llvm-project/flang/lib/Evaluate/tools.cpp

876 lines
34 KiB
C++
Raw Normal View History

//===-- lib/Evaluate/tools.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/tools.h"
#include "flang/Common/idioms.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/tools.h"
#include <algorithm>
#include <variant>
using namespace Fortran::parser::literals;
namespace Fortran::evaluate {
Expr<SomeType> Parenthesize(Expr<SomeType> &&expr) {
return std::visit(
[&](auto &&x) {
using T = std::decay_t<decltype(x)>;
if constexpr (common::HasMember<T, TypelessExpression> ||
std::is_same_v<T, Expr<SomeDerived>>) {
return expr; // no parentheses around typeless or derived type
} else {
return std::visit(
[](auto &&y) {
using T = ResultType<decltype(y)>;
return AsGenericExpr(Parentheses<T>{std::move(y)});
},
std::move(x.u));
}
},
std::move(expr.u));
}
std::optional<DataRef> ExtractSubstringBase(const Substring &substring) {
return std::visit(
common::visitors{
[&](const DataRef &x) -> std::optional<DataRef> { return x; },
[&](const StaticDataObject::Pointer &) -> std::optional<DataRef> {
return std::nullopt;
},
},
substring.parent());
}
// IsVariable()
auto IsVariableHelper::operator()(const Symbol &symbol) const -> Result {
return !symbol.attrs().test(semantics::Attr::PARAMETER);
}
auto IsVariableHelper::operator()(const Component &x) const -> Result {
return (*this)(x.base());
}
auto IsVariableHelper::operator()(const ArrayRef &x) const -> Result {
return (*this)(x.base());
}
auto IsVariableHelper::operator()(const Substring &x) const -> Result {
return (*this)(x.GetBaseObject());
}
auto IsVariableHelper::operator()(const ProcedureDesignator &x) const
-> Result {
const Symbol *symbol{x.GetSymbol()};
return symbol && symbol->attrs().test(semantics::Attr::POINTER);
}
// Conversions of complex component expressions to REAL.
ConvertRealOperandsResult ConvertRealOperands(
parser::ContextualMessages &messages, Expr<SomeType> &&x,
Expr<SomeType> &&y, int defaultRealKind) {
return std::visit(
common::visitors{
[&](Expr<SomeInteger> &&ix,
Expr<SomeInteger> &&iy) -> ConvertRealOperandsResult {
// Can happen in a CMPLX() constructor. Per F'2018,
// both integer operands are converted to default REAL.
return {AsSameKindExprs<TypeCategory::Real>(
ConvertToKind<TypeCategory::Real>(
defaultRealKind, std::move(ix)),
ConvertToKind<TypeCategory::Real>(
defaultRealKind, std::move(iy)))};
},
[&](Expr<SomeInteger> &&ix,
Expr<SomeReal> &&ry) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
ConvertTo(ry, std::move(ix)), std::move(ry))};
},
[&](Expr<SomeReal> &&rx,
Expr<SomeInteger> &&iy) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
std::move(rx), ConvertTo(rx, std::move(iy)))};
},
[&](Expr<SomeReal> &&rx,
Expr<SomeReal> &&ry) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
std::move(rx), std::move(ry))};
},
[&](Expr<SomeInteger> &&ix,
BOZLiteralConstant &&by) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
ConvertToKind<TypeCategory::Real>(
defaultRealKind, std::move(ix)),
ConvertToKind<TypeCategory::Real>(
defaultRealKind, std::move(by)))};
},
[&](BOZLiteralConstant &&bx,
Expr<SomeInteger> &&iy) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
ConvertToKind<TypeCategory::Real>(
defaultRealKind, std::move(bx)),
ConvertToKind<TypeCategory::Real>(
defaultRealKind, std::move(iy)))};
},
[&](Expr<SomeReal> &&rx,
BOZLiteralConstant &&by) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
std::move(rx), ConvertTo(rx, std::move(by)))};
},
[&](BOZLiteralConstant &&bx,
Expr<SomeReal> &&ry) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
ConvertTo(ry, std::move(bx)), std::move(ry))};
},
[&](auto &&, auto &&) -> ConvertRealOperandsResult { // C718
messages.Say("operands must be INTEGER or REAL"_err_en_US);
return std::nullopt;
},
},
std::move(x.u), std::move(y.u));
}
// Helpers for NumericOperation and its subroutines below.
static std::optional<Expr<SomeType>> NoExpr() { return std::nullopt; }
template <TypeCategory CAT>
std::optional<Expr<SomeType>> Package(Expr<SomeKind<CAT>> &&catExpr) {
return {AsGenericExpr(std::move(catExpr))};
}
template <TypeCategory CAT>
std::optional<Expr<SomeType>> Package(
std::optional<Expr<SomeKind<CAT>>> &&catExpr) {
if (catExpr) {
return {AsGenericExpr(std::move(*catExpr))};
}
return NoExpr();
}
// Mixed REAL+INTEGER operations. REAL**INTEGER is a special case that
// does not require conversion of the exponent expression.
template <template <typename> class OPR>
std::optional<Expr<SomeType>> MixedRealLeft(
Expr<SomeReal> &&rx, Expr<SomeInteger> &&iy) {
return Package(std::visit(
[&](auto &&rxk) -> Expr<SomeReal> {
using resultType = ResultType<decltype(rxk)>;
if constexpr (std::is_same_v<OPR<resultType>, Power<resultType>>) {
return AsCategoryExpr(
RealToIntPower<resultType>{std::move(rxk), std::move(iy)});
}
// G++ 8.1.0 emits bogus warnings about missing return statements if
// this statement is wrapped in an "else", as it should be.
