviews.llvm.org/D33293 llvm-svn: 303294
2017-05-18 04:23:31 +08:00
BinaryStreamReader Reader(FunctionLineTables[Name], support::little);
DebugLinesSubsectionRef LineInfo;
error(LineInfo.initialize(Reader));
W.printHex("Flags", LineInfo.header()->Flags);
W.printHex("CodeSize", LineInfo.header()->CodeSize);
for (const auto &Entry : LineInfo) {
ListScope S(W, "FilenameSegment");
printFileNameForOffset("Filename", Entry.NameIndex);
uint32_t ColumnIndex = 0;
for (const auto &Line : Entry.LineNumbers) {
if (Line.Offset >= LineInfo.header()->CodeSize) {
error(object_error::parse_failed);
return;
}
std::string PC = formatv("+{0:X}", uint32_t(Line.Offset));
ListScope PCScope(W, PC);
codeview::LineInfo LI(Line.Flags);
if (LI.isAlwaysStepInto())
W.printString("StepInto", StringRef("Always"));
else if (LI.isNeverStepInto())
W.printString("StepInto", StringRef("Never"));
else
W.printNumber("LineNumberStart", LI.getStartLine());
W.printNumber("LineNumberEndDelta", LI.getLineDelta());
W.printBoolean("IsStatement", LI.isStatement());
if (LineInfo.hasColumnInfo()) {
W.printNumber("ColStart", Entry.Columns[ColumnIndex].StartColumn);
W.printNumber("ColEnd", Entry.Columns[ColumnIndex].EndColumn);
++ColumnIndex;
}
}
}
}
}
void COFFDumper::printCodeViewSymbolsSubsection(StringRef Subsection,
const SectionRef &Section,
StringRef SectionContents) {
ArrayRef<uint8_t> BinaryData(Subsection.bytes_begin(),
Subsection.bytes_end());
auto CODD = llvm::make_unique<COFFObjectDumpDelegate>(*this, Section, Obj,
SectionContents);
CVSymbolDumper CVSD(W, Types, CodeViewContainer::ObjectFile, std::move(CODD),
opts::CodeViewSubsectionBytes);
CVSymbolArray Symbols;
[BinaryStream] Reduce the amount of boiler plate needed to use. Often you have an array and you just want to use it. With the current design, you have to first construct a `BinaryByteStream`, and then create a `BinaryStreamRef` from it. Worse, the `BinaryStreamRef` holds a pointer to the `BinaryByteStream`, so you can't just create a temporary one to appease the compiler, you have to actually hold onto both the `ArrayRef` as well as the `BinaryByteStream` *AND* the `BinaryStreamReader` on top of that. This makes for very cumbersome code, often requiring one to store a `BinaryByteStream` in a class just to circumvent this. At the cost of some added complexity (not exposed to users, but internal to the library), we can do better than this. This patch allows us to construct `BinaryStreamReaders` and `BinaryStreamWriters` directly from source data (e.g. `StringRef`, `MutableArrayRef<uint8_t>`, etc). Not only does this reduce the amount of code you have to type and make it more obvious how to use it, but it solves real lifetime issues when it's inconvenient to hold onto a `BinaryByteStream` for a long time. The additional complexity is in the form of an added layer of indirection. Whereas before we simply stored a `BinaryStream*` in the ref, we now store both a `BinaryStream*` **and** a `std::shared_ptr<BinaryStream>`. When the user wants to construct a `BinaryStreamRef` directly from an `ArrayRef` etc, we allocate an internal object that holds ownership over a `BinaryByteStream` and forwards all calls, and store this in the `shared_ptr<>`. This also maintains the ref semantics, as you can copy it by value and references refer to the same underlying stream -- the one being held in the object stored in the `shared_ptr`. Differential Revision: https://reviews.llvm.org/D33293 llvm-svn: 303294
2017-05-18 04:23:31 +08:00
BinaryStreamReader Reader(BinaryData, llvm::support::little);
if (auto EC = Reader.readArray(Symbols, Reader.getLength())) {
consumeError(std::move(EC));
W.flush();
error(object_error::parse_failed);
}
if (auto EC = CVSD.dump(Symbols)) {
W.flush();
error(std::move(EC));
}
W.flush();
}
void COFFDumper::printCodeViewFileChecksums(StringRef Subsection) {
BinaryStreamRef Stream(Subsection, llvm::support::little);
DebugChecksumsSubsectionRef Checksums;
error(Checksums.initialize(Stream));
for (auto &FC : Checksums) {
DictScope S(W, "FileChecksum");
StringRef Filename = error(CVStringTable.getString(FC.FileNameOffset));
W.printHex("Filename", Filename, FC.FileNameOffset);
