Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
2017-06-02 09:52:06 +08:00
|
|
|
// Rewrite call/invoke instructions so as to make potential relocations
|
|
|
|
// performed by the garbage collector explicit in the IR.
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
#include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
|
|
|
|
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#include "llvm/ADT/DenseSet.h"
|
2017-06-06 19:49:48 +08:00
|
|
|
#include "llvm/ADT/MapVector.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/ADT/None.h"
|
|
|
|
#include "llvm/ADT/Optional.h"
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
2015-04-11 07:11:26 +08:00
|
|
|
#include "llvm/ADT/SetVector.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/ADT/SmallSet.h"
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
2015-05-20 09:07:23 +08:00
|
|
|
#include "llvm/ADT/StringRef.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/ADT/iterator_range.h"
|
2017-07-28 00:49:39 +08:00
|
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
2017-06-06 19:49:48 +08:00
|
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
2018-06-05 05:23:21 +08:00
|
|
|
#include "llvm/Transforms/Utils/Local.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/IR/Argument.h"
|
|
|
|
#include "llvm/IR/Attributes.h"
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#include "llvm/IR/BasicBlock.h"
|
|
|
|
#include "llvm/IR/CallSite.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/IR/CallingConv.h"
|
|
|
|
#include "llvm/IR/Constant.h"
|
|
|
|
#include "llvm/IR/Constants.h"
|
|
|
|
#include "llvm/IR/DataLayout.h"
|
|
|
|
#include "llvm/IR/DerivedTypes.h"
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#include "llvm/IR/Dominators.h"
|
|
|
|
#include "llvm/IR/Function.h"
|
|
|
|
#include "llvm/IR/IRBuilder.h"
|
|
|
|
#include "llvm/IR/InstIterator.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/IR/InstrTypes.h"
|
|
|
|
#include "llvm/IR/Instruction.h"
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
#include "llvm/IR/IntrinsicInst.h"
|
2017-06-06 19:49:48 +08:00
|
|
|
#include "llvm/IR/Intrinsics.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/IR/LLVMContext.h"
|
2015-06-03 06:33:37 +08:00
|
|
|
#include "llvm/IR/MDBuilder.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/IR/Metadata.h"
|
2017-06-06 19:49:48 +08:00
|
|
|
#include "llvm/IR/Module.h"
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#include "llvm/IR/Statepoint.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/IR/Type.h"
|
|
|
|
#include "llvm/IR/User.h"
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#include "llvm/IR/Value.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/IR/ValueHandle.h"
|
2017-06-06 19:49:48 +08:00
|
|
|
#include "llvm/Pass.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/Support/Casting.h"
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#include "llvm/Support/CommandLine.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/Support/Compiler.h"
|
2017-06-06 19:49:48 +08:00
|
|
|
#include "llvm/Support/Debug.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
|
2017-09-02 05:37:29 +08:00
|
|
|
#include <algorithm>
|
|
|
|
#include <cassert>
|
|
|
|
#include <cstddef>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <iterator>
|
|
|
|
#include <set>
|
|
|
|
#include <string>
|
|
|
|
#include <utility>
|
|
|
|
#include <vector>
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
#define DEBUG_TYPE "rewrite-statepoints-for-gc"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
// Print the liveset found at the insert location
|
|
|
|
static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
|
|
|
|
cl::init(false));
|
2015-04-11 06:34:56 +08:00
|
|
|
static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
|
|
|
|
cl::init(false));
|
2017-09-02 05:37:29 +08:00
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// Print out the base pointers for debugging
|
2015-04-11 06:34:56 +08:00
|
|
|
static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
|
|
|
|
cl::init(false));
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-05-19 23:59:05 +08:00
|
|
|
// Cost threshold measuring when it is profitable to rematerialize value instead
|
|
|
|
// of relocating it
|
|
|
|
static cl::opt<unsigned>
|
|
|
|
RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
|
|
|
|
cl::init(6));
|
|
|
|
|
2016-04-29 23:22:48 +08:00
|
|
|
#ifdef EXPENSIVE_CHECKS
|
2015-04-14 00:41:32 +08:00
|
|
|
static bool ClobberNonLive = true;
|
|
|
|
#else
|
|
|
|
static bool ClobberNonLive = false;
|
|
|
|
#endif
|
2017-09-02 05:37:29 +08:00
|
|
|
|
2015-04-14 00:41:32 +08:00
|
|
|
static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
|
|
|
|
cl::location(ClobberNonLive),
|
|
|
|
cl::Hidden);
|
|
|
|
|
2015-10-16 10:41:00 +08:00
|
|
|
static cl::opt<bool>
|
|
|
|
AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
|
|
|
|
cl::Hidden, cl::init(true));
|
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
/// The IR fed into RewriteStatepointsForGC may have had attributes and
|
|
|
|
/// metadata implying dereferenceability that are no longer valid/correct after
|
|
|
|
/// RewriteStatepointsForGC has run. This is because semantically, after
|
|
|
|
/// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
|
|
|
|
/// heap. stripNonValidData (conservatively) restores
|
|
|
|
/// correctness by erasing all attributes in the module that externally imply
|
|
|
|
/// dereferenceability. Similar reasoning also applies to the noalias
|
|
|
|
/// attributes and metadata. gc.statepoint can touch the entire heap including
|
|
|
|
/// noalias objects.
|
|
|
|
/// Apart from attributes and metadata, we also remove instructions that imply
|
|
|
|
/// constant physical memory: llvm.invariant.start.
|
|
|
|
static void stripNonValidData(Module &M);
|
|
|
|
|
|
|
|
static bool shouldRewriteStatepointsIn(Function &F);
|
|
|
|
|
|
|
|
PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
|
|
|
|
ModuleAnalysisManager &AM) {
|
|
|
|
bool Changed = false;
|
|
|
|
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
|
|
for (Function &F : M) {
|
|
|
|
// Nothing to do for declarations.
|
|
|
|
if (F.isDeclaration() || F.empty())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Policy choice says not to rewrite - the most common reason is that we're
|
|
|
|
// compiling code without a GCStrategy.
|
|
|
|
if (!shouldRewriteStatepointsIn(F))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
|
|
|
|
auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
|
|
|
|
auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
|
|
|
|
Changed |= runOnFunction(F, DT, TTI, TLI);
|
|
|
|
}
|
|
|
|
if (!Changed)
|
|
|
|
return PreservedAnalyses::all();
|
|
|
|
|
|
|
|
// stripNonValidData asserts that shouldRewriteStatepointsIn
|
|
|
|
// returns true for at least one function in the module. Since at least
|
|
|
|
// one function changed, we know that the precondition is satisfied.
|
|
|
|
stripNonValidData(M);
|
|
|
|
|
|
|
|
PreservedAnalyses PA;
|
|
|
|
PA.preserve<TargetIRAnalysis>();
|
|
|
|
PA.preserve<TargetLibraryAnalysis>();
|
|
|
|
return PA;
|
|
|
|
}
|
|
|
|
|
2015-02-20 22:00:58 +08:00
|
|
|
namespace {
|
2017-09-02 05:37:29 +08:00
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
class RewriteStatepointsForGCLegacyPass : public ModulePass {
|
|
|
|
RewriteStatepointsForGC Impl;
|
|
|
|
|
|
|
|
public:
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
|
|
|
|
initializeRewriteStatepointsForGCLegacyPassPass(
|
|
|
|
*PassRegistry::getPassRegistry());
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2017-09-02 05:37:29 +08:00
|
|
|
|
2015-06-03 06:33:34 +08:00
|
|
|
bool runOnModule(Module &M) override {
|
|
|
|
bool Changed = false;
|
2017-12-15 17:32:11 +08:00
|
|
|
const TargetLibraryInfo &TLI =
|
|
|
|
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
|
|
for (Function &F : M) {
|
|
|
|
// Nothing to do for declarations.
|
|
|
|
if (F.isDeclaration() || F.empty())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Policy choice says not to rewrite - the most common reason is that
|
|
|
|
// we're compiling code without a GCStrategy.
|
|
|
|
if (!shouldRewriteStatepointsIn(F))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
TargetTransformInfo &TTI =
|
|
|
|
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
|
|
|
|
|
|
|
|
Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
|
2015-06-03 06:33:37 +08:00
|
|
|
}
|
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
if (!Changed)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// stripNonValidData asserts that shouldRewriteStatepointsIn
|
|
|
|
// returns true for at least one function in the module. Since at least
|
|
|
|
// one function changed, we know that the precondition is satisfied.
|
|
|
|
stripNonValidData(M);
|
|
|
|
return true;
|
2015-06-03 06:33:34 +08:00
|
|
|
}
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
|
|
// We add and rewrite a bunch of instructions, but don't really do much
|
|
|
|
// else. We could in theory preserve a lot more analyses here.
|
|
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
2015-05-19 23:59:05 +08:00
|
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
2017-07-28 00:49:39 +08:00
|
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
};
|
2017-09-02 05:37:29 +08:00
|
|
|
|
|
|
|
} // end anonymous namespace
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
char RewriteStatepointsForGCLegacyPass::ID = 0;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
|
|
|
|
return new RewriteStatepointsForGCLegacyPass();
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
|
|
|
|
"rewrite-statepoints-for-gc",
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
"Make relocations explicit at statepoints", false, false)
|
|
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
2016-05-16 10:29:53 +08:00
|
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
2017-12-15 17:32:11 +08:00
|
|
|
INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
|
|
|
|
"rewrite-statepoints-for-gc",
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
"Make relocations explicit at statepoints", false, false)
|
|
|
|
|
|
|
|
namespace {
|
2017-09-02 05:37:29 +08:00
|
|
|
|
2015-04-11 06:53:14 +08:00
|
|
|
struct GCPtrLivenessData {
|
|
|
|
/// Values defined in this block.
|
2016-05-04 22:55:36 +08:00
|
|
|
MapVector<BasicBlock *, SetVector<Value *>> KillSet;
|
2017-09-02 05:37:29 +08:00
|
|
|
|
2015-04-11 06:53:14 +08:00
|
|
|
/// Values used in this block (and thus live); does not included values
|
|
|
|
/// killed within this block.
|
2016-05-04 22:55:36 +08:00
|
|
|
MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
|
2015-04-11 06:53:14 +08:00
|
|
|
|
|
|
|
/// Values live into this basic block (i.e. used by any
|
|
|
|
/// instruction in this basic block or ones reachable from here)
|
2016-05-04 22:55:36 +08:00
|
|
|
MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
|
2015-04-11 06:53:14 +08:00
|
|
|
|
|
|
|
/// Values live out of this basic block (i.e. live into
|
|
|
|
/// any successor block)
|
2016-05-04 22:55:36 +08:00
|
|
|
MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
|
2015-04-11 06:53:14 +08:00
|
|
|
};
|
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// The type of the internal cache used inside the findBasePointers family
|
|
|
|
// of functions. From the callers perspective, this is an opaque type and
|
|
|
|
// should not be inspected.
|
|
|
|
//
|
|
|
|
// In the actual implementation this caches two relations:
|
|
|
|
// - The base relation itself (i.e. this pointer is based on that one)
|
|
|
|
// - The base defining value relation (i.e. before base_phi insertion)
|
|
|
|
// Generally, after the execution of a full findBasePointer call, only the
|
|
|
|
// base relation will remain. Internally, we add a mixture of the two
|
|
|
|
// types, then update all the second type to the first type
|
2017-09-02 05:37:29 +08:00
|
|
|
using DefiningValueMapTy = MapVector<Value *, Value *>;
|
|
|
|
using StatepointLiveSetTy = SetVector<Value *>;
|
|
|
|
using RematerializedValueMapTy =
|
|
|
|
MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
struct PartiallyConstructedSafepointRecord {
|
2015-08-09 02:27:36 +08:00
|
|
|
/// The set of values known to be live across this safepoint
|
2015-10-07 10:39:18 +08:00
|
|
|
StatepointLiveSetTy LiveSet;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
/// Mapping from live pointers to a base-defining-value
|
2016-05-04 22:55:36 +08:00
|
|
|
MapVector<Value *, Value *> PointerToBase;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-02-21 05:34:11 +08:00
|
|
|
/// The *new* gc.statepoint instruction itself. This produces the token
|
|
|
|
/// that normal path gc.relocates and the gc.result are tied to.
|
|
|
|
Instruction *StatepointToken;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-02-21 03:26:04 +08:00
|
|
|
/// Instruction to which exceptional gc relocates are attached
|
|
|
|
/// Makes it easier to iterate through them during relocationViaAlloca.
|
|
|
|
Instruction *UnwindToken;
|
2015-05-19 23:59:05 +08:00
|
|
|
|
|
|
|
/// Record live values we are rematerialized instead of relocating.
|
2015-10-07 10:39:18 +08:00
|
|
|
/// They are not included into 'LiveSet' field.
|
2015-05-19 23:59:05 +08:00
|
|
|
/// Maps rematerialized copy to it's original value.
|
|
|
|
RematerializedValueMapTy RematerializedValues;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
};
|
2017-09-02 05:37:29 +08:00
|
|
|
|
|
|
|
} // end anonymous namespace
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-16 10:41:00 +08:00
|
|
|
static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
|
2016-01-23 03:20:40 +08:00
|
|
|
Optional<OperandBundleUse> DeoptBundle =
|
|
|
|
CS.getOperandBundle(LLVMContext::OB_deopt);
|
2015-10-16 10:41:00 +08:00
|
|
|
|
|
|
|
if (!DeoptBundle.hasValue()) {
|
|
|
|
assert(AllowStatepointWithNoDeoptInfo &&
|
|
|
|
"Found non-leaf call without deopt info!");
|
|
|
|
return None;
|
|
|
|
}
|
|
|
|
|
|
|
|
return DeoptBundle.getValue().Inputs;
|
|
|
|
}
|
|
|
|
|
2015-04-11 06:53:14 +08:00
|
|
|
/// Compute the live-in set for every basic block in the function
|
|
|
|
static void computeLiveInValues(DominatorTree &DT, Function &F,
|
|
|
|
GCPtrLivenessData &Data);
|
|
|
|
|
|
|
|
/// Given results from the dataflow liveness computation, find the set of live
|
|
|
|
/// Values at a particular instruction.
|
|
|
|
static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
|
|
|
|
StatepointLiveSetTy &out);
|
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// TODO: Once we can get to the GCStrategy, this becomes
|
2015-12-23 09:42:15 +08:00
|
|
|
// Optional<bool> isGCManagedPointer(const Type *Ty) const override {
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-08-02 06:20:21 +08:00
|
|
|
static bool isGCPointerType(Type *T) {
|
|
|
|
if (auto *PT = dyn_cast<PointerType>(T))
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// For the sake of this example GC, we arbitrarily pick addrspace(1) as our
|
|
|
|
// GC managed heap. We know that a pointer into this heap needs to be
|
|
|
|
// updated and that no other pointer does.
|
2016-06-26 12:55:19 +08:00
|
|
|
return PT->getAddressSpace() == 1;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2015-04-11 05:48:25 +08:00
|
|
|
// Return true if this type is one which a) is a gc pointer or contains a GC
|
|
|
|
// pointer and b) is of a type this code expects to encounter as a live value.
|
|
|
|
// (The insertion code will assert that a type which matches (a) and not (b)
|
2015-04-11 06:34:56 +08:00
|
|
|
// is not encountered.)
|
2015-04-11 05:48:25 +08:00
|
|
|
static bool isHandledGCPointerType(Type *T) {
|
|
|
|
// We fully support gc pointers
|
|
|
|
if (isGCPointerType(T))
|
|
|
|
return true;
|
|
|
|
// We partially support vectors of gc pointers. The code will assert if it
|
|
|
|
// can't handle something.
|
|
|
|
if (auto VT = dyn_cast<VectorType>(T))
|
|
|
|
if (isGCPointerType(VT->getElementType()))
|
|
|
|
return true;
|
|
|
|
return false;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2015-02-20 21:15:49 +08:00
|
|
|
|
|
|
|
#ifndef NDEBUG
|
2015-04-11 05:48:25 +08:00
|
|
|
/// Returns true if this type contains a gc pointer whether we know how to
|
|
|
|
/// handle that type or not.
|
|
|
|
static bool containsGCPtrType(Type *Ty) {
|
2015-04-11 06:34:56 +08:00
|
|
|
if (isGCPointerType(Ty))
|
2015-04-11 05:48:25 +08:00
|
|
|
return true;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
if (VectorType *VT = dyn_cast<VectorType>(Ty))
|
|
|
|
return isGCPointerType(VT->getScalarType());
|
2015-02-21 07:44:24 +08:00
|
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
|
2015-04-11 05:48:25 +08:00
|
|
|
return containsGCPtrType(AT->getElementType());
|
2015-02-21 07:44:24 +08:00
|
|
|
if (StructType *ST = dyn_cast<StructType>(Ty))
|
2017-09-02 05:37:29 +08:00
|
|
|
return llvm::any_of(ST->subtypes(), containsGCPtrType);
|
2015-02-21 07:44:24 +08:00
|
|
|
return false;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2015-04-11 05:48:25 +08:00
|
|
|
|
|
|
|
// Returns true if this is a type which a) is a gc pointer or contains a GC
|
|
|
|
// pointer and b) is of a type which the code doesn't expect (i.e. first class
|
|
|
|
// aggregates). Used to trip assertions.
|
|
|
|
static bool isUnhandledGCPointerType(Type *Ty) {
|
|
|
|
return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
|
|
|
|
}
|
2015-02-20 21:15:49 +08:00
|
|
|
#endif
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-09-10 07:57:18 +08:00
|
|
|
// Return the name of the value suffixed with the provided value, or if the
|
|
|
|
// value didn't have a name, the default value specified.
|
|
|
|
static std::string suffixed_name_or(Value *V, StringRef Suffix,
|
|
|
|
StringRef DefaultName) {
|
|
|
|
return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
|
|
|
|
}
|
|
|
|
|
2015-04-11 06:53:14 +08:00
|
|
|
// Conservatively identifies any definitions which might be live at the
|
|
|
|
// given instruction. The analysis is performed immediately before the
|
|
|
|
// given instruction. Values defined by that instruction are not considered
|
|
|
|
// live. Values used by that instruction are considered live.
|
2016-06-17 08:45:00 +08:00
|
|
|
static void
|
|
|
|
analyzeParsePointLiveness(DominatorTree &DT,
|
|
|
|
GCPtrLivenessData &OriginalLivenessData, CallSite CS,
|
2016-06-26 12:55:17 +08:00
|
|
|
PartiallyConstructedSafepointRecord &Result) {
|
|
|
|
Instruction *Inst = CS.getInstruction();
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
StatepointLiveSetTy LiveSet;
|
2016-06-26 12:55:17 +08:00
|
|
|
findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
if (PrintLiveSet) {
|
2016-06-26 12:55:17 +08:00
|
|
|
dbgs() << "Live Variables:\n";
|
2016-05-04 22:55:36 +08:00
|
|
|
for (Value *V : LiveSet)
|
2015-09-03 05:11:44 +08:00
|
|
|
dbgs() << " " << V->getName() << " " << *V << "\n";
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
if (PrintLiveSetSize) {
|
2016-06-26 12:55:17 +08:00
|
|
|
dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
|
|
|
|
dbgs() << "Number live values: " << LiveSet.size() << "\n";
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2016-06-26 12:55:17 +08:00
|
|
|
Result.LiveSet = LiveSet;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2015-09-04 05:34:30 +08:00
|
|
|
static bool isKnownBaseResult(Value *V);
|
2017-09-02 05:37:29 +08:00
|
|
|
|
2015-09-04 05:34:30 +08:00
|
|
|
namespace {
|
2017-09-02 05:37:29 +08:00
|
|
|
|
2015-09-04 05:34:30 +08:00
|
|
|
/// A single base defining value - An immediate base defining value for an
|
|
|
|
/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
|
|
|
|
/// For instructions which have multiple pointer [vector] inputs or that
|
|
|
|
/// transition between vector and scalar types, there is no immediate base
|
|
|
|
/// defining value. The 'base defining value' for 'Def' is the transitive
|
|
|
|
/// closure of this relation stopping at the first instruction which has no
|
|
|
|
/// immediate base defining value. The b.d.v. might itself be a base pointer,
|
2018-07-31 03:41:25 +08:00
|
|
|
/// but it can also be an arbitrary derived pointer.
|
2015-09-04 05:34:30 +08:00
|
|
|
struct BaseDefiningValueResult {
|
|
|
|
/// Contains the value which is the base defining value.
|
|
|
|
Value * const BDV;
|
2017-09-02 05:37:29 +08:00
|
|
|
|
2015-09-04 05:34:30 +08:00
|
|
|
/// True if the base defining value is also known to be an actual base
|
|
|
|
/// pointer.
|
|
|
|
const bool IsKnownBase;
|
2017-09-02 05:37:29 +08:00
|
|
|
|
2015-09-04 05:34:30 +08:00
|
|
|
BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
|
|
|
|
: BDV(BDV), IsKnownBase(IsKnownBase) {
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Check consistency between new and old means of checking whether a BDV is
|
|
|
|
// a base.