return AsCategoryExpr(OPR<resultType>{
std::move(rxk), ConvertToType<resultType>(std::move(iy))});
},
std::move(rx.u)));
}
std::optional<Expr<SomeComplex>> ConstructComplex(
parser::ContextualMessages &messages, Expr<SomeType> &&real,
Expr<SomeType> &&imaginary, int defaultRealKind) {
if (auto converted{ConvertRealOperands(
messages, std::move(real), std::move(imaginary), defaultRealKind)}) {
return {std::visit(
[](auto &&pair) {
return MakeComplex(std::move(pair[0]), std::move(pair[1]));
},
std::move(*converted))};
}
return std::nullopt;
}
std::optional<Expr<SomeComplex>> ConstructComplex(
parser::ContextualMessages &messages, std::optional<Expr<SomeType>> &&real,
std::optional<Expr<SomeType>> &&imaginary, int defaultRealKind) {
if (auto parts{common::AllPresent(std::move(real), std::move(imaginary))}) {
return ConstructComplex(messages, std::get<0>(std::move(*parts)),
std::get<1>(std::move(*parts)), defaultRealKind);
}
return std::nullopt;
}
Expr<SomeReal> GetComplexPart(const Expr<SomeComplex> &z, bool isImaginary) {
return std::visit(
[&](const auto &zk) {
static constexpr int kind{ResultType<decltype(zk)>::kind};
return AsCategoryExpr(ComplexComponent<kind>{isImaginary, zk});
},
z.u);
}
// Convert REAL to COMPLEX of the same kind. Preserving the real operand kind
// and then applying complex operand promotion rules allows the result to have
// the highest precision of REAL and COMPLEX operands as required by Fortran
// 2018 10.9.1.3.
Expr<SomeComplex> PromoteRealToComplex(Expr<SomeReal> &&someX) {
return std::visit(
[](auto &&x) {
using RT = ResultType<decltype(x)>;
return AsCategoryExpr(ComplexConstructor<RT::kind>{
std::move(x), AsExpr(Constant<RT>{Scalar<RT>{}})});
},
std::move(someX.u));
}
// Handle mixed COMPLEX+REAL (or INTEGER) operations in a better way
// than just converting the second operand to COMPLEX and performing the
// corresponding COMPLEX+COMPLEX operation.
template <template <typename> class OPR, TypeCategory RCAT>
std::optional<Expr<SomeType>> MixedComplexLeft(
parser::ContextualMessages &messages, Expr<SomeComplex> &&zx,
Expr<SomeKind<RCAT>> &&iry, int defaultRealKind) {
Expr<SomeReal> zr{GetComplexPart(zx, false)};
Expr<SomeReal> zi{GetComplexPart(zx, true)};
if constexpr (std::is_same_v<OPR<LargestReal>, Add<LargestReal>> ||
std::is_same_v<OPR<LargestReal>, Subtract<LargestReal>>) {
// (a,b) + x -> (a+x, b)
// (a,b) - x -> (a-x, b)
if (std::optional<Expr<SomeType>> rr{
NumericOperation<OPR>(messages, AsGenericExpr(std::move(zr)),
AsGenericExpr(std::move(iry)), defaultRealKind)}) {
return Package(ConstructComplex(messages, std::move(*rr),
AsGenericExpr(std::move(zi)), defaultRealKind));
}
} else if constexpr (std::is_same_v<OPR<LargestReal>,
Multiply<LargestReal>> ||
std::is_same_v<OPR<LargestReal>, Divide<LargestReal>>) {
// (a,b) * x -> (a*x, b*x)
// (a,b) / x -> (a/x, b/x)
auto copy{iry};
auto rr{NumericOperation<Multiply>(messages, AsGenericExpr(std::move(zr)),
AsGenericExpr(std::move(iry)), defaultRealKind)};
auto ri{NumericOperation<Multiply>(messages, AsGenericExpr(std::move(zi)),
AsGenericExpr(std::move(copy)), defaultRealKind)};
if (auto parts{common::AllPresent(std::move(rr), std::move(ri))}) {
return Package(ConstructComplex(messages, std::get<0>(std::move(*parts)),
std::get<1>(std::move(*parts)), defaultRealKind));
}
} else if constexpr (RCAT == TypeCategory::Integer &&
std::is_same_v<OPR<LargestReal>, Power<LargestReal>>) {
// COMPLEX**INTEGER is a special case that doesn't convert the exponent.
static_assert(RCAT == TypeCategory::Integer);
return Package(std::visit(
[&](auto &&zxk) {
using Ty = ResultType<decltype(zxk)>;
return AsCategoryExpr(
AsExpr(RealToIntPower<Ty>{std::move(zxk), std::move(iry)}));
},
std::move(zx.u)));
} else if (defaultRealKind != 666) { // dodge unused parameter warning
// (a,b) ** x -> (a,b) ** (x,0)
if constexpr (RCAT == TypeCategory::Integer) {
Expr<SomeComplex> zy{ConvertTo(zx, std::move(iry))};
return Package(PromoteAndCombine<OPR>(std::move(zx), std::move(zy)));
} else {
Expr<SomeComplex> zy{PromoteRealToComplex(std::move(iry))};
return Package(PromoteAndCombine<OPR>(std::move(zx), std::move(zy)));
}
}
return NoExpr();
}
// Mixed COMPLEX operations with the COMPLEX operand on the right.
// x + (a,b) -> (x+a, b)
// x - (a,b) -> (x-a, -b)
// x * (a,b) -> (x*a, x*b)
// x / (a,b) -> (x,0) / (a,b) (and **)
template <template <typename> class OPR, TypeCategory LCAT>
std::optional<Expr<SomeType>> MixedComplexRight(
parser::ContextualMessages &messages, Expr<SomeKind<LCAT>> &&irx,
Expr<SomeComplex> &&zy, int defaultRealKind) {
if constexpr (std::is_same_v<OPR<LargestReal>, Add<LargestReal>> ||
std::is_same_v<OPR<LargestReal>, Multiply<LargestReal>>) {
// x + (a,b) -> (a,b) + x -> (a+x, b)
// x * (a,b) -> (a,b) * x -> (a*x, b*x)
return MixedComplexLeft<Add, LCAT>(
messages, std::move(zy), std::move(irx), defaultRealKind);
} else if constexpr (std::is_same_v<OPR<LargestReal>,
Subtract<LargestReal>>) {
// x - (a,b) -> (x-a, -b)
Expr<SomeReal> zr{GetComplexPart(zy, false)};
Expr<SomeReal> zi{GetComplexPart(zy, true)};
if (std::optional<Expr<SomeType>> rr{
NumericOperation<Subtract>(messages, AsGenericExpr(std::move(irx)),
AsGenericExpr(std::move(zr)), defaultRealKind)}) {
return Package(ConstructComplex(messages, std::move(*rr),
AsGenericExpr(-std::move(zi)), defaultRealKind));
}
} else if (defaultRealKind != 666) { // dodge unused parameter warning
// x / (a,b) -> (x,0) / (a,b)
if constexpr (LCAT == TypeCategory::Integer) {
Expr<SomeComplex> zx{ConvertTo(zy, std::move(irx))};
return Package(PromoteAndCombine<OPR>(std::move(zx), std::move(zy)));
} else {
Expr<SomeComplex> zx{PromoteRealToComplex(std::move(irx))};
return Package(PromoteAndCombine<OPR>(std::move(zx), std::move(zy)));
}
}
return NoExpr();
}
// N.B. When a "typeless" BOZ literal constant appears as one (not both!) of
// the operands to a dyadic operation where one is permitted, it assumes the
// type and kind of the other operand.