W.printHex("ChecksumSize", FC.Checksum.size());
W.printEnum("ChecksumKind", uint8_t(FC.Kind),
makeArrayRef(FileChecksumKindNames));
W.printBinary("ChecksumBytes", FC.Checksum);
}
}
void COFFDumper::printCodeViewInlineeLines(StringRef Subsection) {
[BinaryStream] Reduce the amount of boiler plate needed to use. Often you have an array and you just want to use it. With the current design, you have to first construct a `BinaryByteStream`, and then create a `BinaryStreamRef` from it. Worse, the `BinaryStreamRef` holds a pointer to the `BinaryByteStream`, so you can't just create a temporary one to appease the compiler, you have to actually hold onto both the `ArrayRef` as well as the `BinaryByteStream` *AND* the `BinaryStreamReader` on top of that. This makes for very cumbersome code, often requiring one to store a `BinaryByteStream` in a class just to circumvent this. At the cost of some added complexity (not exposed to users, but internal to the library), we can do better than this. This patch allows us to construct `BinaryStreamReaders` and `BinaryStreamWriters` directly from source data (e.g. `StringRef`, `MutableArrayRef<uint8_t>`, etc). Not only does this reduce the amount of code you have to type and make it more obvious how to use it, but it solves real lifetime issues when it's inconvenient to hold onto a `BinaryByteStream` for a long time. The additional complexity is in the form of an added layer of indirection. Whereas before we simply stored a `BinaryStream*` in the ref, we now store both a `BinaryStream*` **and** a `std::shared_ptr<BinaryStream>`. When the user wants to construct a `BinaryStreamRef` directly from an `ArrayRef` etc, we allocate an internal object that holds ownership over a `BinaryByteStream` and forwards all calls, and store this in the `shared_ptr<>`. This also maintains the ref semantics, as you can copy it by value and references refer to the same underlying stream -- the one being held in the object stored in the `shared_ptr`. Differential Revision: https://reviews.llvm.org/D33293 llvm-svn: 303294
2017-05-18 04:23:31 +08:00
BinaryStreamReader SR(Subsection, llvm::support::little);
DebugInlineeLinesSubsectionRef Lines;
error(Lines.initialize(SR));
for (auto &Line : Lines) {
DictScope S(W, "InlineeSourceLine");
printTypeIndex("Inlinee", Line.Header->Inlinee);
printFileNameForOffset("FileID", Line.Header->FileID);
W.printNumber("SourceLineNum", Line.Header->SourceLineNum);
if (Lines.hasExtraFiles()) {
W.printNumber("ExtraFileCount", Line.ExtraFiles.size());
ListScope ExtraFiles(W, "ExtraFiles");
for (const auto &FID : Line.ExtraFiles) {
printFileNameForOffset("FileID", FID);
}
}
}
}
StringRef COFFDumper::getFileNameForFileOffset(uint32_t FileOffset) {
// The file checksum subsection should precede all references to it.
if (!CVFileChecksumTable.valid() || !CVStringTable.valid())
error(object_error::parse_failed);
auto Iter = CVFileChecksumTable.getArray().at(FileOffset);
// Check if the file checksum table offset is valid.
if (Iter == CVFileChecksumTable.end())
error(object_error::parse_failed);
return error(CVStringTable.getString(Iter->FileNameOffset));
}
void COFFDumper::printFileNameForOffset(StringRef Label, uint32_t FileOffset) {
W.printHex(Label, getFileNameForFileOffset(FileOffset), FileOffset);
}
void COFFDumper::mergeCodeViewTypes(MergingTypeTableBuilder &CVIDs,
MergingTypeTableBuilder &CVTypes) {
for (const SectionRef &S : Obj->sections()) {
StringRef SectionName;
error(S.getName(SectionName));
if (SectionName == ".debug$T") {
StringRef Data;
error(S.getContents(Data));
uint32_t Magic;
error(consume(Data, Magic));
if (Magic != 4)
error(object_error::parse_failed);