|
|
|
|
bool MustBeBase = isKnownBaseResult(BDV);
|
|
|
|
assert(!MustBeBase || MustBeBase == IsKnownBase);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
};
|
2017-09-02 05:37:29 +08:00
|
|
|
|
|
|
|
} // end anonymous namespace
|
2015-09-04 05:34:30 +08:00
|
|
|
|
|
|
|
static BaseDefiningValueResult findBaseDefiningValue(Value *I);
|
2015-05-13 06:19:52 +08:00
|
|
|
|
2015-06-27 06:47:37 +08:00
|
|
|
/// Return a base defining value for the 'Index' element of the given vector
|
|
|
|
/// instruction 'I'. If Index is null, returns a BDV for the entire vector
|
2018-07-31 03:41:25 +08:00
|
|
|
/// 'I'. As an optimization, this method will try to determine when the
|
2015-06-27 06:47:37 +08:00
|
|
|
/// element is known to already be a base pointer. If this can be established,
|
|
|
|
/// the second value in the returned pair will be true. Note that either a
|
|
|
|
/// vector or a pointer typed value can be returned. For the former, the
|
|
|
|
/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
|
|
|
|
/// If the later, the return pointer is a BDV (or possibly a base) for the
|
2018-07-31 03:41:25 +08:00
|
|
|
/// particular element in 'I'.
|
2015-09-04 05:34:30 +08:00
|
|
|
static BaseDefiningValueResult
|
2015-09-10 07:40:12 +08:00
|
|
|
findBaseDefiningValueOfVector(Value *I) {
|
2015-04-11 05:48:25 +08:00
|
|
|
// Each case parallels findBaseDefiningValue below, see that code for
|
|
|
|
// detailed motivation.
|
|
|
|
|
|
|
|
if (isa<Argument>(I))
|
|
|
|
// An incoming argument to the function is a base pointer
|
2015-09-04 05:34:30 +08:00
|
|
|
return BaseDefiningValueResult(I, true);
|
2015-04-11 05:48:25 +08:00
|
|
|
|
2016-01-09 12:02:16 +08:00
|
|
|
if (isa<Constant>(I))
|
2018-07-31 03:41:25 +08:00
|
|
|
// Base of constant vector consists only of constant null pointers.
|
2016-05-27 21:13:59 +08:00
|
|
|
// For reasoning see similar case inside 'findBaseDefiningValue' function.
|
|
|
|
return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
|
|
|
|
true);
|
2015-04-11 05:48:25 +08:00
|
|
|
|
|
|
|
if (isa<LoadInst>(I))
|
2015-09-04 05:34:30 +08:00
|
|
|
return BaseDefiningValueResult(I, true);
|
|
|
|
|
2015-09-10 07:40:12 +08:00
|
|
|
if (isa<InsertElementInst>(I))
|
2015-06-27 06:47:37 +08:00
|
|
|
// We don't know whether this vector contains entirely base pointers or
|
|
|
|
// not. To be conservatively correct, we treat it as a BDV and will
|
|
|
|
// duplicate code as needed to construct a parallel vector of bases.
|
2015-09-10 07:40:12 +08:00
|
|
|
return BaseDefiningValueResult(I, false);
|
2015-06-27 06:47:37 +08:00
|
|
|
|
|
|
|
if (isa<ShuffleVectorInst>(I))
|
|
|
|
// We don't know whether this vector contains entirely base pointers or
|
|
|
|
// not. To be conservatively correct, we treat it as a BDV and will
|
|
|
|
// duplicate code as needed to construct a parallel vector of bases.
|
|
|
|
// TODO: There a number of local optimizations which could be applied here
|
|
|
|
// for particular sufflevector patterns.
|
2015-09-04 05:34:30 +08:00
|
|
|
return BaseDefiningValueResult(I, false);
|
2015-06-27 06:47:37 +08:00
|
|
|
|
2017-03-17 08:55:53 +08:00
|
|
|
// The behavior of getelementptr instructions is the same for vector and
|
|
|
|
// non-vector data types.
|
|
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
|
|
|
|
return findBaseDefiningValue(GEP->getPointerOperand());
|
|
|
|
|
2017-10-13 23:59:13 +08:00
|
|
|
// If the pointer comes through a bitcast of a vector of pointers to
|
|
|
|
// a vector of another type of pointer, then look through the bitcast
|
|
|
|
if (auto *BC = dyn_cast<BitCastInst>(I))
|
|
|
|
return findBaseDefiningValue(BC->getOperand(0));
|
|
|
|
|
2018-01-30 22:43:41 +08:00
|
|
|
// We assume that functions in the source language only return base
|
|
|
|
// pointers. This should probably be generalized via attributes to support
|
|
|
|
// both source language and internal functions.
|
|
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I))
|
|
|
|
return BaseDefiningValueResult(I, true);
|
|
|
|
|
2015-06-27 06:47:37 +08:00
|
|
|
// A PHI or Select is a base defining value. The outer findBasePointer
|
|
|
|
// algorithm is responsible for constructing a base value for this BDV.
|
|
|
|
assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
|
|
|
|
"unknown vector instruction - no base found for vector element");
|
2015-09-04 05:34:30 +08:00
|
|
|
return BaseDefiningValueResult(I, false);
|
2015-04-11 05:48:25 +08:00
|
|
|
}
|
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
/// Helper function for findBasePointer - Will return a value which either a)
|
2015-08-13 05:00:20 +08:00
|
|
|
/// defines the base pointer for the input, b) blocks the simple search
|
|
|
|
/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
|
|
|
|
/// from pointer to vector type or back.
|
2015-09-04 05:34:30 +08:00
|
|
|
static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
|
2016-01-09 11:08:49 +08:00
|
|
|
assert(I->getType()->isPtrOrPtrVectorTy() &&
|
|
|
|
"Illegal to ask for the base pointer of a non-pointer type");
|
|
|
|
|
2015-06-27 06:47:37 +08:00
|
|
|
if (I->getType()->isVectorTy())
|
2015-09-04 05:34:30 +08:00
|
|
|
return findBaseDefiningValueOfVector(I);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-03-27 13:34:44 +08:00
|
|
|
if (isa<Argument>(I))
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// An incoming argument to the function is a base pointer
|
|
|
|
// We should have never reached here if this argument isn't an gc value
|
2015-09-04 05:34:30 +08:00
|
|
|
return BaseDefiningValueResult(I, true);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2016-05-27 21:13:59 +08:00
|
|
|
if (isa<Constant>(I)) {
|
2016-01-05 12:06:21 +08:00
|
|
|
// We assume that objects with a constant base (e.g. a global) can't move
|
|
|
|
// and don't need to be reported to the collector because they are always
|
2018-07-31 03:41:25 +08:00
|
|
|
// live. Besides global references, all kinds of constants (e.g. undef,
|
2016-05-27 21:13:59 +08:00
|
|
|
// constant expressions, null pointers) can be introduced by the inliner or
|
|
|
|
// the optimizer, especially on dynamically dead paths.
|
|
|
|
// Here we treat all of them as having single null base. By doing this we
|
2018-07-31 03:41:25 +08:00
|
|
|
// trying to avoid problems reporting various conflicts in a form of
|
2016-05-27 21:13:59 +08:00
|
|
|
// "phi (const1, const2)" or "phi (const, regular gc ptr)".
|
|
|
|
// See constant.ll file for relevant test cases.
|
|
|
|
|
|
|
|
return BaseDefiningValueResult(
|
|
|
|
ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
|
|
|
|
}
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(I)) {
|
2015-03-27 13:34:44 +08:00
|
|
|
Value *Def = CI->stripPointerCasts();
|
2015-12-21 09:26:46 +08:00
|
|
|
// If stripping pointer casts changes the address space there is an
|
|
|
|
// addrspacecast in between.
|
|
|
|
assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
|
|
|
|
cast<PointerType>(CI->getType())->getAddressSpace() &&
|
|
|
|
"unsupported addrspacecast");
|
2015-02-21 07:44:24 +08:00
|
|
|
// If we find a cast instruction here, it means we've found a cast which is
|
|
|
|
// not simply a pointer cast (i.e. an inttoptr). We don't know how to
|
|
|
|
// handle int->ptr conversion.
|
2015-03-27 13:34:44 +08:00
|
|
|
assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
|
|
|
|
return findBaseDefiningValue(Def);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2015-03-27 13:34:44 +08:00
|
|
|
if (isa<LoadInst>(I))
|
2015-09-04 05:34:30 +08:00
|
|
|
// The value loaded is an gc base itself
|
|
|
|
return BaseDefiningValueResult(I, true);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-03-27 13:34:44 +08:00
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
|
|
|
|
// The base of this GEP is the base
|
|
|
|
return findBaseDefiningValue(GEP->getPointerOperand());
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
|
|
default:
|
|
|
|
// fall through to general call handling
|
|
|
|
break;
|
|
|
|
case Intrinsic::experimental_gc_statepoint:
|
2015-12-23 02:44:45 +08:00
|
|
|
llvm_unreachable("statepoints don't produce pointers");
|
2017-09-02 05:37:29 +08:00
|
|
|
case Intrinsic::experimental_gc_relocate:
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// Rerunning safepoint insertion after safepoints are already
|
|
|
|
// inserted is not supported. It could probably be made to work,
|
|
|
|
// but why are you doing this? There's no good reason.
|
|
|
|
llvm_unreachable("repeat safepoint insertion is not supported");
|
|
|
|
case Intrinsic::gcroot:
|
|
|
|
// Currently, this mechanism hasn't been extended to work with gcroot.
|
|
|
|
// There's no reason it couldn't be, but I haven't thought about the
|
|
|
|
// implications much.
|
|
|
|
llvm_unreachable(
|
|
|
|
"interaction with the gcroot mechanism is not supported");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// We assume that functions in the source language only return base
|
|
|
|
// pointers. This should probably be generalized via attributes to support
|
|
|
|
// both source language and internal functions.
|
2015-03-27 13:34:44 +08:00
|
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I))
|
2015-09-04 05:34:30 +08:00
|
|
|
return BaseDefiningValueResult(I, true);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2016-10-06 21:24:20 +08:00
|
|
|
// TODO: I have absolutely no idea how to implement this part yet. It's not
|
2015-08-09 02:27:36 +08:00
|
|
|
// necessarily hard, I just haven't really looked at it yet.
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
|
|
|
|
|
2015-03-27 13:34:44 +08:00
|
|
|
if (isa<AtomicCmpXchgInst>(I))
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// A CAS is effectively a atomic store and load combined under a
|
|
|
|
// predicate. From the perspective of base pointers, we just treat it
|
2015-03-27 13:34:44 +08:00
|
|
|
// like a load.
|
2015-09-04 05:34:30 +08:00
|
|
|
return BaseDefiningValueResult(I, true);
|
2015-04-11 06:34:56 +08:00
|
|
|
|
2015-03-27 13:34:44 +08:00
|
|
|
assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
|
2015-04-11 06:34:56 +08:00
|
|
|
"binary ops which don't apply to pointers");
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// The aggregate ops. Aggregates can either be in the heap or on the
|
|
|
|
// stack, but in either case, this is simply a field load. As a result,
|
|
|
|
// this is a defining definition of the base just like a load is.
|
2015-03-27 13:34:44 +08:00
|
|
|
if (isa<ExtractValueInst>(I))
|
2015-09-04 05:34:30 +08:00
|
|
|
return BaseDefiningValueResult(I, true);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// We should never see an insert vector since that would require we be
|
|
|
|
// tracing back a struct value not a pointer value.
|
|
|
|
assert(!isa<InsertValueInst>(I) &&
|
|
|
|
"Base pointer for a struct is meaningless");
|
|
|
|
|
2015-08-13 05:00:20 +08:00
|
|
|
// An extractelement produces a base result exactly when it's input does.
|
|
|
|
// We may need to insert a parallel instruction to extract the appropriate
|
|
|
|
// element out of the base vector corresponding to the input. Given this,
|
|
|
|
// it's analogous to the phi and select case even though it's not a merge.
|
2015-09-10 07:40:12 +08:00
|
|
|
if (isa<ExtractElementInst>(I))
|
|
|
|
// Note: There a lot of obvious peephole cases here. This are deliberately
|
|
|
|
// handled after the main base pointer inference algorithm to make writing
|
|
|
|
// test cases to exercise that code easier.
|
|
|
|
return BaseDefiningValueResult(I, false);
|
2015-08-13 05:00:20 +08:00
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// The last two cases here don't return a base pointer. Instead, they
|
2015-08-09 02:27:36 +08:00
|
|
|
// return a value which dynamically selects from among several base
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// derived pointers (each with it's own base potentially). It's the job of
|
|
|
|
// the caller to resolve these.
|
2015-04-11 06:34:56 +08:00
|
|
|
assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
|
2015-03-27 13:34:44 +08:00
|
|
|
"missing instruction case in findBaseDefiningValing");
|
2015-09-04 05:34:30 +08:00
|
|
|
return BaseDefiningValueResult(I, false);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns the base defining value for this value.
|
2015-03-27 13:39:32 +08:00
|
|
|
static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
|
|
|
|
Value *&Cached = Cache[I];
|
2015-02-20 22:00:58 +08:00
|
|
|
if (!Cached) {
|
2015-09-04 05:34:30 +08:00
|
|
|
Cached = findBaseDefiningValue(I).BDV;
|
2018-05-14 20:53:11 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
|
|
|
|
<< Cached->getName() << "\n");
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2015-03-27 13:39:32 +08:00
|
|
|
assert(Cache[I] != nullptr);
|
2015-02-20 22:00:58 +08:00
|
|
|
return Cached;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Return a base pointer for this value if known. Otherwise, return it's
|
|
|
|
/// base defining value.
|
2015-03-27 13:39:32 +08:00
|
|
|
static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
|
|
|
|
Value *Def = findBaseDefiningValueCached(I, Cache);
|
|
|
|
auto Found = Cache.find(Def);
|
|
|
|
if (Found != Cache.end()) {
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// Either a base-of relation, or a self reference. Caller must check.
|
2015-02-20 22:00:58 +08:00
|
|
|
return Found->second;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
// Only a BDV available
|
2015-03-27 13:39:32 +08:00
|
|
|
return Def;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
|
|
|
|
/// is it known to be a base pointer? Or do we need to continue searching.
|
2015-03-27 13:39:32 +08:00
|
|
|
static bool isKnownBaseResult(Value *V) {
|
2015-09-10 07:40:12 +08:00
|
|
|
if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
|
|
|
|
!isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
|
|
|
|
!isa<ShuffleVectorInst>(V)) {
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// no recursion possible
|
|
|
|
return true;
|
|
|
|
}
|
2015-03-27 13:39:32 +08:00
|
|
|
if (isa<Instruction>(V) &&
|
|
|
|
cast<Instruction>(V)->getMetadata("is_base_value")) {
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// This is a previously inserted base phi or select. We know
|
|
|
|
// that this is a base value.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// We need to keep searching
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
2017-09-02 05:37:29 +08:00
|
|
|
|
2015-07-24 06:49:14 +08:00
|
|
|
/// Models the state of a single base defining value in the findBasePointer
|
|
|
|
/// algorithm for determining where a new instruction is needed to propagate
|
|
|
|
/// the base of this BDV.
|
|
|
|
class BDVState {
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
public:
|
|
|
|
enum Status { Unknown, Base, Conflict };
|
|
|
|
|
2017-09-02 05:37:29 +08:00
|
|
|
BDVState() : BaseValue(nullptr) {}
|
2016-06-26 12:55:35 +08:00
|
|
|
|
|
|
|
explicit BDVState(Status Status, Value *BaseValue = nullptr)
|
|
|
|
: Status(Status), BaseValue(BaseValue) {
|
|
|
|
assert(Status != Base || BaseValue);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2016-06-26 12:55:35 +08:00
|
|
|
explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
|
|
|
|
|
|
|
|
Status getStatus() const { return Status; }
|
|
|
|
Value *getBaseValue() const { return BaseValue; }
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
bool isBase() const { return getStatus() == Base; }
|
|
|
|
bool isUnknown() const { return getStatus() == Unknown; }
|
|
|
|
bool isConflict() const { return getStatus() == Conflict; }
|
|
|
|
|
2016-06-26 12:55:35 +08:00
|
|
|
bool operator==(const BDVState &Other) const {
|
|
|
|
return BaseValue == Other.BaseValue && Status == Other.Status;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2015-07-24 06:49:14 +08:00
|
|
|
bool operator!=(const BDVState &other) const { return !(*this == other); }
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-07-24 06:25:26 +08:00
|
|
|
LLVM_DUMP_METHOD
|
2016-06-26 12:55:35 +08:00
|
|
|
void dump() const {
|
|
|
|
print(dbgs());
|
|
|
|
dbgs() << '\n';
|
|
|
|
}
|
|
|
|
|
2015-07-24 06:25:26 +08:00
|
|
|
void print(raw_ostream &OS) const {
|
2016-06-26 12:55:35 +08:00
|
|
|
switch (getStatus()) {
|
2015-09-03 05:11:44 +08:00
|
|
|
case Unknown:
|
|
|
|
OS << "U";
|
|
|
|
break;
|
|
|
|
case Base:
|
|
|
|
OS << "B";
|
|
|
|
break;
|
|
|
|
case Conflict:
|
|
|
|
OS << "C";
|
|
|
|
break;
|
2017-09-02 05:37:29 +08:00
|
|
|
}
|
2016-06-26 12:55:35 +08:00
|
|
|
OS << " (" << getBaseValue() << " - "
|
|
|
|
<< (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
2017-09-02 05:37:29 +08:00
|
|
|
Status Status = Unknown;
|
2016-06-26 12:55:35 +08:00
|
|
|
AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
};
|
2017-09-02 05:37:29 +08:00
|
|
|
|
|
|
|
} // end anonymous namespace
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-09-03 05:57:17 +08:00
|
|
|
#ifndef NDEBUG
|
2015-09-03 06:30:53 +08:00
|
|
|
static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
|
2015-07-24 06:25:26 +08:00
|
|
|
State.print(OS);
|
|
|
|
return OS;
|
|
|
|
}
|
2015-09-03 05:57:17 +08:00
|
|
|
#endif
|
2015-07-24 06:25:26 +08:00
|
|
|
|
2016-06-26 12:55:13 +08:00
|
|
|
static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
|
|
|
|
switch (LHS.getStatus()) {
|
2016-06-26 12:55:10 +08:00
|
|
|
case BDVState::Unknown:
|
2016-06-26 12:55:13 +08:00
|
|
|
return RHS;
|
2016-06-26 12:55:10 +08:00
|
|
|
|
|
|
|
case BDVState::Base:
|
2016-06-26 12:55:35 +08:00
|
|
|
assert(LHS.getBaseValue() && "can't be null");
|
2016-06-26 12:55:13 +08:00
|
|
|
if (RHS.isUnknown())
|
|
|
|
return LHS;
|
|
|
|
|
|
|
|
if (RHS.isBase()) {
|
2016-06-26 12:55:35 +08:00
|
|
|
if (LHS.getBaseValue() == RHS.getBaseValue()) {
|
2016-06-26 12:55:13 +08:00
|
|
|
assert(LHS == RHS && "equality broken!");
|
|
|
|
return LHS;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2015-07-24 06:49:14 +08:00
|
|
|
return BDVState(BDVState::Conflict);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2016-06-26 12:55:13 +08:00
|
|
|
assert(RHS.isConflict() && "only three states!");
|
2016-06-26 12:55:10 +08:00
|
|
|
return BDVState(BDVState::Conflict);
|
|
|
|
|
|
|
|
case BDVState::Conflict:
|
2016-06-26 12:55:13 +08:00
|
|
|
return LHS;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2016-06-26 12:55:10 +08:00
|
|
|
llvm_unreachable("only three states!");
|
2015-06-23 17:49:53 +08:00
|
|
|
}
|
2015-09-03 06:30:53 +08:00
|
|
|
|
2016-06-26 12:55:10 +08:00
|
|
|
// Values of type BDVState form a lattice, and this function implements the meet
|
|
|
|
// operation.
|
2017-01-13 22:39:03 +08:00
|
|
|
static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
|
2016-06-26 12:55:10 +08:00
|
|
|
BDVState Result = meetBDVStateImpl(LHS, RHS);
|
|
|
|
assert(Result == meetBDVStateImpl(RHS, LHS) &&
|
|
|
|
"Math is wrong: meet does not commute!");
|
|
|
|
return Result;
|
|
|
|
}
|
2015-09-03 06:30:53 +08:00
|
|
|
|
2016-06-26 12:55:05 +08:00
|
|
|
/// For a given value or instruction, figure out what base ptr its derived from.
|
|
|
|
/// For gc objects, this is simply itself. On success, returns a value which is
|
|
|
|
/// the base pointer. (This is reliable and can be used for relocation.) On
|
|
|
|
/// failure, returns nullptr.