template <template <typename> class OPR>
std::optional<Expr<SomeType>> NumericOperation(
parser::ContextualMessages &messages, Expr<SomeType> &&x,
Expr<SomeType> &&y, int defaultRealKind) {
return std::visit(
common::visitors{
[](Expr<SomeInteger> &&ix, Expr<SomeInteger> &&iy) {
return Package(PromoteAndCombine<OPR, TypeCategory::Integer>(
std::move(ix), std::move(iy)));
},
[](Expr<SomeReal> &&rx, Expr<SomeReal> &&ry) {
return Package(PromoteAndCombine<OPR, TypeCategory::Real>(
std::move(rx), std::move(ry)));
},
// Mixed REAL/INTEGER operations
[](Expr<SomeReal> &&rx, Expr<SomeInteger> &&iy) {
return MixedRealLeft<OPR>(std::move(rx), std::move(iy));
},
[](Expr<SomeInteger> &&ix, Expr<SomeReal> &&ry) {
return Package(std::visit(
[&](auto &&ryk) -> Expr<SomeReal> {
using resultType = ResultType<decltype(ryk)>;
return AsCategoryExpr(
OPR<resultType>{ConvertToType<resultType>(std::move(ix)),
std::move(ryk)});
},
std::move(ry.u)));
},
// Homogeneous and mixed COMPLEX operations
[](Expr<SomeComplex> &&zx, Expr<SomeComplex> &&zy) {
return Package(PromoteAndCombine<OPR, TypeCategory::Complex>(
std::move(zx), std::move(zy)));
},
[flang] Resolve extended intrinsic operators Enhance `ArgumentAnalyzer` to do most of the work for this. For each kind of operator that might have a user-defined form we follow this process: - analyze the arguments - if the types and shapes match the intrinsic operator do the usual processing - otherwise attempt to interpret it as a user-defined operator with `TryDefinedOp` When we fail to resolve an operator, produce different errors depending on whether there is a user-defined operator available or not. If there is, report that neither user-defined nor intrinsic operator worked. If there is not, describe the rules for the intrinsic operator. In either case, include the type(s) of the operand(s). Most of the uses of `ArgumentAnalyzer` are in helper functions that apply to classes of operators. For consistency, rename `BinaryOperationHelper` to `NumericBinaryOperator` and `LogicalHelper` to `LogicalBinaryHelper` and introduce `NumericUnaryHelper` for unary `+` and `-`. `.NOT.` and `//` are not implemented in helpers. Replace `success_` with `fatalErrors_` in `ArgumentAnalyzer` for consistency with `ExpressionAnalyzer`. Add `NumericOperator` and `LogicalOperator` enums to `Fortran.h` to go with `RelationalOperator`. Add `AddFortran` functions to each to convert to a Fortran source string. `RelationalOperator` also has `AllFortranNames` because there are multiple names for each operator. This replaces `LogicalOperator` in `expression.h` and the string representation of the operators in `formatting.cc`. Original-commit: flang-compiler/f18@3bb9d664e86c931a67b3e78859d2108e53d23f80 Reviewed-on: https://github.com/flang-compiler/f18/pull/807
2019-11-03 00:56:46 +08:00
[&](Expr<SomeComplex> &&zx, Expr<SomeInteger> &&iy) {
return MixedComplexLeft<OPR>(
[flang] Resolve extended intrinsic operators Enhance `ArgumentAnalyzer` to do most of the work for this. For each kind of operator that might have a user-defined form we follow this process: - analyze the arguments - if the types and shapes match the intrinsic operator do the usual processing - otherwise attempt to interpret it as a user-defined operator with `TryDefinedOp` When we fail to resolve an operator, produce different errors depending on whether there is a user-defined operator available or not. If there is, report that neither user-defined nor intrinsic operator worked. If there is not, describe the rules for the intrinsic operator. In either case, include the type(s) of the operand(s). Most of the uses of `ArgumentAnalyzer` are in helper functions that apply to classes of operators. For consistency, rename `BinaryOperationHelper` to `NumericBinaryOperator` and `LogicalHelper` to `LogicalBinaryHelper` and introduce `NumericUnaryHelper` for unary `+` and `-`. `.NOT.` and `//` are not implemented in helpers. Replace `success_` with `fatalErrors_` in `ArgumentAnalyzer` for consistency with `ExpressionAnalyzer`. Add `NumericOperator` and `LogicalOperator` enums to `Fortran.h` to go with `RelationalOperator`. Add `AddFortran` functions to each to convert to a Fortran source string. `RelationalOperator` also has `AllFortranNames` because there are multiple names for each operator. This replaces `LogicalOperator` in `expression.h` and the string representation of the operators in `formatting.cc`. Original-commit: flang-compiler/f18@3bb9d664e86c931a67b3e78859d2108e53d23f80 Reviewed-on: https://github.com/flang-compiler/f18/pull/807
2019-11-03 00:56:46 +08:00
messages, std::move(zx), std::move(iy), defaultRealKind);
},
[flang] Resolve extended intrinsic operators Enhance `ArgumentAnalyzer` to do most of the work for this. For each kind of operator that might have a user-defined form we follow this process: - analyze the arguments - if the types and shapes match the intrinsic operator do the usual processing - otherwise attempt to interpret it as a user-defined operator with `TryDefinedOp` When we fail to resolve an operator, produce different errors depending on whether there is a user-defined operator available or not. If there is, report that neither user-defined nor intrinsic operator worked. If there is not, describe the rules for the intrinsic operator. In either case, include the type(s) of the operand(s). Most of the uses of `ArgumentAnalyzer` are in helper functions that apply to classes of operators. For consistency, rename `BinaryOperationHelper` to `NumericBinaryOperator` and `LogicalHelper` to `LogicalBinaryHelper` and introduce `NumericUnaryHelper` for unary `+` and `-`. `.NOT.` and `//` are not implemented in helpers. Replace `success_` with `fatalErrors_` in `ArgumentAnalyzer` for consistency with `ExpressionAnalyzer`. Add `NumericOperator` and `LogicalOperator` enums to `Fortran.h` to go with `RelationalOperator`. Add `AddFortran` functions to each to convert to a Fortran source string. `RelationalOperator` also has `AllFortranNames` because there are multiple names for each operator. This replaces `LogicalOperator` in `expression.h` and the string representation of the operators in `formatting.cc`. Original-commit: flang-compiler/f18@3bb9d664e86c931a67b3e78859d2108e53d23f80 Reviewed-on: https://github.com/flang-compiler/f18/pull/807