[BinaryStream] Reduce the amount of boiler plate needed to use. Often you have an array and you just want to use it. With the current design, you have to first construct a `BinaryByteStream`, and then create a `BinaryStreamRef` from it. Worse, the `BinaryStreamRef` holds a pointer to the `BinaryByteStream`, so you can't just create a temporary one to appease the compiler, you have to actually hold onto both the `ArrayRef` as well as the `BinaryByteStream` *AND* the `BinaryStreamReader` on top of that. This makes for very cumbersome code, often requiring one to store a `BinaryByteStream` in a class just to circumvent this. At the cost of some added complexity (not exposed to users, but internal to the library), we can do better than this. This patch allows us to construct `BinaryStreamReaders` and `BinaryStreamWriters` directly from source data (e.g. `StringRef`, `MutableArrayRef<uint8_t>`, etc). Not only does this reduce the amount of code you have to type and make it more obvious how to use it, but it solves real lifetime issues when it's inconvenient to hold onto a `BinaryByteStream` for a long time. The additional complexity is in the form of an added layer of indirection. Whereas before we simply stored a `BinaryStream*` in the ref, we now store both a `BinaryStream*` **and** a `std::shared_ptr<BinaryStream>`. When the user wants to construct a `BinaryStreamRef` directly from an `ArrayRef` etc, we allocate an internal object that holds ownership over a `BinaryByteStream` and forwards all calls, and store this in the `shared_ptr<>`. This also maintains the ref semantics, as you can copy it by value and references refer to the same underlying stream -- the one being held in the object stored in the `shared_ptr`. Differential Revision: https://reviews.llvm.org/D33293 llvm-svn: 303294
2017-05-18 04:23:31 +08:00
CVTypeArray Types;
[BinaryStream] Reduce the amount of boiler plate needed to use. Often you have an array and you just want to use it. With the current design, you have to first construct a `BinaryByteStream`, and then create a `BinaryStreamRef` from it. Worse, the `BinaryStreamRef` holds a pointer to the `BinaryByteStream`, so you can't just create a temporary one to appease the compiler, you have to actually hold onto both the `ArrayRef` as well as the `BinaryByteStream` *AND* the `BinaryStreamReader` on top of that. This makes for very cumbersome code, often requiring one to store a `BinaryByteStream` in a class just to circumvent this. At the cost of some added complexity (not exposed to users, but internal to the library), we can do better than this. This patch allows us to construct `BinaryStreamReaders` and `BinaryStreamWriters` directly from source data (e.g. `StringRef`, `MutableArrayRef<uint8_t>`, etc). Not only does this reduce the amount of code you have to type and make it more obvious how to use it, but it solves real lifetime issues when it's inconvenient to hold onto a `BinaryByteStream` for a long time. The additional complexity is in the form of an added layer of indirection. Whereas before we simply stored a `BinaryStream*` in the ref, we now store both a `BinaryStream*` **and** a `std::shared_ptr<BinaryStream>`. When the user wants to construct a `BinaryStreamRef` directly from an `ArrayRef` etc, we allocate an internal object that holds ownership over a `BinaryByteStream` and forwards all calls, and store this in the `shared_ptr<>`. This also maintains the ref semantics, as you can copy it by value and references refer to the same underlying stream -- the one being held in the object stored in the `shared_ptr`. Differential Revision: https://reviews.llvm.org/D33293 llvm-svn: 303294
2017-05-18 04:23:31 +08:00
BinaryStreamReader Reader(Data, llvm::support::little);
if (auto EC = Reader.readArray(Types, Reader.getLength())) {
consumeError(std::move(EC));
W.flush();
error(object_error::parse_failed);
}
SmallVector<TypeIndex, 128> SourceToDest;
if (auto EC = mergeTypeAndIdRecords(CVIDs, CVTypes, SourceToDest, Types))
return error(std::move(EC));
}
}
}
void COFFDumper::printCodeViewTypeSection(StringRef SectionName,
const SectionRef &Section) {
ListScope D(W, "CodeViewTypes");
W.printNumber("Section", SectionName, Obj->getSectionID(Section));
StringRef Data;
error(Section.getContents(Data));
if (opts::CodeViewSubsectionBytes)
W.printBinaryBlock("Data", Data);
uint32_t Magic;
error(consume(Data, Magic));
W.printHex("Magic", Magic);
if (Magic != COFF::DEBUG_SECTION_MAGIC)
return error(object_error::parse_failed);
Types.reset(Data, 100);
TypeDumpVisitor TDV(Types, &W, opts::CodeViewSubsectionBytes);
error(codeview::visitTypeStream(Types, TDV));