|
|
|
|
static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
|
|
|
|
Value *Def = findBaseOrBDV(I, Cache);
|
|
|
|
|
|
|
|
if (isKnownBaseResult(Def))
|
|
|
|
return Def;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// Here's the rough algorithm:
|
|
|
|
// - For every SSA value, construct a mapping to either an actual base
|
|
|
|
// pointer or a PHI which obscures the base pointer.
|
|
|
|
// - Construct a mapping from PHI to unknown TOP state. Use an
|
|
|
|
// optimistic algorithm to propagate base pointer information. Lattice
|
|
|
|
// looks like:
|
|
|
|
// UNKNOWN
|
|
|
|
// b1 b2 b3 b4
|
|
|
|
// CONFLICT
|
|
|
|
// When algorithm terminates, all PHIs will either have a single concrete
|
|
|
|
// base or be in a conflict state.
|
|
|
|
// - For every conflict, insert a dummy PHI node without arguments. Add
|
|
|
|
// these to the base[Instruction] = BasePtr mapping. For every
|
|
|
|
// non-conflict, add the actual base.
|
|
|
|
// - For every conflict, add arguments for the base[a] of each input
|
|
|
|
// arguments.
|
|
|
|
//
|
|
|
|
// Note: A simpler form of this would be to add the conflict form of all
|
|
|
|
// PHIs without running the optimistic algorithm. This would be
|
2015-08-09 02:27:36 +08:00
|
|
|
// analogous to pessimistic data flow and would likely lead to an
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// overall worse solution.
|
|
|
|
|
2015-07-24 08:42:55 +08:00
|
|
|
#ifndef NDEBUG
|
2015-07-24 08:02:11 +08:00
|
|
|
auto isExpectedBDVType = [](Value *BDV) {
|
2015-09-10 07:40:12 +08:00
|
|
|
return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
|
2016-10-04 21:48:37 +08:00
|
|
|
isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
|
|
|
|
isa<ShuffleVectorInst>(BDV);
|
2015-07-24 08:02:11 +08:00
|
|
|
};
|
2015-07-24 08:42:55 +08:00
|
|
|
#endif
|
2015-07-24 08:02:11 +08:00
|
|
|
|
|
|
|
// Once populated, will contain a mapping from each potentially non-base BDV
|
|
|
|
// to a lattice value (described above) which corresponds to that BDV.
|
2015-09-10 07:26:08 +08:00
|
|
|
// We use the order of insertion (DFS over the def/use graph) to provide a
|
|
|
|
// stable deterministic ordering for visiting DenseMaps (which are unordered)
|
|
|
|
// below. This is important for deterministic compilation.
|
2015-09-10 08:22:49 +08:00
|
|
|
MapVector<Value *, BDVState> States;
|
2015-09-10 07:26:08 +08:00
|
|
|
|
|
|
|
// Recursively fill in all base defining values reachable from the initial
|
|
|
|
// one for which we don't already know a definite base value for
|
2015-07-24 08:02:11 +08:00
|
|
|
/* scope */ {
|
|
|
|
SmallVector<Value*, 16> Worklist;
|
2016-06-26 12:55:05 +08:00
|
|
|
Worklist.push_back(Def);
|
|
|
|
States.insert({Def, BDVState()});
|
2015-07-24 08:02:11 +08:00
|
|
|
while (!Worklist.empty()) {
|
|
|
|
Value *Current = Worklist.pop_back_val();
|
|
|
|
assert(!isKnownBaseResult(Current) && "why did it get added?");
|
|
|
|
|
|
|
|
auto visitIncomingValue = [&](Value *InVal) {
|
2016-06-26 12:55:05 +08:00
|
|
|
Value *Base = findBaseOrBDV(InVal, Cache);
|
2015-07-24 08:02:11 +08:00
|
|
|
if (isKnownBaseResult(Base))
|
|
|
|
// Known bases won't need new instructions introduced and can be
|
|
|
|
// ignored safely
|
|
|
|
return;
|
|
|
|
assert(isExpectedBDVType(Base) && "the only non-base values "
|
|
|
|
"we see should be base defining values");
|
2015-09-10 08:22:49 +08:00
|
|
|
if (States.insert(std::make_pair(Base, BDVState())).second)
|
2015-07-24 08:02:11 +08:00
|
|
|
Worklist.push_back(Base);
|
|
|
|
};
|
2016-06-26 12:55:05 +08:00
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(Current)) {
|
|
|
|
for (Value *InVal : PN->incoming_values())
|
2015-07-24 08:02:11 +08:00
|
|
|
visitIncomingValue(InVal);
|
2016-06-26 12:55:05 +08:00
|
|
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
|
|
|
|
visitIncomingValue(SI->getTrueValue());
|
|
|
|
visitIncomingValue(SI->getFalseValue());
|
2015-08-13 05:00:20 +08:00
|
|
|
} else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
|
|
|
|
visitIncomingValue(EE->getVectorOperand());
|
2015-09-10 07:40:12 +08:00
|
|
|
} else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
|
|
|
|
visitIncomingValue(IE->getOperand(0)); // vector operand
|
|
|
|
visitIncomingValue(IE->getOperand(1)); // scalar operand
|
2016-10-04 21:48:37 +08:00
|
|
|
} else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
|
|
|
|
visitIncomingValue(SV->getOperand(0));
|
|
|
|
visitIncomingValue(SV->getOperand(1));
|
|
|
|
}
|
|
|
|
else {
|
2016-06-26 12:55:05 +08:00
|
|
|
llvm_unreachable("Unimplemented instruction case");
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-09-03 05:11:44 +08:00
|
|
|
#ifndef NDEBUG
|
2018-05-14 20:53:11 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "States after initialization:\n");
|
2016-06-26 13:42:52 +08:00
|
|
|
for (auto Pair : States) {
|
2018-05-14 20:53:11 +08:00
|
|
|
LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
|
2016-06-26 13:42:52 +08:00
|
|
|
}
|
2015-09-03 05:11:44 +08:00
|
|
|
#endif
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-07-24 05:41:27 +08:00
|
|
|
// Return a phi state for a base defining value. We'll generate a new
|
|
|
|
// base state for known bases and expect to find a cached state otherwise.
|
|
|
|
auto getStateForBDV = [&](Value *baseValue) {
|
|
|
|
if (isKnownBaseResult(baseValue))
|
2015-07-24 06:49:14 +08:00
|
|
|
return BDVState(baseValue);
|
2015-09-10 08:22:49 +08:00
|
|
|
auto I = States.find(baseValue);
|
|
|
|
assert(I != States.end() && "lookup failed!");
|
2015-07-24 05:41:27 +08:00
|
|
|
return I->second;
|
|
|
|
};
|
|
|
|
|
2016-06-26 12:55:05 +08:00
|
|
|
bool Progress = true;
|
|
|
|
while (Progress) {
|
2015-02-28 21:11:24 +08:00
|
|
|
#ifndef NDEBUG
|
2016-06-26 12:55:05 +08:00
|
|
|
const size_t OldSize = States.size();
|
2015-02-28 21:11:24 +08:00
|
|
|
#endif
|
2016-06-26 12:55:05 +08:00
|
|
|
Progress = false;
|
2015-09-10 07:26:08 +08:00
|
|
|
// We're only changing values in this loop, thus safe to keep iterators.
|
|
|
|
// Since this is computing a fixed point, the order of visit does not
|
|
|
|
// effect the result. TODO: We could use a worklist here and make this run
|
|
|
|
// much faster.
|
2015-09-10 08:22:49 +08:00
|
|
|
for (auto Pair : States) {
|
2015-09-10 07:57:18 +08:00
|
|
|
Value *BDV = Pair.first;
|
|
|
|
assert(!isKnownBaseResult(BDV) && "why did it get added?");
|
2015-07-24 05:41:27 +08:00
|
|
|
|
2015-07-24 06:49:14 +08:00
|
|
|
// Given an input value for the current instruction, return a BDVState
|
2015-07-24 05:41:27 +08:00
|
|
|
// instance which represents the BDV of that value.
|
|
|
|
auto getStateForInput = [&](Value *V) mutable {
|
2016-06-26 12:55:05 +08:00
|
|
|
Value *BDV = findBaseOrBDV(V, Cache);
|
2015-07-24 05:41:27 +08:00
|
|
|
return getStateForBDV(BDV);
|
|
|
|
};
|
|
|
|
|
2016-06-26 12:55:10 +08:00
|
|
|
BDVState NewState;
|
2016-06-26 12:55:05 +08:00
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
|
2016-06-26 12:55:10 +08:00
|
|
|
NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
|
|
|
|
NewState =
|
|
|
|
meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
|
2016-06-26 12:55:05 +08:00
|
|
|
} else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
|
|
|
|
for (Value *Val : PN->incoming_values())
|
2016-06-26 12:55:10 +08:00
|
|
|
NewState = meetBDVState(NewState, getStateForInput(Val));
|
2015-09-10 07:57:18 +08:00
|
|
|
} else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
|
2015-08-13 05:00:20 +08:00
|
|
|
// The 'meet' for an extractelement is slightly trivial, but it's still
|
|
|
|
// useful in that it drives us to conflict if our input is.
|
2016-06-26 12:55:10 +08:00
|
|
|
NewState =
|
|
|
|
meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
|
2016-10-04 21:48:37 +08:00
|
|
|
} else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
|
2015-09-10 07:40:12 +08:00
|
|
|
// Given there's a inherent type mismatch between the operands, will
|
|
|
|
// *always* produce Conflict.
|
2016-06-26 12:55:10 +08:00
|
|
|
NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
|
|
|
|
NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
|
2016-10-04 21:48:37 +08:00
|
|
|
} else {
|
|
|
|
// The only instance this does not return a Conflict is when both the
|
|
|
|
// vector operands are the same vector.
|
|
|
|
auto *SV = cast<ShuffleVectorInst>(BDV);
|
|
|
|
NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
|
|
|
|
NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
|
2015-08-13 05:00:20 +08:00
|
|
|
}
|
|
|
|
|
2016-06-26 12:55:05 +08:00
|
|
|
BDVState OldState = States[BDV];
|
|
|
|
if (OldState != NewState) {
|
|
|
|
Progress = true;
|
|
|
|
States[BDV] = NewState;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-06-26 12:55:05 +08:00
|
|
|
assert(OldSize == States.size() &&
|
2015-09-10 08:32:56 +08:00
|
|
|
"fixed point shouldn't be adding any new nodes to state");
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2015-09-03 05:11:44 +08:00
|
|
|
#ifndef NDEBUG
|
2018-05-14 20:53:11 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
|
2016-06-26 13:42:52 +08:00
|
|
|
for (auto Pair : States) {
|
2018-05-14 20:53:11 +08:00
|
|
|
LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
|
2016-06-26 13:42:52 +08:00
|
|
|
}
|
2015-09-03 05:11:44 +08:00
|
|
|
#endif
|
2016-06-26 12:55:05 +08:00
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// Insert Phis for all conflicts
|
2015-02-28 09:52:09 +08:00
|
|
|
// TODO: adjust naming patterns to avoid this order of iteration dependency
|
2015-09-10 08:22:49 +08:00
|
|
|
for (auto Pair : States) {
|
2015-09-10 07:26:08 +08:00
|
|
|
Instruction *I = cast<Instruction>(Pair.first);
|
|
|
|
BDVState State = Pair.second;
|
2015-07-22 03:04:38 +08:00
|
|
|
assert(!isKnownBaseResult(I) && "why did it get added?");
|
|
|
|
assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
|
2015-08-13 05:00:20 +08:00
|
|
|
|
|
|
|
// extractelement instructions are a bit special in that we may need to
|
|
|
|
// insert an extract even when we know an exact base for the instruction.
|
|
|
|
// The problem is that we need to convert from a vector base to a scalar
|
|
|
|
// base for the particular indice we're interested in.
|
|
|
|
if (State.isBase() && isa<ExtractElementInst>(I) &&
|
2016-06-26 12:55:35 +08:00
|
|
|
isa<VectorType>(State.getBaseValue()->getType())) {
|
2015-08-13 05:00:20 +08:00
|
|
|
auto *EE = cast<ExtractElementInst>(I);
|
|
|
|
// TODO: In many cases, the new instruction is just EE itself. We should
|
|
|
|
// exploit this, but can't do it here since it would break the invariant
|
|
|
|
// about the BDV not being known to be a base.
|
2016-06-26 12:55:05 +08:00
|
|
|
auto *BaseInst = ExtractElementInst::Create(
|
2016-06-26 12:55:35 +08:00
|
|
|
State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
|
2015-08-13 05:00:20 +08:00
|
|
|
BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
|
2015-09-10 08:22:49 +08:00
|
|
|
States[I] = BDVState(BDVState::Base, BaseInst);
|
2015-08-13 05:00:20 +08:00
|
|
|
}
|
2015-09-10 07:40:12 +08:00
|
|
|
|
|
|
|
// Since we're joining a vector and scalar base, they can never be the
|
|
|
|
// same. As a result, we should always see insert element having reached
|
|
|
|
// the conflict state.
|
2016-06-26 12:55:05 +08:00
|
|
|
assert(!isa<InsertElementInst>(I) || State.isConflict());
|
|
|
|
|
2015-07-22 03:04:38 +08:00
|
|
|
if (!State.isConflict())
|
2015-02-28 08:54:41 +08:00
|
|
|
continue;
|
2015-04-11 06:34:56 +08:00
|
|
|
|
2015-07-22 03:04:38 +08:00
|
|
|
/// Create and insert a new instruction which will represent the base of
|
|
|
|
/// the given instruction 'I'.
|
|
|
|
auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
|
|
|
|
if (isa<PHINode>(I)) {
|
|
|
|
BasicBlock *BB = I->getParent();
|
2018-05-11 07:01:54 +08:00
|
|
|
int NumPreds = pred_size(BB);
|
2015-07-22 03:04:38 +08:00
|
|
|
assert(NumPreds > 0 && "how did we reach here");
|
2015-09-10 07:57:18 +08:00
|
|
|
std::string Name = suffixed_name_or(I, ".base", "base_phi");
|
2015-07-25 03:01:39 +08:00
|
|
|
return PHINode::Create(I->getType(), NumPreds, Name, I);
|
2016-06-26 12:55:05 +08:00
|
|
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
|
2015-08-13 05:00:20 +08:00
|
|
|
// The undef will be replaced later
|
2016-06-26 12:55:05 +08:00
|
|
|
UndefValue *Undef = UndefValue::get(SI->getType());
|
2015-09-10 07:57:18 +08:00
|
|
|
std::string Name = suffixed_name_or(I, ".base", "base_select");
|
2016-06-26 12:55:05 +08:00
|
|
|
return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
|
2015-09-10 07:40:12 +08:00
|
|
|
} else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
|
2015-08-13 05:00:20 +08:00
|
|
|
UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
|
2015-09-10 07:57:18 +08:00
|
|
|
std::string Name = suffixed_name_or(I, ".base", "base_ee");
|
2015-08-13 05:00:20 +08:00
|
|
|
return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
|
|
|
|
EE);
|
2016-10-04 21:48:37 +08:00
|
|
|
} else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
|
2015-09-10 07:40:12 +08:00
|
|
|
UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
|
|
|
|
UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
|
2015-09-10 07:57:18 +08:00
|
|
|
std::string Name = suffixed_name_or(I, ".base", "base_ie");
|
2015-09-10 07:40:12 +08:00
|
|
|
return InsertElementInst::Create(VecUndef, ScalarUndef,
|
|
|
|
IE->getOperand(2), Name, IE);
|
2016-10-04 21:48:37 +08:00
|
|
|
} else {
|
|
|
|
auto *SV = cast<ShuffleVectorInst>(I);
|
|
|
|
UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
|
|
|
|
std::string Name = suffixed_name_or(I, ".base", "base_sv");
|
|
|
|
return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
|
|
|
|
Name, SV);
|
2015-07-22 03:04:38 +08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
Instruction *BaseInst = MakeBaseInstPlaceholder(I);
|
|
|
|
// Add metadata marking this as a base value
|
|
|
|
BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
|
2015-09-10 08:22:49 +08:00
|
|
|
States[I] = BDVState(BDVState::Conflict, BaseInst);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2015-09-04 05:57:40 +08:00
|
|
|
// Returns a instruction which produces the base pointer for a given
|
|
|
|
// instruction. The instruction is assumed to be an input to one of the BDVs
|
|
|
|
// seen in the inference algorithm above. As such, we must either already
|
|
|
|
// know it's base defining value is a base, or have inserted a new
|
|
|
|
// instruction to propagate the base of it's BDV and have entered that newly
|
|
|
|
// introduced instruction into the state table. In either case, we are
|
|
|
|
// assured to be able to determine an instruction which produces it's base
|
2016-06-26 12:55:05 +08:00
|
|
|
// pointer.
|
2015-09-04 05:57:40 +08:00
|
|
|
auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
|
2016-06-26 12:55:05 +08:00
|
|
|
Value *BDV = findBaseOrBDV(Input, Cache);
|
2015-09-04 05:57:40 +08:00
|
|
|
Value *Base = nullptr;
|
|
|
|
if (isKnownBaseResult(BDV)) {
|
|
|
|
Base = BDV;
|
|
|
|
} else {
|
|
|
|
// Either conflict or base.
|
2015-09-10 08:22:49 +08:00
|
|
|
assert(States.count(BDV));
|
2016-06-26 12:55:35 +08:00
|
|
|
Base = States[BDV].getBaseValue();
|
2015-09-04 05:57:40 +08:00
|
|
|
}
|
2016-06-26 12:55:05 +08:00
|
|
|
assert(Base && "Can't be null");
|
2015-09-04 05:57:40 +08:00
|
|
|
// The cast is needed since base traversal may strip away bitcasts
|
2016-06-26 12:55:05 +08:00
|
|
|
if (Base->getType() != Input->getType() && InsertPt)
|
|
|
|
Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
|
2015-09-04 05:57:40 +08:00
|
|
|
return Base;
|
|
|
|
};
|
|
|
|
|
2015-09-10 07:26:08 +08:00
|
|
|
// Fixup all the inputs of the new PHIs. Visit order needs to be
|
|
|
|
// deterministic and predictable because we're naming newly created
|
|
|
|
// instructions.
|
2015-09-10 08:22:49 +08:00
|
|
|
for (auto Pair : States) {
|
2015-09-10 08:01:53 +08:00
|
|
|
Instruction *BDV = cast<Instruction>(Pair.first);
|
2015-09-10 08:27:50 +08:00
|
|
|
BDVState State = Pair.second;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-09-10 08:01:53 +08:00
|
|
|
assert(!isKnownBaseResult(BDV) && "why did it get added?");
|
2015-09-10 08:27:50 +08:00
|
|
|
assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
|
|
|
|
if (!State.isConflict())
|
2015-02-28 09:57:44 +08:00
|
|
|
continue;
|
2015-04-11 06:34:56 +08:00
|
|
|
|
2016-06-26 12:55:35 +08:00
|
|
|
if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
|
2016-06-26 12:55:05 +08:00
|
|
|
PHINode *PN = cast<PHINode>(BDV);
|
|
|
|
unsigned NumPHIValues = PN->getNumIncomingValues();
|
2015-02-28 09:57:44 +08:00
|
|
|
for (unsigned i = 0; i < NumPHIValues; i++) {
|
2016-06-26 12:55:05 +08:00
|
|
|
Value *InVal = PN->getIncomingValue(i);
|
|
|
|
BasicBlock *InBB = PN->getIncomingBlock(i);
|
2015-02-28 09:57:44 +08:00
|
|
|
|
|
|
|
// If we've already seen InBB, add the same incoming value
|
|
|
|
// we added for it earlier. The IR verifier requires phi
|
|
|
|
// nodes with multiple entries from the same basic block
|
|
|
|
// to have the same incoming value for each of those
|
|
|
|
// entries. If we don't do this check here and basephi
|
|
|
|
// has a different type than base, we'll end up adding two
|
|
|
|
// bitcasts (and hence two distinct values) as incoming
|
|
|
|
// values for the same basic block.
|
|
|
|
|
2016-06-26 12:55:05 +08:00
|
|
|
int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
|
|
|
|
if (BlockIndex != -1) {
|
|
|
|
Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
|
|
|
|
BasePHI->addIncoming(OldBase, InBB);
|
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#ifndef NDEBUG
|
2015-09-04 05:57:40 +08:00
|
|
|
Value *Base = getBaseForInput(InVal, nullptr);
|
2016-06-26 12:55:05 +08:00
|
|
|
// In essence this assert states: the only way two values
|
|
|
|
// incoming from the same basic block may be different is by
|
|
|
|
// being different bitcasts of the same value. A cleanup
|
|
|
|
// that remains TODO is changing findBaseOrBDV to return an
|
|
|
|
// llvm::Value of the correct type (and still remain pure).
|
|
|
|
// This will remove the need to add bitcasts.