2019-11-03 00:56:46 +08:00
[&](Expr<SomeComplex> &&zx, Expr<SomeReal> &&ry) {
return MixedComplexLeft<OPR>(
[flang] Resolve extended intrinsic operators Enhance `ArgumentAnalyzer` to do most of the work for this. For each kind of operator that might have a user-defined form we follow this process: - analyze the arguments - if the types and shapes match the intrinsic operator do the usual processing - otherwise attempt to interpret it as a user-defined operator with `TryDefinedOp` When we fail to resolve an operator, produce different errors depending on whether there is a user-defined operator available or not. If there is, report that neither user-defined nor intrinsic operator worked. If there is not, describe the rules for the intrinsic operator. In either case, include the type(s) of the operand(s). Most of the uses of `ArgumentAnalyzer` are in helper functions that apply to classes of operators. For consistency, rename `BinaryOperationHelper` to `NumericBinaryOperator` and `LogicalHelper` to `LogicalBinaryHelper` and introduce `NumericUnaryHelper` for unary `+` and `-`. `.NOT.` and `//` are not implemented in helpers. Replace `success_` with `fatalErrors_` in `ArgumentAnalyzer` for consistency with `ExpressionAnalyzer`. Add `NumericOperator` and `LogicalOperator` enums to `Fortran.h` to go with `RelationalOperator`. Add `AddFortran` functions to each to convert to a Fortran source string. `RelationalOperator` also has `AllFortranNames` because there are multiple names for each operator. This replaces `LogicalOperator` in `expression.h` and the string representation of the operators in `formatting.cc`. Original-commit: flang-compiler/f18@3bb9d664e86c931a67b3e78859d2108e53d23f80 Reviewed-on: https://github.com/flang-compiler/f18/pull/807
2019-11-03 00:56:46 +08:00
messages, std::move(zx), std::move(ry), defaultRealKind);
},
[flang] Resolve extended intrinsic operators Enhance `ArgumentAnalyzer` to do most of the work for this. For each kind of operator that might have a user-defined form we follow this process: - analyze the arguments - if the types and shapes match the intrinsic operator do the usual processing - otherwise attempt to interpret it as a user-defined operator with `TryDefinedOp` When we fail to resolve an operator, produce different errors depending on whether there is a user-defined operator available or not. If there is, report that neither user-defined nor intrinsic operator worked. If there is not, describe the rules for the intrinsic operator. In either case, include the type(s) of the operand(s). Most of the uses of `ArgumentAnalyzer` are in helper functions that apply to classes of operators. For consistency, rename `BinaryOperationHelper` to `NumericBinaryOperator` and `LogicalHelper` to `LogicalBinaryHelper` and introduce `NumericUnaryHelper` for unary `+` and `-`. `.NOT.` and `//` are not implemented in helpers. Replace `success_` with `fatalErrors_` in `ArgumentAnalyzer` for consistency with `ExpressionAnalyzer`. Add `NumericOperator` and `LogicalOperator` enums to `Fortran.h` to go with `RelationalOperator`. Add `AddFortran` functions to each to convert to a Fortran source string. `RelationalOperator` also has `AllFortranNames` because there are multiple names for each operator. This replaces `LogicalOperator` in `expression.h` and the string representation of the operators in `formatting.cc`. Original-commit: flang-compiler/f18@3bb9d664e86c931a67b3e78859d2108e53d23f80 Reviewed-on: https://github.com/flang-compiler/f18/pull/807
2019-11-03 00:56:46 +08:00
[&](Expr<SomeInteger> &&ix, Expr<SomeComplex> &&zy) {
return MixedComplexRight<OPR>(
[flang] Resolve extended intrinsic operators Enhance `ArgumentAnalyzer` to do most of the work for this. For each kind of operator that might have a user-defined form we follow this process: - analyze the arguments - if the types and shapes match the intrinsic operator do the usual processing - otherwise attempt to interpret it as a user-defined operator with `TryDefinedOp` When we fail to resolve an operator, produce different errors depending on whether there is a user-defined operator available or not. If there is, report that neither user-defined nor intrinsic operator worked. If there is not, describe the rules for the intrinsic operator. In either case, include the type(s) of the operand(s). Most of the uses of `ArgumentAnalyzer` are in helper functions that apply to classes of operators. For consistency, rename `BinaryOperationHelper` to `NumericBinaryOperator` and `LogicalHelper` to `LogicalBinaryHelper` and introduce `NumericUnaryHelper` for unary `+` and `-`. `.NOT.` and `//` are not implemented in helpers. Replace `success_` with `fatalErrors_` in `ArgumentAnalyzer` for consistency with `ExpressionAnalyzer`. Add `NumericOperator` and `LogicalOperator` enums to `Fortran.h` to go with `RelationalOperator`. Add `AddFortran` functions to each to convert to a Fortran source string. `RelationalOperator` also has `AllFortranNames` because there are multiple names for each operator. This replaces `LogicalOperator` in `expression.h` and the string representation of the operators in `formatting.cc`. Original-commit: flang-compiler/f18@3bb9d664e86c931a67b3e78859d2108e53d23f80 Reviewed-on: https://github.com/flang-compiler/f18/pull/807