W.flush();
}
void COFFDumper::printSections() {
ListScope SectionsD(W, "Sections");
int SectionNumber = 0;
for (const SectionRef &Sec : Obj->sections()) {
++SectionNumber;
const coff_section *Section = Obj->getCOFFSection(Sec);
StringRef Name;
error(Sec.getName(Name));
DictScope D(W, "Section");
W.printNumber("Number", SectionNumber);
W.printBinary("Name", Name, Section->Name);
W.printHex ("VirtualSize", Section->VirtualSize);
W.printHex ("VirtualAddress", Section->VirtualAddress);
W.printNumber("RawDataSize", Section->SizeOfRawData);
W.printHex ("PointerToRawData", Section->PointerToRawData);
W.printHex ("PointerToRelocations", Section->PointerToRelocations);
W.printHex ("PointerToLineNumbers", Section->PointerToLinenumbers);
W.printNumber("RelocationCount", Section->NumberOfRelocations);
W.printNumber("LineNumberCount", Section->NumberOfLinenumbers);
W.printFlags ("Characteristics", Section->Characteristics,
makeArrayRef(ImageSectionCharacteristics),
COFF::SectionCharacteristics(0x00F00000));
if (opts::SectionRelocations) {
ListScope D(W, "Relocations");
for (const RelocationRef &Reloc : Sec.relocations())
printRelocation(Sec, Reloc);
}
if (opts::SectionSymbols) {
ListScope D(W, "Symbols");
for (const SymbolRef &Symbol : Obj->symbols()) {
if (!Sec.containsSymbol(Symbol))
continue;
printSymbol(Symbol);
}
}
if (opts::SectionData &&
!(Section->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)) {
StringRef Data;
error(Sec.getContents(Data));
W.printBinaryBlock("SectionData", Data);
}
}
}
void COFFDumper::printRelocations() {
ListScope D(W, "Relocations");
int SectionNumber = 0;
for (const SectionRef &Section : Obj->sections()) {
++SectionNumber;
StringRef Name;
error(Section.getName(Name));
bool PrintedGroup = false;
for (const RelocationRef &Reloc : Section.relocations()) {
if (!PrintedGroup) {
W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
W.indent();
PrintedGroup = true;
}
printRelocation(Section, Reloc);
}
if (PrintedGroup) {
W.unindent();
W.startLine() << "}\n";
}
}
}
void COFFDumper::printRelocation(const SectionRef &Section,
const RelocationRef &Reloc, uint64_t Bias) {
uint64_t Offset = Reloc.getOffset() - Bias;
uint64_t RelocType = Reloc.getType();
SmallString<32> RelocName;
StringRef SymbolName;
Reloc.getTypeName(RelocName);
symbol_iterator Symbol = Reloc.getSymbol();
if (Symbol != Obj->symbol_end()) {
Thread Expected<...> up from libObject’s getName() for symbols to allow llvm-objdump to produce a good error message. Produce another specific error message for a malformed Mach-O file when a symbol’s string index is past the end of the string table. The existing test case in test/Object/macho-invalid.test for macho-invalid-symbol-name-past-eof now reports the error with the message indicating that a symbol at a specific index has a bad sting index and that bad string index value. Again converting interfaces to Expected<> from ErrorOr<> does involve touching a number of places. Where the existing code reported the error with a string message or an error code it was converted to do the same. There is some code for this that could be factored into a routine but I would like to leave that for the code owners post-commit to do as they want for handling an llvm::Error. An example of how this could be done is shown in the diff in lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h which had a Check() routine already for std::error_code so I added one like it for llvm::Error . Also there some were bugs in the existing code that did not deal with the old ErrorOr<> return values.  So now with Expected<> since they must be checked and the error handled, I added a TODO and a comment: “// TODO: Actually report errors helpfully” and a call something like consumeError(NameOrErr.takeError()) so the buggy code will not crash since needed to deal with the Error. Note there fixes needed to lld that goes along with this that I will commit right after this. So expect lld not to built after this commit and before the next one. llvm-svn: 266919
2016-04-21 05:24:34 +08:00
Expected<StringRef> SymbolNameOrErr = Symbol->getName();
error(errorToErrorCode(SymbolNameOrErr.takeError()));