|
|
|
|
assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
|
|
|
|
"Sanity -- findBaseOrBDV should be pure!");
|
2015-02-28 09:57:44 +08:00
|
|
|
#endif
|
|
|
|
continue;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2015-02-28 09:57:44 +08:00
|
|
|
|
2015-09-04 05:57:40 +08:00
|
|
|
// Find the instruction which produces the base for each input. We may
|
|
|
|
// need to insert a bitcast in the incoming block.
|
|
|
|
// TODO: Need to split critical edges if insertion is needed
|
|
|
|
Value *Base = getBaseForInput(InVal, InBB->getTerminator());
|
2016-06-26 12:55:05 +08:00
|
|
|
BasePHI->addIncoming(Base, InBB);
|
2015-02-28 09:57:44 +08:00
|
|
|
}
|
2016-06-26 12:55:05 +08:00
|
|
|
assert(BasePHI->getNumIncomingValues() == NumPHIValues);
|
2016-06-26 12:55:35 +08:00
|
|
|
} else if (SelectInst *BaseSI =
|
|
|
|
dyn_cast<SelectInst>(State.getBaseValue())) {
|
2016-06-26 12:55:05 +08:00
|
|
|
SelectInst *SI = cast<SelectInst>(BDV);
|
|
|
|
|
|
|
|
// Find the instruction which produces the base for each input.
|
|
|
|
// We may need to insert a bitcast.
|
|
|
|
BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
|
|
|
|
BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
|
2016-06-26 12:55:35 +08:00
|
|
|
} else if (auto *BaseEE =
|
|
|
|
dyn_cast<ExtractElementInst>(State.getBaseValue())) {
|
2015-09-10 08:01:53 +08:00
|
|
|
Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
|
2015-09-04 05:57:40 +08:00
|
|
|
// Find the instruction which produces the base for each input. We may
|
|
|
|
// need to insert a bitcast.
|
2016-06-26 12:55:05 +08:00
|
|
|
BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
|
2016-10-04 21:48:37 +08:00
|
|
|
} else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
|
2015-09-10 08:01:53 +08:00
|
|
|
auto *BdvIE = cast<InsertElementInst>(BDV);
|
2015-09-10 07:40:12 +08:00
|
|
|
auto UpdateOperand = [&](int OperandIdx) {
|
|
|
|
Value *InVal = BdvIE->getOperand(OperandIdx);
|
2015-09-10 08:44:10 +08:00
|
|
|
Value *Base = getBaseForInput(InVal, BaseIE);
|
2015-09-10 07:40:12 +08:00
|
|
|
BaseIE->setOperand(OperandIdx, Base);
|
|
|
|
};
|
|
|
|
UpdateOperand(0); // vector operand
|
|
|
|
UpdateOperand(1); // scalar operand
|
2016-10-04 21:48:37 +08:00
|
|
|
} else {
|
|
|
|
auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
|
|
|
|
auto *BdvSV = cast<ShuffleVectorInst>(BDV);
|
|
|
|
auto UpdateOperand = [&](int OperandIdx) {
|
|
|
|
Value *InVal = BdvSV->getOperand(OperandIdx);
|
|
|
|
Value *Base = getBaseForInput(InVal, BaseSV);
|
|
|
|
BaseSV->setOperand(OperandIdx, Base);
|
|
|
|
};
|
|
|
|
UpdateOperand(0); // vector operand
|
|
|
|
UpdateOperand(1); // vector operand
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Cache all of our results so we can cheaply reuse them
|
|
|
|
// NOTE: This is actually two caches: one of the base defining value
|
|
|
|
// relation and one of the base pointer relation! FIXME
|
2015-09-10 08:22:49 +08:00
|
|
|
for (auto Pair : States) {
|
2015-09-10 07:26:08 +08:00
|
|
|
auto *BDV = Pair.first;
|
2016-06-26 12:55:35 +08:00
|
|
|
Value *Base = Pair.second.getBaseValue();
|
2016-06-26 12:55:05 +08:00
|
|
|
assert(BDV && Base);
|
2016-02-23 04:45:56 +08:00
|
|
|
assert(!isKnownBaseResult(BDV) && "why did it get added?");
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2018-05-14 20:53:11 +08:00
|
|
|
LLVM_DEBUG(
|
|
|
|
dbgs() << "Updating base value cache"
|
|
|
|
<< " for: " << BDV->getName() << " from: "
|
|
|
|
<< (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
|
|
|
|
<< " to: " << Base->getName() << "\n");
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2016-06-26 12:55:05 +08:00
|
|
|
if (Cache.count(BDV)) {
|
|
|
|
assert(isKnownBaseResult(Base) &&
|
2016-02-23 04:45:56 +08:00
|
|
|
"must be something we 'know' is a base pointer");
|
2016-06-26 12:55:05 +08:00
|
|
|
// Once we transition from the BDV relation being store in the Cache to
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// the base relation being stored, it must be stable
|
2016-06-26 12:55:05 +08:00
|
|
|
assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
"base relation should be stable");
|
|
|
|
}
|
2016-06-26 12:55:05 +08:00
|
|
|
Cache[BDV] = Base;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2016-06-26 12:55:05 +08:00
|
|
|
assert(Cache.count(Def));
|
|
|
|
return Cache[Def];
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// For a set of live pointers (base and/or derived), identify the base
|
|
|
|
// pointer of the object which they are derived from. This routine will
|
|
|
|
// mutate the IR graph as needed to make the 'base' pointer live at the
|
|
|
|
// definition site of 'derived'. This ensures that any use of 'derived' can
|
|
|
|
// also use 'base'. This may involve the insertion of a number of
|
|
|
|
// additional PHI nodes.
|
|
|
|
//
|
|
|
|
// preconditions: live is a set of pointer type Values
|
|
|
|
//
|
|
|
|
// side effects: may insert PHI nodes into the existing CFG, will preserve
|
|
|
|
// CFG, will not remove or mutate any existing nodes
|
|
|
|
//
|
2015-02-21 03:26:04 +08:00
|
|
|
// post condition: PointerToBase contains one (derived, base) pair for every
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// pointer in live. Note that derived can be equal to base if the original
|
|
|
|
// pointer was a base pointer.
|
2015-04-11 06:34:56 +08:00
|
|
|
static void
|
|
|
|
findBasePointers(const StatepointLiveSetTy &live,
|
2016-05-04 22:55:36 +08:00
|
|
|
MapVector<Value *, Value *> &PointerToBase,
|
2015-04-14 08:41:34 +08:00
|
|
|
DominatorTree *DT, DefiningValueMapTy &DVCache) {
|
2016-05-04 22:55:36 +08:00
|
|
|
for (Value *ptr : live) {
|
2015-04-14 08:41:34 +08:00
|
|
|
Value *base = findBasePointer(ptr, DVCache);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
assert(base && "failed to find base pointer");
|
2015-02-21 03:26:04 +08:00
|
|
|
PointerToBase[ptr] = base;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
|
|
|
|
DT->dominates(cast<Instruction>(base)->getParent(),
|
|
|
|
cast<Instruction>(ptr)->getParent())) &&
|
|
|
|
"The base we found better dominate the derived pointer");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Find the required based pointers (and adjust the live set) for the given
|
|
|
|
/// parse point.
|
|
|
|
static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
|
2016-06-17 08:45:00 +08:00
|
|
|
CallSite CS,
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
PartiallyConstructedSafepointRecord &result) {
|
2016-05-04 22:55:36 +08:00
|
|
|
MapVector<Value *, Value *> PointerToBase;
|
2015-10-07 10:39:18 +08:00
|
|
|
findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
if (PrintBasePointers) {
|
|
|
|
errs() << "Base Pairs (w/o Relocation):\n";
|
2016-05-04 22:55:36 +08:00
|
|
|
for (auto &Pair : PointerToBase) {
|
2015-12-23 08:19:45 +08:00
|
|
|
errs() << " derived ";
|
2016-05-04 22:55:36 +08:00
|
|
|
Pair.first->printAsOperand(errs(), false);
|
2015-12-23 08:19:45 +08:00
|
|
|
errs() << " base ";
|
2016-05-04 22:55:36 +08:00
|
|
|
Pair.second->printAsOperand(errs(), false);
|
2015-12-23 08:19:45 +08:00
|
|
|
errs() << "\n";;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-02-21 03:26:04 +08:00
|
|
|
result.PointerToBase = PointerToBase;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2015-04-11 06:53:14 +08:00
|
|
|
/// Given an updated version of the dataflow liveness results, update the
|
|
|
|
/// liveset and base pointer maps for the call site CS.
|
|
|
|
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
|
2016-06-17 08:45:00 +08:00
|
|
|
CallSite CS,
|
2015-04-11 06:53:14 +08:00
|
|
|
PartiallyConstructedSafepointRecord &result);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-04-11 06:53:14 +08:00
|
|
|
static void recomputeLiveInValues(
|
2015-12-16 03:40:57 +08:00
|
|
|
Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
|
2015-02-21 06:39:41 +08:00
|
|
|
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
|
2015-04-11 06:53:14 +08:00
|
|
|
// TODO-PERF: reuse the original liveness, then simply run the dataflow
|
2015-08-09 02:27:36 +08:00
|
|
|
// again. The old values are still live and will help it stabilize quickly.
|
2015-04-11 06:53:14 +08:00
|
|
|
GCPtrLivenessData RevisedLivenessData;
|
|
|
|
computeLiveInValues(DT, F, RevisedLivenessData);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
2016-06-17 08:45:00 +08:00
|
|
|
recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-10-20 09:06:24 +08:00
|
|
|
// When inserting gc.relocate and gc.result calls, we need to ensure there are
|
|
|
|
// no uses of the original value / return value between the gc.statepoint and
|
|
|
|
// the gc.relocate / gc.result call. One case which can arise is a phi node
|
|
|
|
// starting one of the successor blocks. We also need to be able to insert the
|
|
|
|
// gc.relocates only on the path which goes through the statepoint. We might
|
|
|
|
// need to split an edge to make this possible.
|
2015-04-14 04:00:30 +08:00
|
|
|
static BasicBlock *
|
2015-06-03 06:33:34 +08:00
|
|
|
normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
|
|
|
|
DominatorTree &DT) {
|
2015-04-14 02:07:21 +08:00
|
|
|
BasicBlock *Ret = BB;
|
2015-10-20 09:06:17 +08:00
|
|
|
if (!BB->getUniquePredecessor())
|
2015-07-22 17:52:54 +08:00
|
|
|
Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-20 09:06:24 +08:00
|
|
|
// Now that 'Ret' has unique predecessor we can safely remove all phi nodes
|
2015-04-14 02:07:21 +08:00
|
|
|
// from it
|
|
|
|
FoldSingleEntryPHINodes(Ret);
|
2015-10-20 09:06:17 +08:00
|
|
|
assert(!isa<PHINode>(Ret->begin()) &&
|
|
|
|
"All PHI nodes should have been removed!");
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-20 09:06:24 +08:00
|
|
|
// At this point, we can safely insert a gc.relocate or gc.result as the first
|
|
|
|
// instruction in Ret if needed.
|
2015-04-14 02:07:21 +08:00
|
|
|
return Ret;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2015-08-09 02:27:36 +08:00
|
|
|
// Create new attribute set containing only attributes which can be transferred
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// from original call to the safepoint.
|
2017-04-29 03:22:40 +08:00
|
|
|
static AttributeList legalizeCallAttributes(AttributeList AL) {
|
|
|
|
if (AL.isEmpty())
|
|
|
|
return AL;
|
|
|
|
|
|
|
|
// Remove the readonly, readnone, and statepoint function attributes.
|
|
|
|
AttrBuilder FnAttrs = AL.getFnAttributes();
|
|
|
|
FnAttrs.removeAttribute(Attribute::ReadNone);
|
|
|
|
FnAttrs.removeAttribute(Attribute::ReadOnly);
|
|
|
|
for (Attribute A : AL.getFnAttributes()) {
|
|
|
|
if (isStatepointDirectiveAttr(A))
|
|
|
|
FnAttrs.remove(A);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2017-04-29 03:22:40 +08:00
|
|
|
// Just skip parameter and return attributes for now
|
|
|
|
LLVMContext &Ctx = AL.getContext();
|
|
|
|
return AttributeList::get(Ctx, AttributeList::FunctionIndex,
|
|
|
|
AttributeSet::get(Ctx, FnAttrs));
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Helper function to place all gc relocates necessary for the given
|
|
|
|
/// statepoint.
|
|
|
|
/// Inputs:
|
|
|
|
/// liveVariables - list of variables to be relocated.
|
|
|
|
/// liveStart - index of the first live variable.
|
|
|
|
/// basePtrs - base pointers.
|
|
|
|
/// statepointToken - statepoint instruction to which relocates should be
|
|
|
|
/// bound.
|
|
|
|
/// Builder - Llvm IR builder to be used to construct new calls.
|
2015-10-07 10:39:18 +08:00
|
|
|
static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
|
2015-05-12 07:47:27 +08:00
|
|
|
const int LiveStart,
|
2015-10-07 10:39:18 +08:00
|
|
|
ArrayRef<Value *> BasePtrs,
|
2015-05-12 07:47:27 +08:00
|
|
|
Instruction *StatepointToken,
|
2015-03-10 00:23:46 +08:00
|
|
|
IRBuilder<> Builder) {
|
2015-07-22 01:18:03 +08:00
|
|
|
if (LiveVariables.empty())
|
|
|
|
return;
|
2015-10-20 09:06:28 +08:00
|
|
|
|
|
|
|
auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
|
2017-09-02 05:37:29 +08:00
|
|
|
auto ValIt = llvm::find(LiveVec, Val);
|
2015-10-20 09:06:28 +08:00
|
|
|
assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
|
|
|
|
size_t Index = std::distance(LiveVec.begin(), ValIt);
|
|
|
|
assert(Index < LiveVec.size() && "Bug in std::find?");
|
|
|
|
return Index;
|
|
|
|
};
|
2015-07-22 00:51:17 +08:00
|
|
|
Module *M = StatepointToken->getModule();
|
2018-07-31 03:41:25 +08:00
|
|
|
|
[rs4gc] Optionally directly relocated vector of pointers
This patch teaches rewrite-statepoints-for-gc to relocate vector-of-pointers directly rather than trying to split them. This builds on the recent lowering/IR changes to allow vector typed gc.relocates.
The motivation for this is that we recently found a bug in the vector splitting code where depending on visit order, a vector might not be relocated at some safepoint. Specifically, the bug is that the splitting code wasn't updating the side tables (live vector) of other safepoints. As a result, a vector which was live at two safepoints might not be updated at one of them. However, if you happened to visit safepoints in post order over the dominator tree, everything worked correctly. Weirdly, it turns out that post order is actually an incredibly common order to visit instructions in in practice. Frustratingly, I have not managed to write a test case which actually hits this. I can only reproduce it in large IR files produced by actual applications.
Rather than continue to make this code more complicated, we can remove all of the complexity by just representing the relocation of the entire vector natively in the IR.
At the moment, the new functionality is hidden behind a flag. To use this code, you need to pass "-rs4gc-split-vector-values=0". Once I have a chance to stress test with this option and get feedback from other users, my plan is to flip the default and remove the original splitting code. I would just remove it now, but given the rareness of the bug, I figured it was better to leave it in place until the new approach has been stress tested.
Differential Revision: http://reviews.llvm.org/D15982
llvm-svn: 257244
2016-01-09 09:31:13 +08:00
|
|
|
// All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
|
|
|
|
// element type is i8 addrspace(1)*). We originally generated unique
|
|
|
|
// declarations for each pointer type, but this proved problematic because
|
|
|
|
// the intrinsic mangling code is incomplete and fragile. Since we're moving
|
|
|
|
// towards a single unified pointer type anyways, we can just cast everything
|
|
|
|
// to an i8* of the right address space. A bitcast is added later to convert
|
2018-07-31 03:41:25 +08:00
|
|
|
// gc_relocate to the actual value's type.
|
[rs4gc] Optionally directly relocated vector of pointers
This patch teaches rewrite-statepoints-for-gc to relocate vector-of-pointers directly rather than trying to split them. This builds on the recent lowering/IR changes to allow vector typed gc.relocates.
The motivation for this is that we recently found a bug in the vector splitting code where depending on visit order, a vector might not be relocated at some safepoint. Specifically, the bug is that the splitting code wasn't updating the side tables (live vector) of other safepoints. As a result, a vector which was live at two safepoints might not be updated at one of them. However, if you happened to visit safepoints in post order over the dominator tree, everything worked correctly. Weirdly, it turns out that post order is actually an incredibly common order to visit instructions in in practice. Frustratingly, I have not managed to write a test case which actually hits this. I can only reproduce it in large IR files produced by actual applications.
Rather than continue to make this code more complicated, we can remove all of the complexity by just representing the relocation of the entire vector natively in the IR.
At the moment, the new functionality is hidden behind a flag. To use this code, you need to pass "-rs4gc-split-vector-values=0". Once I have a chance to stress test with this option and get feedback from other users, my plan is to flip the default and remove the original splitting code. I would just remove it now, but given the rareness of the bug, I figured it was better to leave it in place until the new approach has been stress tested.
Differential Revision: http://reviews.llvm.org/D15982
llvm-svn: 257244
2016-01-09 09:31:13 +08:00
|
|
|
auto getGCRelocateDecl = [&] (Type *Ty) {
|
|
|
|
assert(isHandledGCPointerType(Ty));
|
|
|
|
auto AS = Ty->getScalarType()->getPointerAddressSpace();
|
|
|
|
Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
|
|
|
|
if (auto *VT = dyn_cast<VectorType>(Ty))
|
|
|
|
NewTy = VectorType::get(NewTy, VT->getNumElements());
|
|
|
|
return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
|
|
|
|
{NewTy});
|
|
|
|
};
|
|
|
|
|
|
|
|
// Lazily populated map from input types to the canonicalized form mentioned
|
|
|
|
// in the comment above. This should probably be cached somewhere more
|
|
|
|
// broadly.
|
|
|
|
DenseMap<Type*, Value*> TypeToDeclMap;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-05-12 07:47:27 +08:00
|
|
|
for (unsigned i = 0; i < LiveVariables.size(); i++) {
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// Generate the gc.relocate call and save the result
|
2015-05-12 07:47:27 +08:00
|
|
|
Value *BaseIdx =
|
2015-10-20 09:06:28 +08:00
|
|
|
Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
|
2015-10-20 09:06:31 +08:00
|
|
|
Value *LiveIdx = Builder.getInt32(LiveStart + i);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
[rs4gc] Optionally directly relocated vector of pointers
This patch teaches rewrite-statepoints-for-gc to relocate vector-of-pointers directly rather than trying to split them. This builds on the recent lowering/IR changes to allow vector typed gc.relocates.
The motivation for this is that we recently found a bug in the vector splitting code where depending on visit order, a vector might not be relocated at some safepoint. Specifically, the bug is that the splitting code wasn't updating the side tables (live vector) of other safepoints. As a result, a vector which was live at two safepoints might not be updated at one of them. However, if you happened to visit safepoints in post order over the dominator tree, everything worked correctly. Weirdly, it turns out that post order is actually an incredibly common order to visit instructions in in practice. Frustratingly, I have not managed to write a test case which actually hits this. I can only reproduce it in large IR files produced by actual applications.
Rather than continue to make this code more complicated, we can remove all of the complexity by just representing the relocation of the entire vector natively in the IR.
At the moment, the new functionality is hidden behind a flag. To use this code, you need to pass "-rs4gc-split-vector-values=0". Once I have a chance to stress test with this option and get feedback from other users, my plan is to flip the default and remove the original splitting code. I would just remove it now, but given the rareness of the bug, I figured it was better to leave it in place until the new approach has been stress tested.