2019-11-03 00:56:46 +08:00
messages, std::move(ix), std::move(zy), defaultRealKind);
},
[flang] Resolve extended intrinsic operators Enhance `ArgumentAnalyzer` to do most of the work for this. For each kind of operator that might have a user-defined form we follow this process: - analyze the arguments - if the types and shapes match the intrinsic operator do the usual processing - otherwise attempt to interpret it as a user-defined operator with `TryDefinedOp` When we fail to resolve an operator, produce different errors depending on whether there is a user-defined operator available or not. If there is, report that neither user-defined nor intrinsic operator worked. If there is not, describe the rules for the intrinsic operator. In either case, include the type(s) of the operand(s). Most of the uses of `ArgumentAnalyzer` are in helper functions that apply to classes of operators. For consistency, rename `BinaryOperationHelper` to `NumericBinaryOperator` and `LogicalHelper` to `LogicalBinaryHelper` and introduce `NumericUnaryHelper` for unary `+` and `-`. `.NOT.` and `//` are not implemented in helpers. Replace `success_` with `fatalErrors_` in `ArgumentAnalyzer` for consistency with `ExpressionAnalyzer`. Add `NumericOperator` and `LogicalOperator` enums to `Fortran.h` to go with `RelationalOperator`. Add `AddFortran` functions to each to convert to a Fortran source string. `RelationalOperator` also has `AllFortranNames` because there are multiple names for each operator. This replaces `LogicalOperator` in `expression.h` and the string representation of the operators in `formatting.cc`. Original-commit: flang-compiler/f18@3bb9d664e86c931a67b3e78859d2108e53d23f80 Reviewed-on: https://github.com/flang-compiler/f18/pull/807
2019-11-03 00:56:46 +08:00
[&](Expr<SomeReal> &&rx, Expr<SomeComplex> &&zy) {
return MixedComplexRight<OPR>(
[flang] Resolve extended intrinsic operators Enhance `ArgumentAnalyzer` to do most of the work for this. For each kind of operator that might have a user-defined form we follow this process: - analyze the arguments - if the types and shapes match the intrinsic operator do the usual processing - otherwise attempt to interpret it as a user-defined operator with `TryDefinedOp` When we fail to resolve an operator, produce different errors depending on whether there is a user-defined operator available or not. If there is, report that neither user-defined nor intrinsic operator worked. If there is not, describe the rules for the intrinsic operator. In either case, include the type(s) of the operand(s). Most of the uses of `ArgumentAnalyzer` are in helper functions that apply to classes of operators. For consistency, rename `BinaryOperationHelper` to `NumericBinaryOperator` and `LogicalHelper` to `LogicalBinaryHelper` and introduce `NumericUnaryHelper` for unary `+` and `-`. `.NOT.` and `//` are not implemented in helpers. Replace `success_` with `fatalErrors_` in `ArgumentAnalyzer` for consistency with `ExpressionAnalyzer`. Add `NumericOperator` and `LogicalOperator` enums to `Fortran.h` to go with `RelationalOperator`. Add `AddFortran` functions to each to convert to a Fortran source string. `RelationalOperator` also has `AllFortranNames` because there are multiple names for each operator. This replaces `LogicalOperator` in `expression.h` and the string representation of the operators in `formatting.cc`. Original-commit: flang-compiler/f18@3bb9d664e86c931a67b3e78859d2108e53d23f80 Reviewed-on: https://github.com/flang-compiler/f18/pull/807
2019-11-03 00:56:46 +08:00
messages, std::move(rx), std::move(zy), defaultRealKind);
},
// Operations with one typeless operand
[&](BOZLiteralConstant &&bx, Expr<SomeInteger> &&iy) {
return NumericOperation<OPR>(messages,
AsGenericExpr(ConvertTo(iy, std::move(bx))), std::move(y),
defaultRealKind);
},
[&](BOZLiteralConstant &&bx, Expr<SomeReal> &&ry) {
return NumericOperation<OPR>(messages,
AsGenericExpr(ConvertTo(ry, std::move(bx))), std::move(y),
defaultRealKind);
},
[&](Expr<SomeInteger> &&ix, BOZLiteralConstant &&by) {
return NumericOperation<OPR>(messages, std::move(x),
AsGenericExpr(ConvertTo(ix, std::move(by))), defaultRealKind);
},
[&](Expr<SomeReal> &&rx, BOZLiteralConstant &&by) {
return NumericOperation<OPR>(messages, std::move(x),
AsGenericExpr(ConvertTo(rx, std::move(by))), defaultRealKind);
},
// Default case
[&](auto &&, auto &&) {
// TODO: defined operator
messages.Say("non-numeric operands to numeric operation"_err_en_US);
return NoExpr();
},
},
std::move(x.u), std::move(y.u));
}
template std::optional<Expr<SomeType>> NumericOperation<Power>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
template std::optional<Expr<SomeType>> NumericOperation<Multiply>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
template std::optional<Expr<SomeType>> NumericOperation<Divide>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
template std::optional<Expr<SomeType>> NumericOperation<Add>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
template std::optional<Expr<SomeType>> NumericOperation<Subtract>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
std::optional<Expr<SomeType>> Negation(
parser::ContextualMessages &messages, Expr<SomeType> &&x) {
return std::visit(
common::visitors{
[&](BOZLiteralConstant &&) {
messages.Say("BOZ literal cannot be negated"_err_en_US);
return NoExpr();
},
[&](NullPointer &&) {
messages.Say("NULL() cannot be negated"_err_en_US);
return NoExpr();
},
[&](ProcedureDesignator &&) {
messages.Say("Subroutine cannot be negated"_err_en_US);
return NoExpr();
},
[&](ProcedureRef &&) {
messages.Say("Pointer to subroutine cannot be negated"_err_en_US);