SymbolName = *SymbolNameOrErr;
}
if (opts::ExpandRelocs) {
DictScope Group(W, "Relocation");
W.printHex("Offset", Offset);
W.printNumber("Type", RelocName, RelocType);
W.printString("Symbol", SymbolName.empty() ? "-" : SymbolName);
} else {
raw_ostream& OS = W.startLine();
OS << W.hex(Offset)
<< " " << RelocName
<< " " << (SymbolName.empty() ? "-" : SymbolName)
<< "\n";
}
}
void COFFDumper::printSymbols() {
ListScope Group(W, "Symbols");
for (const SymbolRef &Symbol : Obj->symbols())
printSymbol(Symbol);
}
void COFFDumper::printDynamicSymbols() { ListScope Group(W, "DynamicSymbols"); }
static ErrorOr<StringRef>
getSectionName(const llvm::object::COFFObjectFile *Obj, int32_t SectionNumber,
const coff_section *Section) {
if (Section) {
StringRef SectionName;
if (std::error_code EC = Obj->getSectionName(Section, SectionName))
return EC;
return SectionName;
}
if (SectionNumber == llvm::COFF::IMAGE_SYM_DEBUG)
return StringRef("IMAGE_SYM_DEBUG");
if (SectionNumber == llvm::COFF::IMAGE_SYM_ABSOLUTE)
return StringRef("IMAGE_SYM_ABSOLUTE");
if (SectionNumber == llvm::COFF::IMAGE_SYM_UNDEFINED)
return StringRef("IMAGE_SYM_UNDEFINED");
return StringRef("");
}
void COFFDumper::printSymbol(const SymbolRef &Sym) {
DictScope D(W, "Symbol");
COFFSymbolRef Symbol = Obj->getCOFFSymbol(Sym);
const coff_section *Section;
if (std::error_code EC = Obj->getSection(Symbol.getSectionNumber(), Section)) {
W.startLine() << "Invalid section number: " << EC.message() << "\n";
W.flush();
return;
}
StringRef SymbolName;
if (Obj->getSymbolName(Symbol, SymbolName))
SymbolName = "";
StringRef SectionName = "";
ErrorOr<StringRef> Res =
getSectionName(Obj, Symbol.getSectionNumber(), Section);
if (Res)
SectionName = *Res;
W.printString("Name", SymbolName);
W.printNumber("Value", Symbol.getValue());
W.printNumber("Section", SectionName, Symbol.getSectionNumber());
W.printEnum ("BaseType", Symbol.getBaseType(), makeArrayRef(ImageSymType));
W.printEnum ("ComplexType", Symbol.getComplexType(),
makeArrayRef(ImageSymDType));
W.printEnum ("StorageClass", Symbol.getStorageClass(),
makeArrayRef(ImageSymClass));
W.printNumber("AuxSymbolCount", Symbol.getNumberOfAuxSymbols());
for (uint8_t I = 0; I < Symbol.getNumberOfAuxSymbols(); ++I) {
if (Symbol.isFunctionDefinition()) {
const coff_aux_function_definition *Aux;
error(getSymbolAuxData(Obj, Symbol, I, Aux));
DictScope AS(W, "AuxFunctionDef");
W.printNumber("TagIndex", Aux->TagIndex);
W.printNumber("TotalSize", Aux->TotalSize);
W.printHex("PointerToLineNumber", Aux->PointerToLinenumber);
W.printHex("PointerToNextFunction", Aux->PointerToNextFunction);
} else if (Symbol.isAnyUndefined()) {
const coff_aux_weak_external *Aux;
error(getSymbolAuxData(Obj, Symbol, I, Aux));
Expected<COFFSymbolRef> Linked = Obj->getSymbol(Aux->TagIndex);
StringRef LinkedName;
std::error_code EC = errorToErrorCode(Linked.takeError());
if (EC || (EC = Obj->getSymbolName(*Linked, LinkedName))) {
LinkedName = "";
error(EC);
}
DictScope AS(W, "AuxWeakExternal");
W.printNumber("Linked", LinkedName, Aux->TagIndex);
W.printEnum ("Search", Aux->Characteristics,
makeArrayRef(WeakExternalCharacteristics));
} else if (Symbol.isFileRecord()) {
const char *FileName;
error(getSymbolAuxData(Obj, Symbol, I, FileName));
DictScope AS(W, "AuxFileRecord");
StringRef Name(FileName, Symbol.getNumberOfAuxSymbols() *
Obj->getSymbolTableEntrySize());
W.printString("FileName", Name.rtrim(StringRef("\0", 1)));
break;
} else if (Symbol.isSectionDefinition()) {
const coff_aux_section_definition *Aux;
error(getSymbolAuxData(Obj, Symbol, I, Aux));
int32_t AuxNumber = Aux->getNumber(Symbol.isBigObj());
DictScope AS(W, "AuxSectionDef");
W.printNumber("Length", Aux->Length);
W.printNumber("RelocationCount", Aux->NumberOfRelocations);
W.printNumber("LineNumberCount", Aux->NumberOfLinenumbers);
W.printHex("Checksum", Aux->CheckSum);
W.printNumber("Number", AuxNumber);
W.printEnum("Selection", Aux->Selection, makeArrayRef(ImageCOMDATSelect));
if (Section && Section->Characteristics & COFF::IMAGE_SCN_LNK_COMDAT
&& Aux->Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) {
const coff_section *Assoc;
StringRef AssocName = "";