Differential Revision: http://reviews.llvm.org/D15982
llvm-svn: 257244
2016-01-09 09:31:13 +08:00
|
|
|
Type *Ty = LiveVariables[i]->getType();
|
|
|
|
if (!TypeToDeclMap.count(Ty))
|
|
|
|
TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
|
|
|
|
Value *GCRelocateDecl = TypeToDeclMap[Ty];
|
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// only specify a debug name if we can give a useful one
|
2015-07-22 00:51:17 +08:00
|
|
|
CallInst *Reloc = Builder.CreateCall(
|
2015-05-19 06:13:54 +08:00
|
|
|
GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
|
2015-09-10 07:57:18 +08:00
|
|
|
suffixed_name_or(LiveVariables[i], ".relocated", ""));
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// Trick CodeGen into thinking there are lots of free registers at this
|
|
|
|
// fake call.
|
2015-07-22 00:51:17 +08:00
|
|
|
Reloc->setCallingConv(CallingConv::Cold);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-10-16 10:41:00 +08:00
|
|
|
namespace {
|
|
|
|
|
|
|
|
/// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
|
|
|
|
/// avoids having to worry about keeping around dangling pointers to Values.
|
|
|
|
class DeferredReplacement {
|
|
|
|
AssertingVH<Instruction> Old;
|
|
|
|
AssertingVH<Instruction> New;
|
2016-04-06 07:18:35 +08:00
|
|
|
bool IsDeoptimize = false;
|
|
|
|
|
2017-09-02 05:37:29 +08:00
|
|
|
DeferredReplacement() = default;
|
2015-10-16 10:41:00 +08:00
|
|
|
|
|
|
|
public:
|
2016-04-06 07:18:53 +08:00
|
|
|
static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
|
|
|
|
assert(Old != New && Old && New &&
|
|
|
|
"Cannot RAUW equal values or to / from null!");
|
|
|
|
|
|
|
|
DeferredReplacement D;
|
|
|
|
D.Old = Old;
|
|
|
|
D.New = New;
|
|
|
|
return D;
|
|
|
|
}
|
|
|
|
|
|
|
|
static DeferredReplacement createDelete(Instruction *ToErase) {
|
|
|
|
DeferredReplacement D;
|
|
|
|
D.Old = ToErase;
|
|
|
|
return D;
|
2015-10-16 10:41:00 +08:00
|
|
|
}
|
|
|
|
|
2016-04-06 07:18:35 +08:00
|
|
|
static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
|
|
|
|
#ifndef NDEBUG
|
|
|
|
auto *F = cast<CallInst>(Old)->getCalledFunction();
|
|
|
|
assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
|
|
|
|
"Only way to construct a deoptimize deferred replacement");
|
|
|
|
#endif
|
|
|
|
DeferredReplacement D;
|
|
|
|
D.Old = Old;
|
|
|
|
D.IsDeoptimize = true;
|
|
|
|
return D;
|
|
|
|
}
|
|
|
|
|
2015-10-16 10:41:00 +08:00
|
|
|
/// Does the task represented by this instance.
|
|
|
|
void doReplacement() {
|
|
|
|
Instruction *OldI = Old;
|
|
|
|
Instruction *NewI = New;
|
|
|
|
|
|
|
|
assert(OldI != NewI && "Disallowed at construction?!");
|
2016-04-06 12:22:00 +08:00
|
|
|
assert((!IsDeoptimize || !New) &&
|
2018-06-14 13:41:49 +08:00
|
|
|
"Deoptimize intrinsics are not replaced!");
|
2015-10-16 10:41:00 +08:00
|
|
|
|
|
|
|
Old = nullptr;
|
|
|
|
New = nullptr;
|
|
|
|
|
|
|
|
if (NewI)
|
|
|
|
OldI->replaceAllUsesWith(NewI);
|
2016-04-06 07:18:35 +08:00
|
|
|
|
|
|
|
if (IsDeoptimize) {
|
|
|
|
// Note: we've inserted instructions, so the call to llvm.deoptimize may
|
2018-06-14 13:41:49 +08:00
|
|
|
// not necessarily be followed by the matching return.
|
2016-04-06 07:18:35 +08:00
|
|
|
auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
|
|
|
|
new UnreachableInst(RI->getContext(), RI);
|
|
|
|
RI->eraseFromParent();
|
|
|
|
}
|
|
|
|
|
2015-10-16 10:41:00 +08:00
|
|
|
OldI->eraseFromParent();
|
|
|
|
}
|
|
|
|
};
|
2017-09-02 05:37:29 +08:00
|
|
|
|
|
|
|
} // end anonymous namespace
|
2015-10-16 10:41:00 +08:00
|
|
|
|
[statepoints][experimental] Add support for live-in semantics of values in deopt bundles
This is a first step towards supporting deopt value lowering and reporting entirely with the register allocator. I hope to build on this in the near future to support live-on-return semantics, but I have a use case which allows me to test and investigate code quality with just the live-in semantics so I've chosen to start there. For those curious, my use cases is our implementation of the "__llvm_deoptimize" function we bind to @llvm.deoptimize. I'm choosing not to hard code that fact in the patch and instead make it configurable via function attributes.
The basic approach here is modelled on what is done for the "Live In" values on stackmaps and patchpoints. (A secondary goal here is to remove one of the last barriers to merging the pseudo instructions.) We start by adding the operands directly to the STATEPOINT SDNode. Once we've lowered to MI, we extend the remat logic used by the register allocator to fold virtual register uses into StackMap::Indirect entries as needed. This does rely on the fact that the register allocator rematerializes. If it didn't along some code path, we could end up with more vregs than physical registers and fail to allocate.
Today, we *only* fold in the register allocator. This can create some weird effects when combined with arguments passed on the stack because we don't fold them appropriately. I have an idea how to fix that, but it needs this patch in place to work on that effectively. (There's some weird interaction with the scheduler as well, more investigation needed.)
My near term plan is to land this patch off-by-default, experiment in my local tree to identify any correctness issues and then start fixing codegen problems one by one as I find them. Once I have the live-in lowering fully working (both correctness and code quality), I'm hoping to move on to the live-on-return semantics. Note: I don't have any *known* miscompiles with this patch enabled, but I'm pretty sure I'll find at least a couple. Thus, the "experimental" tag and the fact it's off by default.
Differential Revision: https://reviews.llvm.org/D24000
llvm-svn: 280250
2016-08-31 23:12:17 +08:00
|
|
|
static StringRef getDeoptLowering(CallSite CS) {
|
|
|
|
const char *DeoptLowering = "deopt-lowering";
|
|
|
|
if (CS.hasFnAttr(DeoptLowering)) {
|
|
|
|
// FIXME: CallSite has a *really* confusing interface around attributes
|
Rename AttributeSet to AttributeList
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
2017-03-22 00:57:19 +08:00
|
|
|
// with values.
|
|
|
|
const AttributeList &CSAS = CS.getAttributes();
|
|
|
|
if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
|
|
|
|
return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
|
|
|
|
.getValueAsString();
|
[statepoints][experimental] Add support for live-in semantics of values in deopt bundles
This is a first step towards supporting deopt value lowering and reporting entirely with the register allocator. I hope to build on this in the near future to support live-on-return semantics, but I have a use case which allows me to test and investigate code quality with just the live-in semantics so I've chosen to start there. For those curious, my use cases is our implementation of the "__llvm_deoptimize" function we bind to @llvm.deoptimize. I'm choosing not to hard code that fact in the patch and instead make it configurable via function attributes.
The basic approach here is modelled on what is done for the "Live In" values on stackmaps and patchpoints. (A secondary goal here is to remove one of the last barriers to merging the pseudo instructions.) We start by adding the operands directly to the STATEPOINT SDNode. Once we've lowered to MI, we extend the remat logic used by the register allocator to fold virtual register uses into StackMap::Indirect entries as needed. This does rely on the fact that the register allocator rematerializes. If it didn't along some code path, we could end up with more vregs than physical registers and fail to allocate.
Today, we *only* fold in the register allocator. This can create some weird effects when combined with arguments passed on the stack because we don't fold them appropriately. I have an idea how to fix that, but it needs this patch in place to work on that effectively. (There's some weird interaction with the scheduler as well, more investigation needed.)
My near term plan is to land this patch off-by-default, experiment in my local tree to identify any correctness issues and then start fixing codegen problems one by one as I find them. Once I have the live-in lowering fully working (both correctness and code quality), I'm hoping to move on to the live-on-return semantics. Note: I don't have any *known* miscompiles with this patch enabled, but I'm pretty sure I'll find at least a couple. Thus, the "experimental" tag and the fact it's off by default.
Differential Revision: https://reviews.llvm.org/D24000
llvm-svn: 280250
2016-08-31 23:12:17 +08:00
|
|
|
Function *F = CS.getCalledFunction();
|
|
|
|
assert(F && F->hasFnAttribute(DeoptLowering));
|
|
|
|
return F->getFnAttribute(DeoptLowering).getValueAsString();
|
|
|
|
}
|
|
|
|
return "live-through";
|
|
|
|
}
|
2018-07-31 03:41:25 +08:00
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
static void
|
2015-10-07 10:39:18 +08:00
|
|
|
makeStatepointExplicitImpl(const CallSite CS, /* to replace */
|
|
|
|
const SmallVectorImpl<Value *> &BasePtrs,
|
|
|
|
const SmallVectorImpl<Value *> &LiveVariables,
|
2015-10-16 10:41:00 +08:00
|
|
|
PartiallyConstructedSafepointRecord &Result,
|
|
|
|
std::vector<DeferredReplacement> &Replacements) {
|
2015-10-07 10:39:18 +08:00
|
|
|
assert(BasePtrs.size() == LiveVariables.size());
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// Then go ahead and use the builder do actually do the inserts. We insert
|
|
|
|
// immediately before the previous instruction under the assumption that all
|
|
|
|
// arguments will be available here. We can't insert afterwards since we may
|
|
|
|
// be replacing a terminator.
|
2015-10-07 10:39:18 +08:00
|
|
|
Instruction *InsertBefore = CS.getInstruction();
|
|
|
|
IRBuilder<> Builder(InsertBefore);
|
|
|
|
|
2015-10-09 07:18:38 +08:00
|
|
|
ArrayRef<Value *> GCArgs(LiveVariables);
|
2016-03-18 02:42:17 +08:00
|
|
|
uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
|
2015-10-16 10:41:00 +08:00
|
|
|
uint32_t NumPatchBytes = 0;
|
|
|
|
uint32_t Flags = uint32_t(StatepointFlags::None);
|
|
|
|
|
2016-01-29 09:03:20 +08:00
|
|
|
ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
|
|
|
|
ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
|
2015-10-16 10:41:00 +08:00
|
|
|
ArrayRef<Use> TransitionArgs;
|
2016-01-29 09:03:17 +08:00
|
|
|
if (auto TransitionBundle =
|
|
|
|
CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
|
|
|
|
Flags |= uint32_t(StatepointFlags::GCTransition);
|
|
|
|
TransitionArgs = TransitionBundle->Inputs;
|
|
|
|
}
|
2016-04-06 09:33:54 +08:00
|
|
|
|
|
|
|
// Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
|
|
|
|
// with a return value, we lower then as never returning calls to
|
|
|
|
// __llvm_deoptimize that are followed by unreachable to get better codegen.
|
2016-04-06 07:18:35 +08:00
|
|
|
bool IsDeoptimize = false;
|
2015-10-16 10:41:00 +08:00
|
|
|
|
2016-03-17 09:56:10 +08:00
|
|
|
StatepointDirectives SD =
|
|
|
|
parseStatepointDirectivesFromAttrs(CS.getAttributes());
|
|
|
|
if (SD.NumPatchBytes)
|
|
|
|
NumPatchBytes = *SD.NumPatchBytes;
|
|
|
|
if (SD.StatepointID)
|
|
|
|
StatepointID = *SD.StatepointID;
|
|
|
|
|
[statepoints][experimental] Add support for live-in semantics of values in deopt bundles
This is a first step towards supporting deopt value lowering and reporting entirely with the register allocator. I hope to build on this in the near future to support live-on-return semantics, but I have a use case which allows me to test and investigate code quality with just the live-in semantics so I've chosen to start there. For those curious, my use cases is our implementation of the "__llvm_deoptimize" function we bind to @llvm.deoptimize. I'm choosing not to hard code that fact in the patch and instead make it configurable via function attributes.
The basic approach here is modelled on what is done for the "Live In" values on stackmaps and patchpoints. (A secondary goal here is to remove one of the last barriers to merging the pseudo instructions.) We start by adding the operands directly to the STATEPOINT SDNode. Once we've lowered to MI, we extend the remat logic used by the register allocator to fold virtual register uses into StackMap::Indirect entries as needed. This does rely on the fact that the register allocator rematerializes. If it didn't along some code path, we could end up with more vregs than physical registers and fail to allocate.
Today, we *only* fold in the register allocator. This can create some weird effects when combined with arguments passed on the stack because we don't fold them appropriately. I have an idea how to fix that, but it needs this patch in place to work on that effectively. (There's some weird interaction with the scheduler as well, more investigation needed.)
My near term plan is to land this patch off-by-default, experiment in my local tree to identify any correctness issues and then start fixing codegen problems one by one as I find them. Once I have the live-in lowering fully working (both correctness and code quality), I'm hoping to move on to the live-on-return semantics. Note: I don't have any *known* miscompiles with this patch enabled, but I'm pretty sure I'll find at least a couple. Thus, the "experimental" tag and the fact it's off by default.
Differential Revision: https://reviews.llvm.org/D24000
llvm-svn: 280250
2016-08-31 23:12:17 +08:00
|
|
|
// Pass through the requested lowering if any. The default is live-through.
|
|
|
|
StringRef DeoptLowering = getDeoptLowering(CS);
|
|
|
|
if (DeoptLowering.equals("live-in"))
|
|
|
|
Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
|
|
|
|
else {
|
|
|
|
assert(DeoptLowering.equals("live-through") && "Unsupported value!");
|
|
|
|
}
|
|
|
|
|
2016-01-29 09:03:20 +08:00
|
|
|
Value *CallTarget = CS.getCalledValue();
|
2016-03-26 04:12:13 +08:00
|
|
|
if (Function *F = dyn_cast<Function>(CallTarget)) {
|
|
|
|
if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
|
2016-05-07 04:39:33 +08:00
|
|
|
// Calls to llvm.experimental.deoptimize are lowered to calls to the
|
2016-03-26 04:12:13 +08:00
|
|
|
// __llvm_deoptimize symbol. We want to resolve this now, since the
|
|
|
|
// verifier does not allow taking the address of an intrinsic function.
|
|
|
|
|
|
|
|
SmallVector<Type *, 8> DomainTy;
|
|
|
|
for (Value *Arg : CallArgs)
|
|
|
|
DomainTy.push_back(Arg->getType());
|
2016-04-06 07:18:35 +08:00
|
|
|
auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
|
2016-03-26 04:12:13 +08:00
|
|
|
/* isVarArg = */ false);
|
|
|
|
|
|
|
|
// Note: CallTarget can be a bitcast instruction of a symbol if there are
|
|
|
|
// calls to @llvm.experimental.deoptimize with different argument types in
|
|
|
|
// the same module. This is fine -- we assume the frontend knew what it
|
|
|
|
// was doing when generating this kind of IR.
|
|
|
|
CallTarget =
|
|
|
|
F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
|
2016-04-06 07:18:35 +08:00
|
|
|
|
|
|
|
IsDeoptimize = true;
|
2016-03-26 04:12:13 +08:00
|
|
|
}
|
|
|
|
}
|
2015-10-16 10:41:00 +08:00
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// Create the statepoint given all the arguments
|
2015-10-07 10:39:18 +08:00
|
|
|
Instruction *Token = nullptr;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
if (CS.isCall()) {
|
2015-10-07 10:39:18 +08:00
|
|
|
CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
|
2015-10-09 07:18:38 +08:00
|
|
|
CallInst *Call = Builder.CreateGCStatepointCall(
|
|
|
|
StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
|
|
|
|
TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
|
|
|
|
|
2016-11-26 06:35:09 +08:00
|
|
|
Call->setTailCallKind(ToReplace->getTailCallKind());
|
2015-10-07 10:39:18 +08:00
|
|
|
Call->setCallingConv(ToReplace->getCallingConv());
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// Currently we will fail on parameter attributes and on certain
|
2017-04-29 03:22:40 +08:00
|
|
|
// function attributes. In case if we can handle this set of attributes -
|
|
|
|
// set up function attrs directly on statepoint and return attrs later for
|
|
|
|
// gc_result intrinsic.
|
|
|
|
Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
Token = Call;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// Put the following gc_result and gc_relocate calls immediately after the
|
|
|
|
// the old call (which we're about to delete)
|
2015-10-07 10:39:18 +08:00
|
|
|
assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
|
|
|
|
Builder.SetInsertPoint(ToReplace->getNextNode());
|
|
|
|
Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
|
2015-02-21 07:44:24 +08:00
|
|
|
} else {
|
2015-10-07 10:39:18 +08:00
|
|
|
InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// Insert the new invoke into the old block. We'll remove the old one in a
|
|
|
|
// moment at which point this will become the new terminator for the
|
|
|
|
// original block.
|
2015-10-09 07:18:38 +08:00
|
|
|
InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
|
|
|
|
StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
|
|
|
|
ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
|
|
|
|
GCArgs, "statepoint_token");
|
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
Invoke->setCallingConv(ToReplace->getCallingConv());
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// Currently we will fail on parameter attributes and on certain
|
2017-04-29 03:22:40 +08:00
|
|
|
// function attributes. In case if we can handle this set of attributes -
|
|
|
|
// set up function attrs directly on statepoint and return attrs later for
|
|
|
|
// gc_result intrinsic.
|
|
|
|
Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
Token = Invoke;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// Generate gc relocates in exceptional path
|
2015-10-07 10:39:18 +08:00
|
|
|
BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
|
|
|
|
assert(!isa<PHINode>(UnwindBlock->begin()) &&
|
|
|
|
UnwindBlock->getUniquePredecessor() &&
|
2015-04-14 02:07:21 +08:00
|
|
|
"can't safely insert in this block!");
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-14 03:26:58 +08:00
|
|
|
Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
|
2015-10-07 10:39:18 +08:00
|
|
|
Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-12-26 15:54:32 +08:00
|
|
|
// Attach exceptional gc relocates to the landingpad.
|
|
|
|
Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
|
2015-10-07 10:39:18 +08:00
|
|
|
Result.UnwindToken = ExceptionalToken;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-09 07:18:38 +08:00
|
|
|
const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
|
2015-10-07 10:39:18 +08:00
|
|
|
CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
|
|
|
|
Builder);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// Generate gc relocates and returns for normal block
|
2015-10-07 10:39:18 +08:00
|
|
|
BasicBlock *NormalDest = ToReplace->getNormalDest();
|
|
|
|
assert(!isa<PHINode>(NormalDest->begin()) &&
|
|
|
|
NormalDest->getUniquePredecessor() &&
|
2015-04-14 02:07:21 +08:00
|
|
|
"can't safely insert in this block!");
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-14 03:26:58 +08:00
|
|
|
Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// gc relocates will be generated later as if it were regular call
|
|
|
|
// statepoint
|
|
|
|
}
|
2015-10-07 10:39:18 +08:00
|
|
|
assert(Token && "Should be set in one of the above branches!");
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2016-04-06 07:18:35 +08:00
|
|
|
if (IsDeoptimize) {
|
|
|
|
// If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
|
|
|
|
// transform the tail-call like structure to a call to a void function
|
|
|
|
// followed by unreachable to get better codegen.
|
|
|
|
Replacements.push_back(
|
|
|
|
DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
|
2015-10-16 10:41:00 +08:00
|
|
|
} else {
|
2016-04-06 07:18:35 +08:00
|
|
|
Token->setName("statepoint_token");
|
|
|
|
if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
|
|
|
|
StringRef Name =
|
|
|
|
CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
|
|
|
|
CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
|
2017-04-11 07:31:05 +08:00
|
|
|
GCResult->setAttributes(
|
|
|
|
AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
|
|
|
|
CS.getAttributes().getRetAttributes()));
|
2016-04-06 07:18:35 +08:00
|
|
|
|
|
|
|
// We cannot RAUW or delete CS.getInstruction() because it could be in the
|
|
|
|
// live set of some other safepoint, in which case that safepoint's
|
|
|
|
// PartiallyConstructedSafepointRecord will hold a raw pointer to this
|
|
|
|
// llvm::Instruction. Instead, we defer the replacement and deletion to
|
|
|
|
// after the live sets have been made explicit in the IR, and we no longer
|
|
|
|
// have raw pointers to worry about.
|
2016-04-06 07:18:53 +08:00
|
|
|
Replacements.emplace_back(
|
|
|
|
DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
|
2016-04-06 07:18:35 +08:00
|
|
|
} else {
|
2016-04-06 07:18:53 +08:00
|
|
|
Replacements.emplace_back(
|
|
|
|
DeferredReplacement::createDelete(CS.getInstruction()));
|
2016-04-06 07:18:35 +08:00
|
|
|
}
|
2015-10-16 10:41:00 +08:00
|
|
|
}
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
Result.StatepointToken = Token;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-02-21 05:34:11 +08:00
|
|
|
// Second, create a gc.relocate for every live variable
|
2015-10-09 07:18:38 +08:00
|
|
|
const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
|
2015-10-07 10:39:18 +08:00
|
|
|
CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Replace an existing gc.statepoint with a new one and a set of gc.relocates
|
|
|
|
// which make the relocations happening at this safepoint explicit.
|
2015-04-11 06:34:56 +08:00
|
|
|
//
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// WARNING: Does not do any fixup to adjust users of the original live
|
|
|
|
// values. That's the callers responsibility.
|
|
|
|
static void
|
2016-06-17 08:45:00 +08:00
|
|
|
makeStatepointExplicit(DominatorTree &DT, CallSite CS,
|
2015-10-16 10:41:00 +08:00
|
|
|
PartiallyConstructedSafepointRecord &Result,
|
|
|
|
std::vector<DeferredReplacement> &Replacements) {
|
2015-10-09 07:18:22 +08:00
|
|
|
const auto &LiveSet = Result.LiveSet;
|
|
|
|
const auto &PointerToBase = Result.PointerToBase;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// Convert to vector for efficient cross referencing.
|
2015-10-07 10:39:18 +08:00
|
|
|
SmallVector<Value *, 64> BaseVec, LiveVec;
|
|
|
|
LiveVec.reserve(LiveSet.size());
|
|
|
|
BaseVec.reserve(LiveSet.size());
|
|
|
|
for (Value *L : LiveSet) {
|
|
|
|
LiveVec.push_back(L);
|
2015-07-22 00:51:17 +08:00
|
|
|
assert(PointerToBase.count(L));
|
2015-10-09 07:18:22 +08:00
|
|
|
Value *Base = PointerToBase.find(L)->second;
|
2015-10-07 10:39:18 +08:00
|
|
|
BaseVec.push_back(Base);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2015-10-07 10:39:18 +08:00
|
|
|
assert(LiveVec.size() == BaseVec.size());
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// Do the actual rewriting and delete the old statepoint
|
2015-10-16 10:41:00 +08:00
|
|
|
makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Helper function for the relocationViaAlloca.
|
2015-10-07 10:39:18 +08:00
|
|
|
//
|
|
|
|
// It receives iterator to the statepoint gc relocates and emits a store to the
|
|
|
|
// assigned location (via allocaMap) for the each one of them. It adds the
|
|
|
|
// visited values into the visitedLiveValues set, which we will later use them
|
|
|
|
// for sanity checking.