return NoExpr();
},
[&](Expr<SomeInteger> &&x) { return Package(-std::move(x)); },
[&](Expr<SomeReal> &&x) { return Package(-std::move(x)); },
[&](Expr<SomeComplex> &&x) { return Package(-std::move(x)); },
[&](Expr<SomeCharacter> &&) {
// TODO: defined operator
messages.Say("CHARACTER cannot be negated"_err_en_US);
return NoExpr();
},
[&](Expr<SomeLogical> &&) {
// TODO: defined operator
messages.Say("LOGICAL cannot be negated"_err_en_US);
return NoExpr();
},
[&](Expr<SomeDerived> &&) {
// TODO: defined operator
messages.Say("Operand cannot be negated"_err_en_US);
return NoExpr();
},
},
std::move(x.u));
}
Expr<SomeLogical> LogicalNegation(Expr<SomeLogical> &&x) {
return std::visit(
[](auto &&xk) { return AsCategoryExpr(LogicalNegation(std::move(xk))); },
std::move(x.u));
}
template <typename T>
Expr<LogicalResult> PackageRelation(
RelationalOperator opr, Expr<T> &&x, Expr<T> &&y) {
static_assert(IsSpecificIntrinsicType<T>);
return Expr<LogicalResult>{
Relational<SomeType>{Relational<T>{opr, std::move(x), std::move(y)}}};
}
template <TypeCategory CAT>
Expr<LogicalResult> PromoteAndRelate(
RelationalOperator opr, Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return std::visit(
[=](auto &&xy) {
return PackageRelation(opr, std::move(xy[0]), std::move(xy[1]));
},
AsSameKindExprs(std::move(x), std::move(y)));
}
std::optional<Expr<LogicalResult>> Relate(parser::ContextualMessages &messages,
RelationalOperator opr, Expr<SomeType> &&x, Expr<SomeType> &&y) {
return std::visit(
common::visitors{
[=](Expr<SomeInteger> &&ix,
Expr<SomeInteger> &&iy) -> std::optional<Expr<LogicalResult>> {
return PromoteAndRelate(opr, std::move(ix), std::move(iy));
},
[=](Expr<SomeReal> &&rx,
Expr<SomeReal> &&ry) -> std::optional<Expr<LogicalResult>> {
return PromoteAndRelate(opr, std::move(rx), std::move(ry));
},
[&](Expr<SomeReal> &&rx, Expr<SomeInteger> &&iy) {
return Relate(messages, opr, std::move(x),
AsGenericExpr(ConvertTo(rx, std::move(iy))));
},
[&](Expr<SomeInteger> &&ix, Expr<SomeReal> &&ry) {
return Relate(messages, opr,
AsGenericExpr(ConvertTo(ry, std::move(ix))), std::move(y));
},
[&](Expr<SomeComplex> &&zx,
Expr<SomeComplex> &&zy) -> std::optional<Expr<LogicalResult>> {
if (opr != RelationalOperator::EQ &&
opr != RelationalOperator::NE) {
messages.Say(
"COMPLEX data may be compared only for equality"_err_en_US);
} else {
auto rr{Relate(messages, opr,
AsGenericExpr(GetComplexPart(zx, false)),
AsGenericExpr(GetComplexPart(zy, false)))};
auto ri{
Relate(messages, opr, AsGenericExpr(GetComplexPart(zx, true)),
AsGenericExpr(GetComplexPart(zy, true)))};
if (auto parts{
common::AllPresent(std::move(rr), std::move(ri))}) {
// (a,b)==(c,d) -> (a==c) .AND. (b==d)
// (a,b)/=(c,d) -> (a/=c) .OR. (b/=d)
LogicalOperator combine{opr == RelationalOperator::EQ
? LogicalOperator::And
: LogicalOperator::Or};
return Expr<LogicalResult>{
LogicalOperation<LogicalResult::kind>{combine,
std::get<0>(std::move(*parts)),
std::get<1>(std::move(*parts))}};
}
}
return std::nullopt;
},
[&](Expr<SomeComplex> &&zx, Expr<SomeInteger> &&iy) {
return Relate(messages, opr, std::move(x),
AsGenericExpr(ConvertTo(zx, std::move(iy))));
},
[&](Expr<SomeComplex> &&zx, Expr<SomeReal> &&ry) {
return Relate(messages, opr, std::move(x),
AsGenericExpr(ConvertTo(zx, std::move(ry))));
},
[&](Expr<SomeInteger> &&ix, Expr<SomeComplex> &&zy) {
return Relate(messages, opr,
AsGenericExpr(ConvertTo(zy, std::move(ix))), std::move(y));
},
[&](Expr<SomeReal> &&rx, Expr<SomeComplex> &&zy) {
return Relate(messages, opr,
AsGenericExpr(ConvertTo(zy, std::move(rx))), std::move(y));
},
[&](Expr<SomeCharacter> &&cx, Expr<SomeCharacter> &&cy) {
return std::visit(
[&](auto &&cxk,
auto &&cyk) -> std::optional<Expr<LogicalResult>> {
using Ty = ResultType<decltype(cxk)>;
if constexpr (std::is_same_v<Ty, ResultType<decltype(cyk)>>) {
return PackageRelation(opr, std::move(cxk), std::move(cyk));
} else {
messages.Say(
"CHARACTER operands do not have same KIND"_err_en_US);
return std::nullopt;
}
},
std::move(cx.u), std::move(cy.u));
},
// Default case
[&](auto &&, auto &&) {
[flang] Resolve extended intrinsic operators Enhance `ArgumentAnalyzer` to do most of the work for this. For each kind of operator that might have a user-defined form we follow this process: - analyze the arguments - if the types and shapes match the intrinsic operator do the usual processing - otherwise attempt to interpret it as a user-defined operator with `TryDefinedOp` When we fail to resolve an operator, produce different errors depending on whether there is a user-defined operator available or not. If there is, report that neither user-defined nor intrinsic operator worked. If there is not, describe the rules for the intrinsic operator. In either case, include the type(s) of the operand(s). Most of the uses of `ArgumentAnalyzer` are in helper functions that apply to classes of operators. For consistency, rename `BinaryOperationHelper` to `NumericBinaryOperator` and `LogicalHelper` to `LogicalBinaryHelper` and introduce `NumericUnaryHelper` for unary `+` and `-`. `.NOT.` and `//` are not implemented in helpers. Replace `success_` with `fatalErrors_` in `ArgumentAnalyzer` for consistency with `ExpressionAnalyzer`. Add `NumericOperator` and `LogicalOperator` enums to `Fortran.h` to go with `RelationalOperator`. Add `AddFortran` functions to each to convert to a Fortran source string. `RelationalOperator` also has `AllFortranNames` because there are multiple names for each operator. This replaces `LogicalOperator` in `expression.h` and the string representation of the operators in `formatting.cc`. Original-commit: flang-compiler/f18@3bb9d664e86c931a67b3e78859d2108e53d23f80 Reviewed-on: https://github.com/flang-compiler/f18/pull/807