std::error_code EC = Obj->getSection(AuxNumber, Assoc);
ErrorOr<StringRef> Res = getSectionName(Obj, AuxNumber, Assoc);
if (Res)
AssocName = *Res;
if (!EC)
EC = Res.getError();
if (EC) {
AssocName = "";
error(EC);
}
W.printNumber("AssocSection", AssocName, AuxNumber);
}
} else if (Symbol.isCLRToken()) {
const coff_aux_clr_token *Aux;
error(getSymbolAuxData(Obj, Symbol, I, Aux));
Expected<COFFSymbolRef> ReferredSym =
Obj->getSymbol(Aux->SymbolTableIndex);
StringRef ReferredName;
std::error_code EC = errorToErrorCode(ReferredSym.takeError());
if (EC || (EC = Obj->getSymbolName(*ReferredSym, ReferredName))) {
ReferredName = "";
error(EC);
}
DictScope AS(W, "AuxCLRToken");
W.printNumber("AuxType", Aux->AuxType);
W.printNumber("Reserved", Aux->Reserved);
W.printNumber("SymbolTableIndex", ReferredName, Aux->SymbolTableIndex);
} else {
W.startLine() << "<unhandled auxiliary record>\n";
}
}
}
void COFFDumper::printUnwindInfo() {
ListScope D(W, "UnwindInformation");
switch (Obj->getMachine()) {
case COFF::IMAGE_FILE_MACHINE_AMD64: {
Win64EH::Dumper Dumper(W);
Win64EH::Dumper::SymbolResolver
Resolver = [](const object::coff_section *Section, uint64_t Offset,
SymbolRef &Symbol, void *user_data) -> std::error_code {
COFFDumper *Dumper = reinterpret_cast<COFFDumper *>(user_data);
return Dumper->resolveSymbol(Section, Offset, Symbol);
};
Win64EH::Dumper::Context Ctx(*Obj, Resolver, this);
Dumper.printData(Ctx);
break;
}
case COFF::IMAGE_FILE_MACHINE_ARMNT: {
ARM::WinEH::Decoder Decoder(W);
Decoder.dumpProcedureData(*Obj);
break;
}
default:
W.printEnum("unsupported Image Machine", Obj->getMachine(),
makeArrayRef(ImageFileMachineType));
break;
}
}
void COFFDumper::printImportedSymbols(
iterator_range<imported_symbol_iterator> Range) {
for (const ImportedSymbolRef &I : Range) {
StringRef Sym;
error(I.getSymbolName(Sym));
uint16_t Ordinal;
error(I.getOrdinal(Ordinal));
W.printNumber("Symbol", Sym, Ordinal);
}
}
void COFFDumper::printDelayImportedSymbols(
const DelayImportDirectoryEntryRef &I,
iterator_range<imported_symbol_iterator> Range) {
int Index = 0;
for (const ImportedSymbolRef &S : Range) {
DictScope Import(W, "Import");
StringRef Sym;
error(S.getSymbolName(Sym));
uint16_t Ordinal;
error(S.getOrdinal(Ordinal));
W.printNumber("Symbol", Sym, Ordinal);
uint64_t Addr;
error(I.getImportAddress(Index++, Addr));
W.printHex("Address", Addr);
}
}
void COFFDumper::printCOFFImports() {
// Regular imports
for (const ImportDirectoryEntryRef &I : Obj->import_directories()) {
DictScope Import(W, "Import");
StringRef Name;
error(I.getName(Name));
W.printString("Name", Name);
uint32_t ILTAddr;
error(I.getImportLookupTableRVA(ILTAddr));
W.printHex("ImportLookupTableRVA", ILTAddr);
uint32_t IATAddr;
error(I.getImportAddressTableRVA(IATAddr));
W.printHex("ImportAddressTableRVA", IATAddr);
// The import lookup table can be missing with certain older linkers, so
// fall back to the import address table in that case.
if (ILTAddr)
printImportedSymbols(I.lookup_table_symbols());
else
printImportedSymbols(I.imported_symbols());
}
// Delay imports
for (const DelayImportDirectoryEntryRef &I : Obj->delay_import_directories()) {
DictScope Import(W, "DelayImport");
StringRef Name;
error(I.getName(Name));
W.printString("Name", Name);
const delay_import_directory_table_entry *Table;
error(I.getDelayImportTable(Table));
W.printHex("Attributes", Table->Attributes);
W.printHex("ModuleHandle", Table->ModuleHandle);
W.printHex("ImportAddressTable", Table->DelayImportAddressTable);
W.printHex("ImportNameTable", Table->DelayImportNameTable);
W.printHex("BoundDelayImportTable", Table->BoundDelayImportTable);
W.printHex("UnloadDelayImportTable", Table->UnloadDelayImportTable);
printDelayImportedSymbols(I, I.imported_symbols());
}
}
void COFFDumper::printCOFFExports() {
for (const ExportDirectoryEntryRef &E : Obj->export_directories()) {
DictScope Export(W, "Export");
StringRef Name;
uint32_t Ordinal, RVA;
error(E.getSymbolName(Name));
error(E.getOrdinal(Ordinal));
error(E.getExportRVA(RVA));
W.printNumber("Ordinal", Ordinal);
W.printString("Name", Name);
W.printHex("RVA", RVA);
}
}
void COFFDumper::printCOFFDirectives() {