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
static void
|
2015-05-12 07:47:27 +08:00
|
|
|
insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
|
|
|
|
DenseMap<Value *, Value *> &AllocaMap,
|
|
|
|
DenseSet<Value *> &VisitedLiveValues) {
|
|
|
|
for (User *U : GCRelocs) {
|
2016-01-05 12:03:00 +08:00
|
|
|
GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
|
|
|
|
if (!Relocate)
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
continue;
|
|
|
|
|
2016-01-30 00:54:49 +08:00
|
|
|
Value *OriginalValue = Relocate->getDerivedPtr();
|
2015-05-12 07:47:27 +08:00
|
|
|
assert(AllocaMap.count(OriginalValue));
|
|
|
|
Value *Alloca = AllocaMap[OriginalValue];
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// Emit store into the related alloca
|
2015-10-07 10:39:18 +08:00
|
|
|
// All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
|
[RewriteStatepointsForGC] Fix a bug on creating gc_relocate for pointer to vector of pointers
Summary:
In RewriteStatepointsForGC pass, we create a gc_relocate intrinsic for
each relocated pointer, and the gc_relocate has the same type with the
pointer. During the creation of gc_relocate intrinsic, llvm requires to
mangle its type. However, llvm does not support mangling of all possible
types. RewriteStatepointsForGC will hit an assertion failure when it
tries to create a gc_relocate for pointer to vector of pointers because
mangling for vector of pointers is not supported.
This patch changes the way RewriteStatepointsForGC pass creates
gc_relocate. For each relocated pointer, we erase the type of pointers
and create an unified gc_relocate of type i8 addrspace(1)*. Then a
bitcast is inserted to convert the gc_relocate to the correct type. In
this way, gc_relocate does not need to deal with different types of
pointers and the unsupported type mangling is no longer a problem. This
change would also ease further merge when LLVM erases types of pointers
and introduces an unified pointer type.
Some minor changes are also introduced to gc_relocate related part in
InstCombineCalls, CodeGenPrepare, and Verifier accordingly.
Patch by Chen Li!
Reviewers: reames, AndyAyers, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9592
llvm-svn: 237009
2015-05-12 02:49:34 +08:00
|
|
|
// the correct type according to alloca.
|
2016-01-05 12:03:00 +08:00
|
|
|
assert(Relocate->getNextNode() &&
|
2015-10-07 10:39:18 +08:00
|
|
|
"Should always have one since it's not a terminator");
|
2016-01-05 12:03:00 +08:00
|
|
|
IRBuilder<> Builder(Relocate->getNextNode());
|
[RewriteStatepointsForGC] Fix a bug on creating gc_relocate for pointer to vector of pointers
Summary:
In RewriteStatepointsForGC pass, we create a gc_relocate intrinsic for
each relocated pointer, and the gc_relocate has the same type with the
pointer. During the creation of gc_relocate intrinsic, llvm requires to
mangle its type. However, llvm does not support mangling of all possible
types. RewriteStatepointsForGC will hit an assertion failure when it
tries to create a gc_relocate for pointer to vector of pointers because
mangling for vector of pointers is not supported.
This patch changes the way RewriteStatepointsForGC pass creates
gc_relocate. For each relocated pointer, we erase the type of pointers
and create an unified gc_relocate of type i8 addrspace(1)*. Then a
bitcast is inserted to convert the gc_relocate to the correct type. In
this way, gc_relocate does not need to deal with different types of
pointers and the unsupported type mangling is no longer a problem. This
change would also ease further merge when LLVM erases types of pointers
and introduces an unified pointer type.
Some minor changes are also introduced to gc_relocate related part in
InstCombineCalls, CodeGenPrepare, and Verifier accordingly.
Patch by Chen Li!
Reviewers: reames, AndyAyers, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9592
llvm-svn: 237009
2015-05-12 02:49:34 +08:00
|
|
|
Value *CastedRelocatedValue =
|
2016-01-05 12:03:00 +08:00
|
|
|
Builder.CreateBitCast(Relocate,
|
2015-09-10 07:57:18 +08:00
|
|
|
cast<AllocaInst>(Alloca)->getAllocatedType(),
|
2016-01-05 12:03:00 +08:00
|
|
|
suffixed_name_or(Relocate, ".casted", ""));
|
[RewriteStatepointsForGC] Fix a bug on creating gc_relocate for pointer to vector of pointers
Summary:
In RewriteStatepointsForGC pass, we create a gc_relocate intrinsic for
each relocated pointer, and the gc_relocate has the same type with the
pointer. During the creation of gc_relocate intrinsic, llvm requires to
mangle its type. However, llvm does not support mangling of all possible
types. RewriteStatepointsForGC will hit an assertion failure when it
tries to create a gc_relocate for pointer to vector of pointers because
mangling for vector of pointers is not supported.
This patch changes the way RewriteStatepointsForGC pass creates
gc_relocate. For each relocated pointer, we erase the type of pointers
and create an unified gc_relocate of type i8 addrspace(1)*. Then a
bitcast is inserted to convert the gc_relocate to the correct type. In
this way, gc_relocate does not need to deal with different types of
pointers and the unsupported type mangling is no longer a problem. This
change would also ease further merge when LLVM erases types of pointers
and introduces an unified pointer type.
Some minor changes are also introduced to gc_relocate related part in
InstCombineCalls, CodeGenPrepare, and Verifier accordingly.
Patch by Chen Li!
Reviewers: reames, AndyAyers, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9592
llvm-svn: 237009
2015-05-12 02:49:34 +08:00
|
|
|
|
2015-05-12 07:47:27 +08:00
|
|
|
StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
|
|
|
|
Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
#ifndef NDEBUG
|
2015-05-12 07:47:27 +08:00
|
|
|
VisitedLiveValues.insert(OriginalValue);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-05-19 23:59:05 +08:00
|
|
|
// Helper function for the "relocationViaAlloca". Similar to the
|
|
|
|
// "insertRelocationStores" but works for rematerialized values.
|
2016-02-05 09:42:52 +08:00
|
|
|
static void insertRematerializationStores(
|
|
|
|
const RematerializedValueMapTy &RematerializedValues,
|
|
|
|
DenseMap<Value *, Value *> &AllocaMap,
|
|
|
|
DenseSet<Value *> &VisitedLiveValues) {
|
2015-05-19 23:59:05 +08:00
|
|
|
for (auto RematerializedValuePair: RematerializedValues) {
|
|
|
|
Instruction *RematerializedValue = RematerializedValuePair.first;
|
|
|
|
Value *OriginalValue = RematerializedValuePair.second;
|
|
|
|
|
|
|
|
assert(AllocaMap.count(OriginalValue) &&
|
|
|
|
"Can not find alloca for rematerialized value");
|
|
|
|
Value *Alloca = AllocaMap[OriginalValue];
|
|
|
|
|
|
|
|
StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
|
|
|
|
Store->insertAfter(RematerializedValue);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
VisitedLiveValues.insert(OriginalValue);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
/// Do all the relocation update via allocas and mem2reg
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
static void relocationViaAlloca(
|
2015-05-20 00:29:43 +08:00
|
|
|
Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
|
2015-10-07 10:39:18 +08:00
|
|
|
ArrayRef<PartiallyConstructedSafepointRecord> Records) {
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#ifndef NDEBUG
|
2015-03-27 13:53:16 +08:00
|
|
|
// record initial number of (static) allocas; we'll check we have the same
|
|
|
|
// number when we get done.
|
|
|
|
int InitialAllocaNum = 0;
|
2016-06-26 20:28:59 +08:00
|
|
|
for (Instruction &I : F.getEntryBlock())
|
|
|
|
if (isa<AllocaInst>(I))
|
2015-03-27 13:53:16 +08:00
|
|
|
InitialAllocaNum++;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
// TODO-PERF: change data structures, reserve
|
2015-05-20 00:29:43 +08:00
|
|
|
DenseMap<Value *, Value *> AllocaMap;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
SmallVector<AllocaInst *, 200> PromotableAllocas;
|
2015-05-19 23:59:05 +08:00
|
|
|
// Used later to chack that we have enough allocas to store all values
|
|
|
|
std::size_t NumRematerializedValues = 0;
|
2015-05-20 00:29:43 +08:00
|
|
|
PromotableAllocas.reserve(Live.size());
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-05-19 23:59:05 +08:00
|
|
|
// Emit alloca for "LiveValue" and record it in "allocaMap" and
|
|
|
|
// "PromotableAllocas"
|
2017-04-11 06:27:50 +08:00
|
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
2015-05-19 23:59:05 +08:00
|
|
|
auto emitAllocaFor = [&](Value *LiveValue) {
|
2017-04-11 06:27:50 +08:00
|
|
|
AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
|
|
|
|
DL.getAllocaAddrSpace(), "",
|
2015-05-19 23:59:05 +08:00
|
|
|
F.getEntryBlock().getFirstNonPHI());
|
2015-05-20 00:29:43 +08:00
|
|
|
AllocaMap[LiveValue] = Alloca;
|
2015-05-19 23:59:05 +08:00
|
|
|
PromotableAllocas.push_back(Alloca);
|
|
|
|
};
|
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
// Emit alloca for each live gc pointer
|
|
|
|
for (Value *V : Live)
|
|
|
|
emitAllocaFor(V);
|
2015-05-19 23:59:05 +08:00
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
// Emit allocas for rematerialized values
|
|
|
|
for (const auto &Info : Records)
|
2015-05-20 00:29:43 +08:00
|
|
|
for (auto RematerializedValuePair : Info.RematerializedValues) {
|
2015-05-19 23:59:05 +08:00
|
|
|
Value *OriginalValue = RematerializedValuePair.second;
|
2015-05-20 00:29:43 +08:00
|
|
|
if (AllocaMap.count(OriginalValue) != 0)
|
2015-05-19 23:59:05 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
emitAllocaFor(OriginalValue);
|
|
|
|
++NumRematerializedValues;
|
|
|
|
}
|
2015-05-20 00:29:43 +08:00
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// The next two loops are part of the same conceptual operation. We need to
|
|
|
|
// insert a store to the alloca after the original def and at each
|
|
|
|
// redefinition. We need to insert a load before each use. These are split
|
|
|
|
// into distinct loops for performance reasons.
|
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
// Update gc pointer after each statepoint: either store a relocated value or
|
|
|
|
// null (if no relocated value was found for this gc pointer and it is not a
|
|
|
|
// gc_result). This must happen before we update the statepoint with load of
|
|
|
|
// alloca otherwise we lose the link between statepoint and old def.
|
|
|
|
for (const auto &Info : Records) {
|
2015-05-20 00:29:43 +08:00
|
|
|
Value *Statepoint = Info.StatepointToken;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// This will be used for consistency check
|
2015-05-20 00:29:43 +08:00
|
|
|
DenseSet<Value *> VisitedLiveValues;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// Insert stores for normal statepoint gc relocates
|
2015-05-20 00:29:43 +08:00
|
|
|
insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// In case if it was invoke statepoint
|
|
|
|
// we will insert stores for exceptional path gc relocates.
|
2015-02-21 05:34:11 +08:00
|
|
|
if (isa<InvokeInst>(Statepoint)) {
|
2015-05-20 00:29:43 +08:00
|
|
|
insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
|
|
|
|
VisitedLiveValues);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2015-05-19 23:59:05 +08:00
|
|
|
// Do similar thing with rematerialized values
|
2015-05-20 00:29:43 +08:00
|
|
|
insertRematerializationStores(Info.RematerializedValues, AllocaMap,
|
|
|
|
VisitedLiveValues);
|
2015-05-19 23:59:05 +08:00
|
|
|
|
2015-04-14 00:41:32 +08:00
|
|
|
if (ClobberNonLive) {
|
2015-08-09 02:27:36 +08:00
|
|
|
// As a debugging aid, pretend that an unrelocated pointer becomes null at
|
2015-04-14 00:41:32 +08:00
|
|
|
// the gc.statepoint. This will turn some subtle GC problems into
|
|
|
|
// slightly easier to debug SEGVs. Note that on large IR files with
|
|
|
|
// lots of gc.statepoints this is extremely costly both memory and time
|
|
|
|
// wise.
|
|
|
|
SmallVector<AllocaInst *, 64> ToClobber;
|
2015-05-20 00:29:43 +08:00
|
|
|
for (auto Pair : AllocaMap) {
|
2015-04-14 00:41:32 +08:00
|
|
|
Value *Def = Pair.first;
|
|
|
|
AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
|
|
|
|
|
|
|
|
// This value was relocated
|
2015-05-20 00:29:43 +08:00
|
|
|
if (VisitedLiveValues.count(Def)) {
|
2015-04-14 00:41:32 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
ToClobber.push_back(Alloca);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2015-02-21 03:51:56 +08:00
|
|
|
|
2015-04-14 00:41:32 +08:00
|
|
|
auto InsertClobbersAt = [&](Instruction *IP) {
|
|
|
|
for (auto *AI : ToClobber) {
|
2016-01-18 08:10:01 +08:00
|
|
|
auto PT = cast<PointerType>(AI->getAllocatedType());
|
2015-04-14 00:41:32 +08:00
|
|
|
Constant *CPN = ConstantPointerNull::get(PT);
|
2015-05-20 00:29:43 +08:00
|
|
|
StoreInst *Store = new StoreInst(CPN, AI);
|
|
|
|
Store->insertBefore(IP);
|
2015-04-14 00:41:32 +08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Insert the clobbering stores. These may get intermixed with the
|
|
|
|
// gc.results and gc.relocates, but that's fine.
|
|
|
|
if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
|
2015-10-14 03:26:58 +08:00
|
|
|
InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
|
|
|
|
InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
|
2015-04-14 00:41:32 +08:00
|
|
|
} else {
|
2015-10-07 10:39:18 +08:00
|
|
|
InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
|
2015-02-21 03:51:56 +08:00
|
|
|
}
|
2015-02-21 07:44:24 +08:00
|
|
|
}
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2015-10-07 10:39:18 +08:00
|
|
|
|
|
|
|
// Update use with load allocas and add store for gc_relocated.
|
2015-05-20 00:29:43 +08:00
|
|
|
for (auto Pair : AllocaMap) {
|
|
|
|
Value *Def = Pair.first;
|
|
|
|
Value *Alloca = Pair.second;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
// We pre-record the uses of allocas so that we dont have to worry about
|
|
|
|
// later update that changes the user information..
|
|
|
|
|
2015-05-20 00:29:43 +08:00
|
|
|
SmallVector<Instruction *, 20> Uses;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// PERF: trade a linear scan for repeated reallocation
|
2018-05-11 07:01:54 +08:00
|
|
|
Uses.reserve(Def->getNumUses());
|
2015-05-20 00:29:43 +08:00
|
|
|
for (User *U : Def->users()) {
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
if (!isa<ConstantExpr>(U)) {
|
|
|
|
// If the def has a ConstantExpr use, then the def is either a
|
|
|
|
// ConstantExpr use itself or null. In either case
|
|
|
|
// (recursively in the first, directly in the second), the oop
|
|
|
|
// it is ultimately dependent on is null and this particular
|
|
|
|
// use does not need to be fixed up.
|
2015-05-20 00:29:43 +08:00
|
|
|
Uses.push_back(cast<Instruction>(U));
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-04-14 03:47:57 +08:00
|
|
|
llvm::sort(Uses.begin(), Uses.end());
|
2015-05-20 00:29:43 +08:00
|
|
|
auto Last = std::unique(Uses.begin(), Uses.end());
|
|
|
|
Uses.erase(Last, Uses.end());
|
|
|
|
|
|
|
|
for (Instruction *Use : Uses) {
|
|
|
|
if (isa<PHINode>(Use)) {
|
|
|
|
PHINode *Phi = cast<PHINode>(Use);
|
|
|
|
for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
|
|
|
|
if (Def == Phi->getIncomingValue(i)) {
|
|
|
|
LoadInst *Load = new LoadInst(
|
|
|
|
Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
|
|
|
|
Phi->setIncomingValue(i, Load);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
2015-05-20 00:29:43 +08:00
|
|
|
LoadInst *Load = new LoadInst(Alloca, "", Use);
|
|
|
|
Use->replaceUsesOfWith(Def, Load);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
// Emit store for the initial gc value. Store must be inserted after load,
|
|
|
|
// otherwise store will be in alloca's use list and an extra load will be
|
|
|
|
// inserted before it.
|
2015-05-20 00:29:43 +08:00
|
|
|
StoreInst *Store = new StoreInst(Def, Alloca);
|
|
|
|
if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
|
|
|
|
if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
|
2015-03-04 08:13:52 +08:00
|
|
|
// InvokeInst is a TerminatorInst so the store need to be inserted
|
|
|
|
// into its normal destination block.
|
2015-05-20 00:29:43 +08:00
|
|
|
BasicBlock *NormalDest = Invoke->getNormalDest();
|
|
|
|
Store->insertBefore(NormalDest->getFirstNonPHI());
|
2015-03-04 08:13:52 +08:00
|
|
|
} else {
|
2015-05-20 00:29:43 +08:00
|
|
|
assert(!Inst->isTerminator() &&
|
2015-03-04 08:13:52 +08:00
|
|
|
"The only TerminatorInst that can produce a value is "
|
|
|
|
"InvokeInst which is handled above.");
|
2015-05-20 00:29:43 +08:00
|
|
|
Store->insertAfter(Inst);
|
2015-03-04 08:13:52 +08:00
|
|
|
}
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
} else {
|
2015-05-20 00:29:43 +08:00
|
|
|
assert(isa<Argument>(Def));
|
|
|
|
Store->insertAfter(cast<Instruction>(Alloca));
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-05-20 00:29:43 +08:00
|
|
|
assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
"we must have the same allocas with lives");
|
|
|
|
if (!PromotableAllocas.empty()) {
|
2015-10-07 10:39:18 +08:00
|
|
|
// Apply mem2reg to promote alloca to SSA
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
PromoteMemToReg(PromotableAllocas, DT);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
2015-10-07 10:39:18 +08:00
|
|
|
for (auto &I : F.getEntryBlock())
|
|
|
|
if (isa<AllocaInst>(I))
|
2015-03-27 13:53:16 +08:00
|
|
|
InitialAllocaNum--;
|
|
|
|
assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Implement a unique function which doesn't require we sort the input
|
|
|
|
/// vector. Doing so has the effect of changing the output of a couple of
|
|
|
|
/// tests in ways which make them less useful in testing fused safepoints.
|
2015-02-21 06:39:41 +08:00
|
|
|
template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
|
2015-06-14 03:50:38 +08:00
|
|
|
SmallSet<T, 8> Seen;
|
2016-08-12 12:32:37 +08:00
|
|
|
Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
|
|
|
|
Vec.end());
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Insert holders so that each Value is obviously live through the entire
|
2015-04-14 04:00:30 +08:00
|
|
|
/// lifetime of the call.