2019-11-03 00:56:46 +08:00
DIE("invalid types for relational operator");
return std::optional<Expr<LogicalResult>>{};
},
},
std::move(x.u), std::move(y.u));
}
Expr<SomeLogical> BinaryLogicalOperation(
LogicalOperator opr, Expr<SomeLogical> &&x, Expr<SomeLogical> &&y) {
CHECK(opr != LogicalOperator::Not);
return std::visit(
[=](auto &&xy) {
using Ty = ResultType<decltype(xy[0])>;
return Expr<SomeLogical>{BinaryLogicalOperation<Ty::kind>(
opr, std::move(xy[0]), std::move(xy[1]))};
},
AsSameKindExprs(std::move(x), std::move(y)));
}
template <TypeCategory TO>
std::optional<Expr<SomeType>> ConvertToNumeric(int kind, Expr<SomeType> &&x) {
static_assert(common::IsNumericTypeCategory(TO));
return std::visit(
[=](auto &&cx) -> std::optional<Expr<SomeType>> {
using cxType = std::decay_t<decltype(cx)>;
if constexpr (!common::HasMember<cxType, TypelessExpression>) {
if constexpr (IsNumericTypeCategory(ResultType<cxType>::category)) {
return Expr<SomeType>{ConvertToKind<TO>(kind, std::move(cx))};
}
}
return std::nullopt;
},
std::move(x.u));
}
std::optional<Expr<SomeType>> ConvertToType(
const DynamicType &type, Expr<SomeType> &&x) {
switch (type.category()) {
case TypeCategory::Integer:
if (auto *boz{std::get_if<BOZLiteralConstant>(&x.u)}) {
// Extension to C7109: allow BOZ literals to appear in integer contexts
// when the type is unambiguous.
return Expr<SomeType>{
ConvertToKind<TypeCategory::Integer>(type.kind(), std::move(*boz))};
}
return ConvertToNumeric<TypeCategory::Integer>(type.kind(), std::move(x));
case TypeCategory::Real:
if (auto *boz{std::get_if<BOZLiteralConstant>(&x.u)}) {
return Expr<SomeType>{
ConvertToKind<TypeCategory::Real>(type.kind(), std::move(*boz))};
}
return ConvertToNumeric<TypeCategory::Real>(type.kind(), std::move(x));
case TypeCategory::Complex:
return ConvertToNumeric<TypeCategory::Complex>(type.kind(), std::move(x));
case TypeCategory::Character:
if (auto *cx{UnwrapExpr<Expr<SomeCharacter>>(x)}) {
auto converted{
ConvertToKind<TypeCategory::Character>(type.kind(), std::move(*cx))};
if (type.charLength()) {
if (const auto &len{type.charLength()->GetExplicit()}) {
Expr<SomeInteger> lenParam{*len};
Expr<SubscriptInteger> length{Convert<SubscriptInteger>{lenParam}};
converted = std::visit(
[&](auto &&x) {
using Ty = std::decay_t<decltype(x)>;
using CharacterType = typename Ty::Result;
return Expr<SomeCharacter>{
Expr<CharacterType>{SetLength<CharacterType::kind>{
std::move(x), std::move(length)}}};
},
std::move(converted.u));
}
}
return Expr<SomeType>{std::move(converted)};
}
break;
case TypeCategory::Logical:
if (auto *cx{UnwrapExpr<Expr<SomeLogical>>(x)}) {
return Expr<SomeType>{
ConvertToKind<TypeCategory::Logical>(type.kind(), std::move(*cx))};
}
break;
case TypeCategory::Derived:
if (auto fromType{x.GetType()}) {
if (type == *fromType) {
return std::move(x);
}
}
break;
}
return std::nullopt;
}
std::optional<Expr<SomeType>> ConvertToType(
const DynamicType &to, std::optional<Expr<SomeType>> &&x) {
if (x) {
return ConvertToType(to, std::move(*x));
} else {
return std::nullopt;
}
}
std::optional<Expr<SomeType>> ConvertToType(
const Symbol &symbol, Expr<SomeType> &&x) {
if (int xRank{x.Rank()}; xRank > 0) {
if (symbol.Rank() != xRank) {
return std::nullopt;
}
}
if (auto symType{DynamicType::From(symbol)}) {
return ConvertToType(*symType, std::move(x));
}
return std::nullopt;
}
std::optional<Expr<SomeType>> ConvertToType(
const Symbol &to, std::optional<Expr<SomeType>> &&x) {
if (x) {
return ConvertToType(to, std::move(*x));
} else {
return std::nullopt;
}
}
bool IsAssumedRank(const Symbol &symbol0) {
const Symbol &symbol{ResolveAssociations(symbol0)};
if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
return details->IsAssumedRank();
} else {
return false;
}
}
bool IsAssumedRank(const ActualArgument &arg) {
if (const auto *expr{arg.UnwrapExpr()}) {
return IsAssumedRank(*expr);
} else {
const Symbol *assumedTypeDummy{arg.GetAssumedTypeDummy()};
CHECK(assumedTypeDummy);
return IsAssumedRank(*assumedTypeDummy);
}
}
bool IsProcedure(const Expr<SomeType> &expr) {
return std::holds_alternative<ProcedureDesignator>(expr.u);
}
bool IsProcedurePointer(const Expr<SomeType> &expr) {
return std::visit(
common::visitors{
[](const NullPointer &) { return true; },
[](const ProcedureDesignator &) { return true; },
[](const ProcedureRef &) { return true; },
[](const auto &) { return false; },
},
expr.u);
}
// IsNullPointer()
struct IsNullPointerHelper : public AllTraverse<IsNullPointerHelper, false> {
using Base = AllTraverse<IsNullPointerHelper, false>;
IsNullPointerHelper() : Base(*this) {}
using Base::operator();
bool operator()(const ProcedureRef &call) const {
auto *intrinsic{call.proc().GetSpecificIntrinsic()};
return intrinsic &&
intrinsic->characteristics.value().attrs.test(
characteristics::Procedure::Attr::NullPointer);
}
bool operator()(const NullPointer &) const { return true; }
};
bool IsNullPointer(const Expr<SomeType> &expr) {
return IsNullPointerHelper{}(expr);
}
// GetSymbolVector()
auto GetSymbolVectorHelper::operator()(const Symbol &x) const -> Result {
if (const auto *details{x.detailsIf<semantics::AssocEntityDetails>()}) {
return (*this)(details->expr());
} else {
return {x.GetUltimate()};
}
}
auto GetSymbolVectorHelper::operator()(const Component &x) const -> Result {
Result result{(*this)(x.base())};
result.emplace_back(x.GetLastSymbol());
return result;
}
auto GetSymbolVectorHelper::operator()(const ArrayRef &x) const -> Result {
return GetSymbolVector(x.base());
}
auto GetSymbolVectorHelper::operator()(const CoarrayRef &x) const -> Result {
return x.base();
}
const Symbol *GetLastTarget(const SymbolVector &symbols) {
auto end{std::crend(symbols)};
// N.B. Neither clang nor g++ recognizes "symbols.crbegin()" here.