for (const SectionRef &Section : Obj->sections()) {
StringRef Contents;
StringRef Name;
error(Section.getName(Name));
if (Name != ".drectve")
continue;
error(Section.getContents(Contents));
W.printString("Directive(s)", Contents);
}
}
static std::string getBaseRelocTypeName(uint8_t Type) {
switch (Type) {
case COFF::IMAGE_REL_BASED_ABSOLUTE: return "ABSOLUTE";
case COFF::IMAGE_REL_BASED_HIGH: return "HIGH";
case COFF::IMAGE_REL_BASED_LOW: return "LOW";
case COFF::IMAGE_REL_BASED_HIGHLOW: return "HIGHLOW";
case COFF::IMAGE_REL_BASED_HIGHADJ: return "HIGHADJ";
case COFF::IMAGE_REL_BASED_ARM_MOV32T: return "ARM_MOV32(T)";
case COFF::IMAGE_REL_BASED_DIR64: return "DIR64";
default: return "unknown (" + llvm::utostr(Type) + ")";
}
}
void COFFDumper::printCOFFBaseReloc() {
ListScope D(W, "BaseReloc");
for (const BaseRelocRef &I : Obj->base_relocs()) {
uint8_t Type;
uint32_t RVA;
error(I.getRVA(RVA));
error(I.getType(Type));
DictScope Import(W, "Entry");
W.printString("Type", getBaseRelocTypeName(Type));
W.printHex("Address", RVA);
}
}
void COFFDumper::printCOFFResources() {
ListScope ResourcesD(W, "Resources");
for (const SectionRef &S : Obj->sections()) {
StringRef Name;
error(S.getName(Name));
if (!Name.startswith(".rsrc"))
continue;
StringRef Ref;
error(S.getContents(Ref));
if ((Name == ".rsrc") || (Name == ".rsrc$01")) {
ResourceSectionRef RSF(Ref);
auto &BaseTable = unwrapOrError(RSF.getBaseTable());
W.printNumber("Total Number of Resources",
countTotalTableEntries(RSF, BaseTable, "Type"));
W.printHex("Base Table Address",
Obj->getCOFFSection(S)->PointerToRawData);
W.startLine() << "\n";
printResourceDirectoryTable(RSF, BaseTable, "Type");
}
if (opts::SectionData)
W.printBinaryBlock(Name.str() + " Data", Ref);
}
}
uint32_t
COFFDumper::countTotalTableEntries(ResourceSectionRef RSF,
const coff_resource_dir_table &Table,
StringRef Level) {
uint32_t TotalEntries = 0;
for (int i = 0; i < Table.NumberOfNameEntries + Table.NumberOfIDEntries;
i++) {
auto Entry = unwrapOrError(getResourceDirectoryTableEntry(Table, i));
if (Entry.Offset.isSubDir()) {
StringRef NextLevel;
if (Level == "Name")
NextLevel = "Language";
else
NextLevel = "Name";
auto &NextTable = unwrapOrError(RSF.getEntrySubDir(Entry));
TotalEntries += countTotalTableEntries(RSF, NextTable, NextLevel);
} else {
TotalEntries += 1;
}
}
return TotalEntries;
}
void COFFDumper::printResourceDirectoryTable(
ResourceSectionRef RSF, const coff_resource_dir_table &Table,
StringRef Level) {
W.printNumber("Number of String Entries", Table.NumberOfNameEntries);
W.printNumber("Number of ID Entries", Table.NumberOfIDEntries);
// Iterate through level in resource directory tree.
for (int i = 0; i < Table.NumberOfNameEntries + Table.NumberOfIDEntries;
i++) {
auto Entry = unwrapOrError(getResourceDirectoryTableEntry(Table, i));
StringRef Name;
SmallString<20> IDStr;
raw_svector_ostream OS(IDStr);
if (i < Table.NumberOfNameEntries) {
ArrayRef<UTF16> RawEntryNameString = unwrapOrError(RSF.getEntryNameString(Entry));
std::vector<UTF16> EndianCorrectedNameString;
if (llvm::sys::IsBigEndianHost) {
EndianCorrectedNameString.resize(RawEntryNameString.size() + 1);
std::copy(RawEntryNameString.begin(), RawEntryNameString.end(),
EndianCorrectedNameString.begin() + 1);
EndianCorrectedNameString[0] = UNI_UTF16_BYTE_ORDER_MARK_SWAPPED;
RawEntryNameString = makeArrayRef(EndianCorrectedNameString);
}
std::string EntryNameString;
if (!llvm::convertUTF16ToUTF8String(RawEntryNameString, EntryNameString))
error(object_error::parse_failed);
OS << ": ";
OS << EntryNameString;
} else {
if (Level == "Type") {
ScopedPrinter Printer(OS);
Printer.printEnum("", Entry.Identifier.ID,
makeArrayRef(ResourceTypeNames));
IDStr = IDStr.slice(0, IDStr.find_first_of(")", 0) + 1);
} else {
OS << ": (ID " << Entry.Identifier.ID << ")";
}
}
Name = StringRef(IDStr);
ListScope ResourceType(W, Level.str() + Name.str());
if (Entry.Offset.isSubDir()) {
W.printHex("Table Offset", Entry.Offset.value());
StringRef NextLevel;
if (Level == "Name")
NextLevel = "Language";
else
NextLevel = "Name";
auto &NextTable = unwrapOrError(RSF.getEntrySubDir(Entry));
printResourceDirectoryTable(RSF, NextTable, NextLevel);