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
|
2015-04-14 04:00:30 +08:00
|
|
|
SmallVectorImpl<CallInst *> &Holders) {
|
2015-04-14 03:07:47 +08:00
|
|
|
if (Values.empty())
|
|
|
|
// No values to hold live, might as well not insert the empty holder
|
|
|
|
return;
|
|
|
|
|
2015-12-15 01:24:23 +08:00
|
|
|
Module *M = CS.getInstruction()->getModule();
|
2015-04-14 04:00:30 +08:00
|
|
|
// Use a dummy vararg function to actually hold the values live
|
|
|
|
Function *Func = cast<Function>(M->getOrInsertFunction(
|
|
|
|
"__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
if (CS.isCall()) {
|
|
|
|
// For call safepoints insert dummy calls right after safepoint
|
2015-10-14 03:26:58 +08:00
|
|
|
Holders.push_back(CallInst::Create(Func, Values, "",
|
|
|
|
&*++CS.getInstruction()->getIterator()));
|
2015-04-14 04:00:30 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
// For invoke safepooints insert dummy calls both in normal and
|
|
|
|
// exceptional destination blocks
|
|
|
|
auto *II = cast<InvokeInst>(CS.getInstruction());
|
|
|
|
Holders.push_back(CallInst::Create(
|
2015-10-14 03:26:58 +08:00
|
|
|
Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
|
2015-04-14 04:00:30 +08:00
|
|
|
Holders.push_back(CallInst::Create(
|
2015-10-14 03:26:58 +08:00
|
|
|
Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void findLiveReferences(
|
2015-12-16 03:40:57 +08:00
|
|
|
Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
|
2015-02-21 06:39:41 +08:00
|
|
|
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
|
2015-04-11 06:53:14 +08:00
|
|
|
GCPtrLivenessData OriginalLivenessData;
|
|
|
|
computeLiveInValues(DT, F, OriginalLivenessData);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
2016-06-17 08:45:00 +08:00
|
|
|
analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-05-19 23:59:05 +08:00
|
|
|
// Helper function for the "rematerializeLiveValues". It walks use chain
|
2016-09-21 05:36:02 +08:00
|
|
|
// starting from the "CurrentValue" until it reaches the root of the chain, i.e.
|
|
|
|
// the base or a value it cannot process. Only "simple" values are processed
|
|
|
|
// (currently it is GEP's and casts). The returned root is examined by the
|
|
|
|
// callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array
|
|
|
|
// with all visited values.
|
|
|
|
static Value* findRematerializableChainToBasePointer(
|
2015-05-19 23:59:05 +08:00
|
|
|
SmallVectorImpl<Instruction*> &ChainToBase,
|
2016-09-21 05:36:02 +08:00
|
|
|
Value *CurrentValue) {
|
2015-05-19 23:59:05 +08:00
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
|
|
|
|
ChainToBase.push_back(GEP);
|
|
|
|
return findRematerializableChainToBasePointer(ChainToBase,
|
2016-09-21 05:36:02 +08:00
|
|
|
GEP->getPointerOperand());
|
2015-05-19 23:59:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
|
|
|
|
if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
|
2016-09-21 05:36:02 +08:00
|
|
|
return CI;
|
2015-05-19 23:59:05 +08:00
|
|
|
|
|
|
|
ChainToBase.push_back(CI);
|
2015-12-29 04:14:05 +08:00
|
|
|
return findRematerializableChainToBasePointer(ChainToBase,
|
2016-09-21 05:36:02 +08:00
|
|
|
CI->getOperand(0));
|
2015-05-19 23:59:05 +08:00
|
|
|
}
|
|
|
|
|
2016-09-21 05:36:02 +08:00
|
|
|
// We have reached the root of the chain, which is either equal to the base or
|
|
|
|
// is the first unsupported value along the use chain.
|
|
|
|
return CurrentValue;
|
2015-05-19 23:59:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Helper function for the "rematerializeLiveValues". Compute cost of the use
|
|
|
|
// chain we are going to rematerialize.
|
|
|
|
static unsigned
|
|
|
|
chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
|
|
|
|
TargetTransformInfo &TTI) {
|
|
|
|
unsigned Cost = 0;
|
|
|
|
|
|
|
|
for (Instruction *Instr : Chain) {
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
|
|
|
|
assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
|
|
|
|
"non noop cast is found during rematerialization");
|
|
|
|
|
|
|
|
Type *SrcTy = CI->getOperand(0)->getType();
|
2017-04-12 19:49:08 +08:00
|
|
|
Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
|
2015-05-19 23:59:05 +08:00
|
|
|
|
|
|
|
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
|
|
|
|
// Cost of the address calculation
|
2016-01-20 01:28:00 +08:00
|
|
|
Type *ValTy = GEP->getSourceElementType();
|
2015-05-19 23:59:05 +08:00
|
|
|
Cost += TTI.getAddressComputationCost(ValTy);
|
|
|
|
|
|
|
|
// And cost of the GEP itself
|
|
|
|
// TODO: Use TTI->getGEPCost here (it exists, but appears to be not
|
|
|
|
// allowed for the external usage)
|
|
|
|
if (!GEP->hasAllConstantIndices())
|
|
|
|
Cost += 2;
|
|
|
|
|
|
|
|
} else {
|
2018-06-14 13:41:49 +08:00
|
|
|
llvm_unreachable("unsupported instruction type during rematerialization");
|
2015-05-19 23:59:05 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return Cost;
|
|
|
|
}
|
|
|
|
|
2016-09-21 05:36:02 +08:00
|
|
|
static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
|
|
|
|
unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
|
|
|
|
if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
|
|
|
|
OrigRootPhi.getParent() != AlternateRootPhi.getParent())
|
|
|
|
return false;
|
|
|
|
// Map of incoming values and their corresponding basic blocks of
|
|
|
|
// OrigRootPhi.
|
|
|
|
SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
|
|
|
|
for (unsigned i = 0; i < PhiNum; i++)
|
|
|
|
CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
|
|
|
|
OrigRootPhi.getIncomingBlock(i);
|
|
|
|
|
|
|
|
// Both current and base PHIs should have same incoming values and
|
|
|
|
// the same basic blocks corresponding to the incoming values.
|
|
|
|
for (unsigned i = 0; i < PhiNum; i++) {
|
|
|
|
auto CIVI =
|
|
|
|
CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
|
|
|
|
if (CIVI == CurrentIncomingValues.end())
|
|
|
|
return false;
|
|
|
|
BasicBlock *CurrentIncomingBB = CIVI->second;
|
|
|
|
if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
// From the statepoint live set pick values that are cheaper to recompute then
|
|
|
|
// to relocate. Remove this values from the live set, rematerialize them after
|
2015-05-19 23:59:05 +08:00
|
|
|
// statepoint and record them in "Info" structure. Note that similar to
|
|
|
|
// relocated values we don't do any user adjustments here.
|
|
|
|
static void rematerializeLiveValues(CallSite CS,
|
|
|
|
PartiallyConstructedSafepointRecord &Info,
|
|
|
|
TargetTransformInfo &TTI) {
|
2015-05-20 22:53:50 +08:00
|
|
|
const unsigned int ChainLengthThreshold = 10;
|
2015-05-25 09:43:23 +08:00
|
|
|
|
2015-05-19 23:59:05 +08:00
|
|
|
// Record values we are going to delete from this statepoint live set.
|
|
|
|
// We can not di this in following loop due to iterator invalidation.
|
|
|
|
SmallVector<Value *, 32> LiveValuesToBeDeleted;
|
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
for (Value *LiveValue: Info.LiveSet) {
|
2018-05-21 18:27:36 +08:00
|
|
|
// For each live pointer find its defining chain
|
2015-05-19 23:59:05 +08:00
|
|
|
SmallVector<Instruction *, 3> ChainToBase;
|
2015-07-22 00:51:17 +08:00
|
|
|
assert(Info.PointerToBase.count(LiveValue));
|
2016-09-21 05:36:02 +08:00
|
|
|
Value *RootOfChain =
|
2015-05-19 23:59:05 +08:00
|
|
|
findRematerializableChainToBasePointer(ChainToBase,
|
2016-09-21 05:36:02 +08:00
|
|
|
LiveValue);
|
|
|
|
|
2015-05-19 23:59:05 +08:00
|
|
|
// Nothing to do, or chain is too long
|
2016-09-21 05:36:02 +08:00
|
|
|
if ( ChainToBase.size() == 0 ||
|
2015-05-19 23:59:05 +08:00
|
|
|
ChainToBase.size() > ChainLengthThreshold)
|
|
|
|
continue;
|
|
|
|
|
2016-09-21 05:36:02 +08:00
|
|
|
// Handle the scenario where the RootOfChain is not equal to the
|
|
|
|
// Base Value, but they are essentially the same phi values.
|
|
|
|
if (RootOfChain != Info.PointerToBase[LiveValue]) {
|
|
|
|
PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
|
|
|
|
PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
|
|
|
|
if (!OrigRootPhi || !AlternateRootPhi)
|
|
|
|
continue;
|
|
|
|
// PHI nodes that have the same incoming values, and belonging to the same
|
|
|
|
// basic blocks are essentially the same SSA value. When the original phi
|
|
|
|
// has incoming values with different base pointers, the original phi is
|
|
|
|
// marked as conflict, and an additional `AlternateRootPhi` with the same
|
|
|
|
// incoming values get generated by the findBasePointer function. We need
|
|
|
|
// to identify the newly generated AlternateRootPhi (.base version of phi)
|
|
|
|
// and RootOfChain (the original phi node itself) are the same, so that we
|
|
|
|
// can rematerialize the gep and casts. This is a workaround for the
|
2017-07-01 15:12:15 +08:00
|
|
|
// deficiency in the findBasePointer algorithm.
|
2016-09-21 05:36:02 +08:00
|
|
|
if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
|
|
|
|
continue;
|
|
|
|
// Now that the phi nodes are proved to be the same, assert that
|
|
|
|
// findBasePointer's newly generated AlternateRootPhi is present in the
|
|
|
|
// liveset of the call.
|
|
|
|
assert(Info.LiveSet.count(AlternateRootPhi));
|
|
|
|
}
|
2015-05-19 23:59:05 +08:00
|
|
|
// Compute cost of this chain
|
|
|
|
unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
|
|
|
|
// TODO: We can also account for cases when we will be able to remove some
|
|
|
|
// of the rematerialized values by later optimization passes. I.e if
|
|
|
|
// we rematerialized several intersecting chains. Or if original values
|
|
|
|
// don't have any uses besides this statepoint.
|
|
|
|
|
|
|
|
// For invokes we need to rematerialize each chain twice - for normal and
|
|
|
|
// for unwind basic blocks. Model this by multiplying cost by two.
|
|
|
|
if (CS.isInvoke()) {
|
|
|
|
Cost *= 2;
|
|
|
|
}
|
|
|
|
// If it's too expensive - skip it
|
|
|
|
if (Cost >= RematerializationThreshold)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Remove value from the live set
|
|
|
|
LiveValuesToBeDeleted.push_back(LiveValue);
|
|
|
|
|
|
|
|
// Clone instructions and record them inside "Info" structure
|
|
|
|
|
|
|
|
// Walk backwards to visit top-most instructions first
|
|
|
|
std::reverse(ChainToBase.begin(), ChainToBase.end());
|
|
|
|
|
|
|
|
// Utility function which clones all instructions from "ChainToBase"
|
|
|
|
// and inserts them before "InsertBefore". Returns rematerialized value
|
|
|
|
// which should be used after statepoint.
|
2016-09-22 21:13:06 +08:00
|
|
|
auto rematerializeChain = [&ChainToBase](
|
|
|
|
Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
|
2015-05-19 23:59:05 +08:00
|
|
|
Instruction *LastClonedValue = nullptr;
|
|
|
|
Instruction *LastValue = nullptr;
|
|
|
|
for (Instruction *Instr: ChainToBase) {
|
2017-07-02 11:24:54 +08:00
|
|
|
// Only GEP's and casts are supported as we need to be careful to not
|
2015-05-19 23:59:05 +08:00
|
|
|
// introduce any new uses of pointers not in the liveset.
|
|
|
|
// Note that it's fine to introduce new uses of pointers which were
|
|
|
|
// otherwise not used after this statepoint.
|
|
|
|
assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
|
|
|
|
|
|
|
|
Instruction *ClonedValue = Instr->clone();
|
|
|
|
ClonedValue->insertBefore(InsertBefore);
|
|
|
|
ClonedValue->setName(Instr->getName() + ".remat");
|
|
|
|
|
|
|
|
// If it is not first instruction in the chain then it uses previously
|
|
|
|
// cloned value. We should update it to use cloned value.
|
|
|
|
if (LastClonedValue) {
|
|
|
|
assert(LastValue);
|
|
|
|
ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
|
|
|
|
#ifndef NDEBUG
|
2015-05-21 21:02:14 +08:00
|
|
|
for (auto OpValue : ClonedValue->operand_values()) {
|
2016-09-22 21:13:06 +08:00
|
|
|
// Assert that cloned instruction does not use any instructions from
|
|
|
|
// this chain other than LastClonedValue
|
2016-08-12 06:21:41 +08:00
|
|
|
assert(!is_contained(ChainToBase, OpValue) &&
|
2015-05-21 21:02:14 +08:00
|
|
|
"incorrect use in rematerialization chain");
|
2016-09-22 21:13:06 +08:00
|
|
|
// Assert that the cloned instruction does not use the RootOfChain
|
|
|
|
// or the AlternateLiveBase.
|
|
|
|
assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
|
2015-05-19 23:59:05 +08:00
|
|
|
}
|
|
|
|
#endif
|
2016-09-22 21:13:06 +08:00
|
|
|
} else {
|
|
|
|
// For the first instruction, replace the use of unrelocated base i.e.
|
|
|
|
// RootOfChain/OrigRootPhi, with the corresponding PHI present in the
|
|
|
|
// live set. They have been proved to be the same PHI nodes. Note
|
|
|
|
// that the *only* use of the RootOfChain in the ChainToBase list is
|
|
|
|
// the first Value in the list.
|
|
|
|
if (RootOfChain != AlternateLiveBase)
|
|
|
|
ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
|
2015-05-19 23:59:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
LastClonedValue = ClonedValue;
|
|
|
|
LastValue = Instr;
|
|
|
|
}
|
|
|
|
assert(LastClonedValue);
|
|
|
|
return LastClonedValue;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Different cases for calls and invokes. For invokes we need to clone
|
|
|
|
// instructions both on normal and unwind path.
|
|
|
|
if (CS.isCall()) {
|
|
|
|
Instruction *InsertBefore = CS.getInstruction()->getNextNode();
|
|
|
|
assert(InsertBefore);
|
2016-09-22 21:13:06 +08:00
|
|
|
Instruction *RematerializedValue = rematerializeChain(
|
|
|
|
InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
|
2015-05-19 23:59:05 +08:00
|
|
|
Info.RematerializedValues[RematerializedValue] = LiveValue;
|
|
|
|
} else {
|
|
|
|
InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
|
|
|
|
|
|
|
|
Instruction *NormalInsertBefore =
|
2015-10-14 03:26:58 +08:00
|
|
|
&*Invoke->getNormalDest()->getFirstInsertionPt();
|
2015-05-19 23:59:05 +08:00
|
|
|
Instruction *UnwindInsertBefore =
|
2015-10-14 03:26:58 +08:00
|
|
|
&*Invoke->getUnwindDest()->getFirstInsertionPt();
|
2015-05-19 23:59:05 +08:00
|
|
|
|
2016-09-22 21:13:06 +08:00
|
|
|
Instruction *NormalRematerializedValue = rematerializeChain(
|
|
|
|
NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
|
|
|
|
Instruction *UnwindRematerializedValue = rematerializeChain(
|
|
|
|
UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
|
2015-05-19 23:59:05 +08:00
|
|
|
|
|
|
|
Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
|
|
|
|
Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Remove rematerializaed values from the live set
|
|
|
|
for (auto LiveValue: LiveValuesToBeDeleted) {
|
2016-05-04 22:55:36 +08:00
|
|
|
Info.LiveSet.remove(LiveValue);
|
2015-05-19 23:59:05 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-12-16 03:40:57 +08:00
|
|
|
static bool insertParsePoints(Function &F, DominatorTree &DT,
|
|
|
|
TargetTransformInfo &TTI,
|
2015-10-07 10:39:18 +08:00
|
|
|
SmallVectorImpl<CallSite> &ToUpdate) {
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#ifndef NDEBUG
|
|
|
|
// sanity check the input
|
2015-10-07 10:39:18 +08:00
|
|
|
std::set<CallSite> Uniqued;
|
|
|
|
Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
|
|
|
|
assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2016-01-29 09:03:20 +08:00
|
|
|
for (CallSite CS : ToUpdate)
|
|
|
|
assert(CS.getInstruction()->getFunction() == &F);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
#endif
|
|
|
|
|
2015-04-14 02:07:21 +08:00
|
|
|
// When inserting gc.relocates for invokes, we need to be able to insert at
|
|
|
|
// the top of the successor blocks. See the comment on
|
|
|
|
// normalForInvokeSafepoint on exactly what is needed. Note that this step
|
2015-04-14 04:00:30 +08:00
|
|
|
// may restructure the CFG.
|
2015-10-07 10:39:18 +08:00
|
|
|
for (CallSite CS : ToUpdate) {
|
2015-04-14 04:00:30 +08:00
|
|
|
if (!CS.isInvoke())
|
|
|
|
continue;
|
2015-10-07 10:39:18 +08:00
|
|
|
auto *II = cast<InvokeInst>(CS.getInstruction());
|
|
|
|
normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
|
|
|
|
normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
|
2015-04-14 04:00:30 +08:00
|
|
|
}
|
2015-04-14 02:07:21 +08:00
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// A list of dummy calls added to the IR to keep various values obviously
|
|
|
|
// live in the IR. We'll remove all of these when done.
|
2015-10-07 10:39:18 +08:00
|
|
|
SmallVector<CallInst *, 64> Holders;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2017-06-03 07:03:26 +08:00
|
|
|
// Insert a dummy call with all of the deopt operands we'll need for the
|
|
|
|
// actual safepoint insertion as arguments. This ensures reference operands
|
|
|
|
// in the deopt argument list are considered live through the safepoint (and
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// thus makes sure they get relocated.)
|
2015-10-07 10:39:18 +08:00
|
|
|
for (CallSite CS : ToUpdate) {
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
SmallVector<Value *, 64> DeoptValues;
|
2015-10-16 10:41:00 +08:00
|
|
|
|
2016-01-29 09:03:17 +08:00
|
|
|
for (Value *Arg : GetDeoptBundleOperands(CS)) {
|
2015-04-11 05:48:25 +08:00
|
|
|
assert(!isUnhandledGCPointerType(Arg->getType()) &&
|
|
|
|
"support for FCA unimplemented");
|
|
|
|
if (isHandledGCPointerType(Arg->getType()))
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
DeoptValues.push_back(Arg);
|
|
|
|
}
|
2015-10-16 10:41:00 +08:00
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
insertUseHolderAfter(CS, DeoptValues, Holders);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-08-09 02:27:36 +08:00
|
|
|
// A) Identify all gc pointers which are statically live at the given call
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// site.
|
2015-12-16 03:40:57 +08:00
|
|
|
findLiveReferences(F, DT, ToUpdate, Records);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
// B) Find the base pointers for each live pointer
|
|
|
|
/* scope for caching */ {
|
|
|
|
// Cache the 'defining value' relation used in the computation and
|
|
|
|
// insertion of base phis and selects. This ensures that we don't insert
|
|
|
|
// large numbers of duplicate base_phis.
|
|
|
|
DefiningValueMapTy DVCache;
|
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
for (size_t i = 0; i < Records.size(); i++) {
|
|
|
|
PartiallyConstructedSafepointRecord &info = Records[i];
|
|
|
|
findBasePointers(DT, DVCache, ToUpdate[i], info);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
} // end of cache scope
|
|
|
|
|
|
|
|
// The base phi insertion logic (for any safepoint) may have inserted new
|
|
|
|
// instructions which are now live at some safepoint. The simplest such
|
|
|
|
// example is:
|
|
|
|
// loop:
|
|
|
|
// phi a <-- will be a new base_phi here
|
|
|
|
// safepoint 1 <-- that needs to be live here
|
|
|
|
// gep a + 1
|
|
|
|
// safepoint 2
|
|
|
|
// br loop
|
|
|
|
// We insert some dummy calls after each safepoint to definitely hold live
|
|
|
|
// the base pointers which were identified for that safepoint. We'll then
|
|
|
|
// ask liveness for _every_ base inserted to see what is now live. Then we
|
|
|
|
// remove the dummy calls.
|
2015-10-07 10:39:18 +08:00
|
|
|
Holders.reserve(Holders.size() + Records.size());
|
|
|
|
for (size_t i = 0; i < Records.size(); i++) {
|
|
|
|
PartiallyConstructedSafepointRecord &Info = Records[i];
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
SmallVector<Value *, 128> Bases;
|
2015-10-07 10:39:18 +08:00
|
|
|
for (auto Pair : Info.PointerToBase)
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
Bases.push_back(Pair.second);
|
2015-10-07 10:39:18 +08:00
|
|
|
|
|
|
|
insertUseHolderAfter(ToUpdate[i], Bases, Holders);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2015-04-11 06:53:14 +08:00
|
|
|
// By selecting base pointers, we've effectively inserted new uses. Thus, we
|
|
|
|
// need to rerun liveness. We may *also* have inserted new defs, but that's
|
|
|
|
// not the key issue.