auto iter{std::find_if(std::crbegin(symbols), end, [](const Symbol &x) {
return x.attrs().HasAny(
{semantics::Attr::POINTER, semantics::Attr::TARGET});
})};
return iter == end ? nullptr : &**iter;
}
const Symbol &ResolveAssociations(const Symbol &symbol) {
if (const auto *details{symbol.detailsIf<semantics::AssocEntityDetails>()}) {
if (const Symbol * nested{UnwrapWholeSymbolDataRef(details->expr())}) {
return ResolveAssociations(*nested);
}
}
return symbol.GetUltimate();
}
struct CollectSymbolsHelper
: public SetTraverse<CollectSymbolsHelper, semantics::SymbolSet> {
using Base = SetTraverse<CollectSymbolsHelper, semantics::SymbolSet>;
CollectSymbolsHelper() : Base{*this} {}
using Base::operator();
semantics::SymbolSet operator()(const Symbol &symbol) const {
return {symbol};
}
};
template <typename A> semantics::SymbolSet CollectSymbols(const A &x) {
return CollectSymbolsHelper{}(x);
}
template semantics::SymbolSet CollectSymbols(const Expr<SomeType> &);
template semantics::SymbolSet CollectSymbols(const Expr<SomeInteger> &);
template semantics::SymbolSet CollectSymbols(const Expr<SubscriptInteger> &);
// HasVectorSubscript()
struct HasVectorSubscriptHelper : public AnyTraverse<HasVectorSubscriptHelper> {
using Base = AnyTraverse<HasVectorSubscriptHelper>;
HasVectorSubscriptHelper() : Base{*this} {}
using Base::operator();
bool operator()(const Subscript &ss) const {
return !std::holds_alternative<Triplet>(ss.u) && ss.Rank() > 0;
}
bool operator()(const ProcedureRef &) const {
return false; // don't descend into function call arguments
}
};
bool HasVectorSubscript(const Expr<SomeType> &expr) {
return HasVectorSubscriptHelper{}(expr);
}
parser::Message *AttachDeclaration(
parser::Message &message, const Symbol &symbol) {
const Symbol *unhosted{&symbol};
while (
const auto *assoc{unhosted->detailsIf<semantics::HostAssocDetails>()}) {
unhosted = &assoc->symbol();
}
if (const auto *binding{
unhosted->detailsIf<semantics::ProcBindingDetails>()}) {
if (binding->symbol().name() != symbol.name()) {
message.Attach(binding->symbol().name(),
"Procedure '%s' is bound to '%s'"_en_US, symbol.name(),
binding->symbol().name());
return &message;
}
unhosted = &binding->symbol();
}
if (const auto *use{symbol.detailsIf<semantics::UseDetails>()}) {
message.Attach(use->location(),
"'%s' is USE-associated with '%s' in module '%s'"_en_US, symbol.name(),
unhosted->name(), use->module().name());
} else {
message.Attach(
unhosted->name(), "Declaration of '%s'"_en_US, unhosted->name());
}
return &message;
}
parser::Message *AttachDeclaration(
parser::Message *message, const Symbol &symbol) {
if (message) {
AttachDeclaration(*message, symbol);
}
return message;
}
class FindImpureCallHelper
: public AnyTraverse<FindImpureCallHelper, std::optional<std::string>> {
using Result = std::optional<std::string>;
using Base = AnyTraverse<FindImpureCallHelper, Result>;
public:
explicit FindImpureCallHelper(const IntrinsicProcTable &intrinsics)
: Base{*this}, intrinsics_{intrinsics} {}
using Base::operator();
Result operator()(const ProcedureRef &call) const {
if (auto chars{characteristics::Procedure::Characterize(
call.proc(), intrinsics_)}) {
if (chars->attrs.test(characteristics::Procedure::Attr::Pure)) {
return (*this)(call.arguments());
}
}
return call.proc().GetName();
}
private:
const IntrinsicProcTable &intrinsics_;
};
std::optional<std::string> FindImpureCall(
const IntrinsicProcTable &intrinsics, const Expr<SomeType> &expr) {
return FindImpureCallHelper{intrinsics}(expr);
}
std::optional<std::string> FindImpureCall(
const IntrinsicProcTable &intrinsics, const ProcedureRef &proc) {
return FindImpureCallHelper{intrinsics}(proc);
}
} // namespace Fortran::evaluate