} else {
W.printHex("Entry Offset", Entry.Offset.value());
char FormattedTime[20] = {};
time_t TDS = time_t(Table.TimeDateStamp);
strftime(FormattedTime, 20, "%Y-%m-%d %H:%M:%S", gmtime(&TDS));
W.printHex("Time/Date Stamp", FormattedTime, Table.TimeDateStamp);
W.printNumber("Major Version", Table.MajorVersion);
W.printNumber("Minor Version", Table.MinorVersion);
W.printNumber("Characteristics", Table.Characteristics);
}
}
}
ErrorOr<const coff_resource_dir_entry &>
COFFDumper::getResourceDirectoryTableEntry(const coff_resource_dir_table &Table,
uint32_t Index) {
if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries))
return object_error::parse_failed;
auto TablePtr = reinterpret_cast<const coff_resource_dir_entry *>(&Table + 1);
return TablePtr[Index];
}
void COFFDumper::printStackMap() const {
object::SectionRef StackMapSection;
for (auto Sec : Obj->sections()) {
StringRef Name;
Sec.getName(Name);
if (Name == ".llvm_stackmaps") {
StackMapSection = Sec;
break;
}
}
if (StackMapSection == object::SectionRef())
return;
StringRef StackMapContents;
StackMapSection.getContents(StackMapContents);
ArrayRef<uint8_t> StackMapContentsArray(
reinterpret_cast<const uint8_t*>(StackMapContents.data()),
StackMapContents.size());
if (Obj->isLittleEndian())
prettyPrintStackMap(
llvm::outs(),
StackMapV2Parser<support::little>(StackMapContentsArray));
else
prettyPrintStackMap(llvm::outs(),
StackMapV2Parser<support::big>(StackMapContentsArray));
}
void llvm::dumpCodeViewMergedTypes(
ScopedPrinter &Writer, llvm::codeview::MergingTypeTableBuilder &IDTable,
llvm::codeview::MergingTypeTableBuilder &CVTypes) {
// Flatten it first, then run our dumper on it.
SmallString<0> TypeBuf;
CVTypes.ForEachRecord([&](TypeIndex TI, const CVType &Record) {
TypeBuf.append(Record.RecordData.begin(), Record.RecordData.end());
});
[CodeView] Finish decoupling TypeDatabase from TypeDumper. Previously the type dumper itself was passed around to a lot of different places and manipulated in ways that were more appropriate on the type database. For example, the entire TypeDumper was passed into the symbol dumper, when all the symbol dumper wanted to do was lookup the name of a TypeIndex so it could print it. That's what the TypeDatabase is for -- mapping type indices to names. Another example is how if the user runs llvm-pdbdump with the option to dump symbols but not types, we still have to visit all types so that we can print minimal information about the type of a symbol, but just without dumping full symbol records. The way we did this before is by hacking it up so that we run everything through the type dumper with a null printer, so that the output goes to /dev/null. But really, we don't need to dump anything, all we want to do is build the type database. Since TypeDatabaseVisitor now exists independently of TypeDumper, we can do this. We just build a custom visitor callback pipeline that includes a database visitor but not a dumper. All the hackery around printers etc goes away. After this patch, we could probably even delete the entire CVTypeDumper class since really all it is at this point is a thin wrapper that hides the details of how to build a useful visitation pipeline. It's not a priority though, so CVTypeDumper remains for now. After this patch we will be able to easily plug in a different style of type dumper by only implementing the proper visitation methods to dump one-line output and then sticking it on the pipeline. Differential Revision: https://reviews.llvm.org/D28524 llvm-svn: 291724
2017-01-12 07:24:22 +08:00
TypeTableCollection TpiTypes(CVTypes.records());
{
ListScope S(Writer, "MergedTypeStream");
TypeDumpVisitor TDV(TpiTypes, &Writer, opts::CodeViewSubsectionBytes);
error(codeview::visitTypeStream(TpiTypes, TDV));
Writer.flush();
}
// Flatten the id stream and print it next. The ID stream refers to names from
// the type stream.
TypeTableCollection IpiTypes(IDTable.records());
{
ListScope S(Writer, "MergedIDStream");
TypeDumpVisitor TDV(TpiTypes, &Writer, opts::CodeViewSubsectionBytes);
TDV.setIpiTypes(IpiTypes);
error(codeview::visitTypeStream(IpiTypes, TDV));
Writer.flush();
}
}