|
2015-12-16 03:40:57 +08:00
|
|
|
recomputeLiveInValues(F, DT, ToUpdate, Records);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
|
|
|
if (PrintBasePointers) {
|
2015-10-07 10:39:18 +08:00
|
|
|
for (auto &Info : Records) {
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
errs() << "Base Pairs: (w/Relocation)\n";
|
2015-12-23 08:19:45 +08:00
|
|
|
for (auto Pair : Info.PointerToBase) {
|
|
|
|
errs() << " derived ";
|
|
|
|
Pair.first->printAsOperand(errs(), false);
|
|
|
|
errs() << " base ";
|
|
|
|
Pair.second->printAsOperand(errs(), false);
|
|
|
|
errs() << "\n";
|
|
|
|
}
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
}
|
2015-10-07 10:39:18 +08:00
|
|
|
|
2015-12-23 00:50:44 +08:00
|
|
|
// It is possible that non-constant live variables have a constant base. For
|
|
|
|
// example, a GEP with a variable offset from a global. In this case we can
|
|
|
|
// remove it from the liveset. We already don't add constants to the liveset
|
|
|
|
// because we assume they won't move at runtime and the GC doesn't need to be
|
|
|
|
// informed about them. The same reasoning applies if the base is constant.
|
|
|
|
// Note that the relocation placement code relies on this filtering for
|
|
|
|
// correctness as it expects the base to be in the liveset, which isn't true
|
|
|
|
// if the base is constant.
|
|
|
|
for (auto &Info : Records)
|
|
|
|
for (auto &BasePair : Info.PointerToBase)
|
|
|
|
if (isa<Constant>(BasePair.second))
|
2016-05-04 22:55:36 +08:00
|
|
|
Info.LiveSet.remove(BasePair.first);
|
2015-12-23 00:50:44 +08:00
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
for (CallInst *CI : Holders)
|
|
|
|
CI->eraseFromParent();
|
|
|
|
|
|
|
|
Holders.clear();
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-05-19 23:59:05 +08:00
|
|
|
// In order to reduce live set of statepoint we might choose to rematerialize
|
2015-08-09 02:27:36 +08:00
|
|
|
// some values instead of relocating them. This is purely an optimization and
|
2015-05-19 23:59:05 +08:00
|
|
|
// does not influence correctness.
|
2015-10-07 10:39:18 +08:00
|
|
|
for (size_t i = 0; i < Records.size(); i++)
|
|
|
|
rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
|
2015-05-19 23:59:05 +08:00
|
|
|
|
2015-10-16 10:41:00 +08:00
|
|
|
// We need this to safely RAUW and delete call or invoke return values that
|
|
|
|
// may themselves be live over a statepoint. For details, please see usage in
|
|
|
|
// makeStatepointExplicitImpl.
|
|
|
|
std::vector<DeferredReplacement> Replacements;
|
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// Now run through and replace the existing statepoints with new ones with
|
|
|
|
// the live variables listed. We do not yet update uses of the values being
|
|
|
|
// relocated. We have references to live variables that need to
|
|
|
|
// survive to the last iteration of this loop. (By construction, the
|
|
|
|
// previous statepoint can not be a live variable, thus we can and remove
|
|
|
|
// the old statepoint calls as we go.)
|
2015-10-07 10:39:18 +08:00
|
|
|
for (size_t i = 0; i < Records.size(); i++)
|
2015-10-16 10:41:00 +08:00
|
|
|
makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
|
2015-10-07 10:39:18 +08:00
|
|
|
|
|
|
|
ToUpdate.clear(); // prevent accident use of invalid CallSites
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-16 10:41:00 +08:00
|
|
|
for (auto &PR : Replacements)
|
|
|
|
PR.doReplacement();
|
|
|
|
|
|
|
|
Replacements.clear();
|
|
|
|
|
|
|
|
for (auto &Info : Records) {
|
|
|
|
// These live sets may contain state Value pointers, since we replaced calls
|
|
|
|
// with operand bundles with calls wrapped in gc.statepoint, and some of
|
|
|
|
// those calls may have been def'ing live gc pointers. Clear these out to
|
|
|
|
// avoid accidentally using them.
|
|
|
|
//
|
|
|
|
// TODO: We should create a separate data structure that does not contain
|
|
|
|
// these live sets, and migrate to using that data structure from this point
|
|
|
|
// onward.
|
|
|
|
Info.LiveSet.clear();
|
|
|
|
Info.PointerToBase.clear();
|
|
|
|
}
|
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// Do all the fixups of the original live variables to their relocated selves
|
2015-10-07 10:39:18 +08:00
|
|
|
SmallVector<Value *, 128> Live;
|
|
|
|
for (size_t i = 0; i < Records.size(); i++) {
|
|
|
|
PartiallyConstructedSafepointRecord &Info = Records[i];
|
2015-10-16 10:41:00 +08:00
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// We can't simply save the live set from the original insertion. One of
|
|
|
|
// the live values might be the result of a call which needs a safepoint.
|
|
|
|
// That Value* no longer exists and we need to use the new gc_result.
|
2015-10-07 10:39:18 +08:00
|
|
|
// Thankfully, the live set is embedded in the statepoint (and updated), so
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// we just grab that.
|
2015-10-07 10:39:18 +08:00
|
|
|
Statepoint Statepoint(Info.StatepointToken);
|
|
|
|
Live.insert(Live.end(), Statepoint.gc_args_begin(),
|
|
|
|
Statepoint.gc_args_end());
|
2015-04-14 01:35:55 +08:00
|
|
|
#ifndef NDEBUG
|
|
|
|
// Do some basic sanity checks on our liveness results before performing
|
|
|
|
// relocation. Relocation can and will turn mistakes in liveness results
|
|
|
|
// into non-sensical code which is must harder to debug.
|
|
|
|
// TODO: It would be nice to test consistency as well
|
2015-10-07 10:39:18 +08:00
|
|
|
assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
|
2015-04-14 01:35:55 +08:00
|
|
|
"statepoint must be reachable or liveness is meaningless");
|
2015-10-07 10:39:18 +08:00
|
|
|
for (Value *V : Statepoint.gc_args()) {
|
2015-04-14 01:35:55 +08:00
|
|
|
if (!isa<Instruction>(V))
|
|
|
|
// Non-instruction values trivial dominate all possible uses
|
|
|
|
continue;
|
2015-10-07 10:39:18 +08:00
|
|
|
auto *LiveInst = cast<Instruction>(V);
|
2015-04-14 01:35:55 +08:00
|
|
|
assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
|
|
|
|
"unreachable values should never be live");
|
2015-10-07 10:39:18 +08:00
|
|
|
assert(DT.dominates(LiveInst, Info.StatepointToken) &&
|
2015-04-14 01:35:55 +08:00
|
|
|
"basic SSA liveness expectation violated by liveness analysis");
|
|
|
|
}
|
|
|
|
#endif
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2015-10-07 10:39:18 +08:00
|
|
|
unique_unsorted(Live);
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-02-20 15:14:02 +08:00
|
|
|
#ifndef NDEBUG
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// sanity check
|
2015-10-07 10:39:18 +08:00
|
|
|
for (auto *Ptr : Live)
|
[rs4gc] Optionally directly relocated vector of pointers
This patch teaches rewrite-statepoints-for-gc to relocate vector-of-pointers directly rather than trying to split them. This builds on the recent lowering/IR changes to allow vector typed gc.relocates.
The motivation for this is that we recently found a bug in the vector splitting code where depending on visit order, a vector might not be relocated at some safepoint. Specifically, the bug is that the splitting code wasn't updating the side tables (live vector) of other safepoints. As a result, a vector which was live at two safepoints might not be updated at one of them. However, if you happened to visit safepoints in post order over the dominator tree, everything worked correctly. Weirdly, it turns out that post order is actually an incredibly common order to visit instructions in in practice. Frustratingly, I have not managed to write a test case which actually hits this. I can only reproduce it in large IR files produced by actual applications.
Rather than continue to make this code more complicated, we can remove all of the complexity by just representing the relocation of the entire vector natively in the IR.
At the moment, the new functionality is hidden behind a flag. To use this code, you need to pass "-rs4gc-split-vector-values=0". Once I have a chance to stress test with this option and get feedback from other users, my plan is to flip the default and remove the original splitting code. I would just remove it now, but given the rareness of the bug, I figured it was better to leave it in place until the new approach has been stress tested.
Differential Revision: http://reviews.llvm.org/D15982
llvm-svn: 257244
2016-01-09 09:31:13 +08:00
|
|
|
assert(isHandledGCPointerType(Ptr->getType()) &&
|
|
|
|
"must be a gc pointer type");
|
2015-02-20 15:14:02 +08:00
|
|
|
#endif
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
relocationViaAlloca(F, DT, Live, Records);
|
|
|
|
return !Records.empty();
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2015-06-03 06:33:37 +08:00
|
|
|
// Handles both return values and arguments for Functions and CallSites.
|
|
|
|
template <typename AttrHolder>
|
2015-10-24 06:42:44 +08:00
|
|
|
static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
|
|
|
|
unsigned Index) {
|
2015-06-03 06:33:37 +08:00
|
|
|
AttrBuilder R;
|
|
|
|
if (AH.getDereferenceableBytes(Index))
|
|
|
|
R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
|
|
|
|
AH.getDereferenceableBytes(Index)));
|
|
|
|
if (AH.getDereferenceableOrNullBytes(Index))
|
|
|
|
R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
|
|
|
|
AH.getDereferenceableOrNullBytes(Index)));
|
2017-05-04 02:17:31 +08:00
|
|
|
if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
|
2015-10-27 03:06:01 +08:00
|
|
|
R.addAttribute(Attribute::NoAlias);
|
2015-06-03 06:33:37 +08:00
|
|
|
|
|
|
|
if (!R.empty())
|
2017-05-03 06:07:37 +08:00
|
|
|
AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
|
2015-06-03 16:51:30 +08:00
|
|
|
}
|
2015-06-03 06:33:37 +08:00
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
static void stripNonValidAttributesFromPrototype(Function &F) {
|
2015-06-03 06:33:37 +08:00
|
|
|
LLVMContext &Ctx = F.getContext();
|
|
|
|
|
|
|
|
for (Argument &A : F.args())
|
|
|
|
if (isa<PointerType>(A.getType()))
|
2017-05-04 02:17:31 +08:00
|
|
|
RemoveNonValidAttrAtIndex(Ctx, F,
|
|
|
|
A.getArgNo() + AttributeList::FirstArgIndex);
|
2015-06-03 06:33:37 +08:00
|
|
|
|
|
|
|
if (isa<PointerType>(F.getReturnType()))
|
Rename AttributeSet to AttributeList
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
2017-03-22 00:57:19 +08:00
|
|
|
RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
|
2015-06-03 06:33:37 +08:00
|
|
|
}
|
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
/// Certain metadata on instructions are invalid after running RS4GC.
|
|
|
|
/// Optimizations that run after RS4GC can incorrectly use this metadata to
|
|
|
|
/// optimize functions. We drop such metadata on the instruction.
|
|
|
|
static void stripInvalidMetadataFromInstruction(Instruction &I) {
|
2017-06-13 05:26:53 +08:00
|
|
|
if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
|
|
|
|
return;
|
|
|
|
// These are the attributes that are still valid on loads and stores after
|
|
|
|
// RS4GC.
|
|
|
|
// The metadata implying dereferenceability and noalias are (conservatively)
|
|
|
|
// dropped. This is because semantically, after RewriteStatepointsForGC runs,
|
|
|
|
// all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
|
|
|
|
// touch the entire heap including noalias objects. Note: The reasoning is
|
|
|
|
// same as stripping the dereferenceability and noalias attributes that are
|
|
|
|
// analogous to the metadata counterparts.
|
|
|
|
// We also drop the invariant.load metadata on the load because that metadata
|
|
|
|
// implies the address operand to the load points to memory that is never
|
|
|
|
// changed once it became dereferenceable. This is no longer true after RS4GC.
|
|
|
|
// Similar reasoning applies to invariant.group metadata, which applies to
|
|
|
|
// loads within a group.
|
|
|
|
unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
|
|
|
|
LLVMContext::MD_range,
|
|
|
|
LLVMContext::MD_alias_scope,
|
|
|
|
LLVMContext::MD_nontemporal,
|
|
|
|
LLVMContext::MD_nonnull,
|
|
|
|
LLVMContext::MD_align,
|
|
|
|
LLVMContext::MD_type};
|
|
|
|
|
|
|
|
// Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
|
|
|
|
I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
|
|
|
|
}
|
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
static void stripNonValidDataFromBody(Function &F) {
|
2015-06-03 06:33:37 +08:00
|
|
|
if (F.empty())
|
|
|
|
return;
|
|
|
|
|
|
|
|
LLVMContext &Ctx = F.getContext();
|
|
|
|
MDBuilder Builder(Ctx);
|
|
|
|
|
2017-11-03 02:24:04 +08:00
|
|
|
// Set of invariantstart instructions that we need to remove.
|
|
|
|
// Use this to avoid invalidating the instruction iterator.
|
|
|
|
SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
|
|
|
|
|
2015-08-07 03:10:45 +08:00
|
|
|
for (Instruction &I : instructions(F)) {
|
2017-11-03 02:24:04 +08:00
|
|
|
// invariant.start on memory location implies that the referenced memory
|
|
|
|
// location is constant and unchanging. This is no longer true after
|
|
|
|
// RewriteStatepointsForGC runs because there can be calls to gc.statepoint
|
|
|
|
// which frees the entire heap and the presence of invariant.start allows
|
|
|
|
// the optimizer to sink the load of a memory location past a statepoint,
|
|
|
|
// which is incorrect.
|
|
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I))
|
|
|
|
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
|
|
|
|
InvariantStartInstructions.push_back(II);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2018-01-17 21:29:54 +08:00
|
|
|
if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
|
|
|
|
MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
|
2015-06-03 06:33:37 +08:00
|
|
|
I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
|
|
|
|
}
|
|
|
|
|
2017-06-13 05:26:53 +08:00
|
|
|
stripInvalidMetadataFromInstruction(I);
|
|
|
|
|
2015-06-03 06:33:37 +08:00
|
|
|
if (CallSite CS = CallSite(&I)) {
|
|
|
|
for (int i = 0, e = CS.arg_size(); i != e; i++)
|
|
|
|
if (isa<PointerType>(CS.getArgument(i)->getType()))
|
2017-05-04 02:17:31 +08:00
|
|
|
RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex);
|
2015-06-03 06:33:37 +08:00
|
|
|
if (isa<PointerType>(CS.getType()))
|
Rename AttributeSet to AttributeList
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
2017-03-22 00:57:19 +08:00
|
|
|
RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex);
|
2015-06-03 06:33:37 +08:00
|
|
|
}
|
|
|
|
}
|
2017-11-03 02:24:04 +08:00
|
|
|
|
|
|
|
// Delete the invariant.start instructions and RAUW undef.
|
|
|
|
for (auto *II : InvariantStartInstructions) {
|
|
|
|
II->replaceAllUsesWith(UndefValue::get(II->getType()));
|
|
|
|
II->eraseFromParent();
|
|
|
|
}
|
2015-06-03 06:33:37 +08:00
|
|
|
}
|
|
|
|
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
/// Returns true if this function should be rewritten by this pass. The main
|
|
|
|
/// point of this function is as an extension point for custom logic.
|
|
|
|
static bool shouldRewriteStatepointsIn(Function &F) {
|
|
|
|
// TODO: This should check the GCStrategy
|
2015-02-21 02:56:14 +08:00
|
|
|
if (F.hasGC()) {
|
2016-01-08 10:28:20 +08:00
|
|
|
const auto &FunctionGCName = F.getGC();
|
2015-05-25 09:43:23 +08:00
|
|
|
const StringRef StatepointExampleName("statepoint-example");
|
|
|
|
const StringRef CoreCLRName("coreclr");
|
|
|
|
return (StatepointExampleName == FunctionGCName) ||
|
2015-05-25 09:43:34 +08:00
|
|
|
(CoreCLRName == FunctionGCName);
|
|
|
|
} else
|
2015-02-21 02:56:14 +08:00
|
|
|
return false;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
static void stripNonValidData(Module &M) {
|
2015-06-03 06:33:37 +08:00
|
|
|
#ifndef NDEBUG
|
2017-09-02 05:37:29 +08:00
|
|
|
assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
|
2015-06-03 06:33:37 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
for (Function &F : M)
|
2015-10-24 06:42:44 +08:00
|
|
|
stripNonValidAttributesFromPrototype(F);
|
2015-06-03 06:33:37 +08:00
|
|
|
|
|
|
|
for (Function &F : M)
|
2017-11-03 02:24:04 +08:00
|
|
|
stripNonValidDataFromBody(F);
|
2015-06-03 06:33:37 +08:00
|
|
|
}
|
|
|
|
|
2017-12-15 17:32:11 +08:00
|
|
|
bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
|
|
|
|
TargetTransformInfo &TTI,
|
|
|
|
const TargetLibraryInfo &TLI) {
|
|
|
|
assert(!F.isDeclaration() && !F.empty() &&
|
|
|
|
"need function body to rewrite statepoints in");
|
|
|
|
assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
|
2015-04-11 06:34:56 +08:00
|
|
|
|
2017-07-28 00:49:39 +08:00
|
|
|
auto NeedsRewrite = [&TLI](Instruction &I) {
|
2016-01-29 09:03:17 +08:00
|
|
|
if (ImmutableCallSite CS = ImmutableCallSite(&I))
|
2017-07-28 00:49:39 +08:00
|
|
|
return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS);
|
2016-01-29 09:03:17 +08:00
|
|
|
return false;
|
2015-10-16 10:41:00 +08:00
|
|
|
};
|
|
|
|
|
2018-03-06 06:27:30 +08:00
|
|
|
|
|
|
|
// Delete any unreachable statepoints so that we don't have unrewritten
|
|
|
|
// statepoints surviving this pass. This makes testing easier and the
|
|
|
|
// resulting IR less confusing to human readers.
|
|
|
|
DeferredDominance DD(DT);
|
|
|
|
bool MadeChange = removeUnreachableBlocks(F, nullptr, &DD);
|
|
|
|
DD.flush();
|
|
|
|
|
2015-04-11 06:07:04 +08:00
|
|
|
// Gather all the statepoints which need rewritten. Be careful to only
|
|
|
|
// consider those in reachable code since we need to ask dominance queries
|
|
|
|
// when rewriting. We'll delete the unreachable ones in a moment.
|
2015-02-21 06:39:41 +08:00
|
|
|
SmallVector<CallSite, 64> ParsePointNeeded;
|
2015-08-07 03:10:45 +08:00
|
|
|
for (Instruction &I : instructions(F)) {
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
// TODO: only the ones with the flag set!
|
2015-10-16 10:41:00 +08:00
|
|
|
if (NeedsRewrite(I)) {
|
2018-03-06 06:27:30 +08:00
|
|
|
// NOTE removeUnreachableBlocks() is stronger than
|
|
|
|
// DominatorTree::isReachableFromEntry(). In other words
|
|
|
|
// removeUnreachableBlocks can remove some blocks for which
|
|
|
|
// isReachableFromEntry() returns true.
|
|
|
|
assert(DT.isReachableFromEntry(I.getParent()) &&
|
|
|
|
"no unreachable blocks expected");
|
|
|
|
ParsePointNeeded.push_back(CallSite(&I));
|
2015-04-11 06:07:04 +08:00
|
|
|
}
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Return early if no work to do.
|
|
|
|
if (ParsePointNeeded.empty())
|
2015-04-11 06:07:04 +08:00
|
|
|
return MadeChange;
|
|
|
|
|
|
|
|
// As a prepass, go ahead and aggressively destroy single entry phi nodes.
|
|
|
|
// These are created by LCSSA. They have the effect of increasing the size
|
|
|
|
// of liveness sets for no good reason. It may be harder to do this post
|
|
|
|
// insertion since relocations and base phis can confuse things.
|
|
|
|
for (BasicBlock &BB : F)
|
|
|
|
if (BB.getUniquePredecessor()) {
|
|
|
|
MadeChange = true;
|
|
|
|
FoldSingleEntryPHINodes(&BB);
|
|
|
|
}
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
|
2015-08-13 06:11:45 +08:00
|
|
|
// Before we start introducing relocations, we want to tweak the IR a bit to
|
2018-07-31 03:41:25 +08:00
|
|
|
// avoid unfortunate code generation effects. The main example is that we
|
2015-08-13 06:11:45 +08:00
|
|
|
// want to try to make sure the comparison feeding a branch is after any
|
|
|
|
// safepoints. Otherwise, we end up with a comparison of pre-relocation
|
|
|
|
// values feeding a branch after relocation. This is semantically correct,
|
|
|
|
// but results in extra register pressure since both the pre-relocation and
|
|
|
|
// post-relocation copies must be available in registers. For code without
|
|
|
|
// relocations this is handled elsewhere, but teaching the scheduler to
|
|
|
|
// reverse the transform we're about to do would be slightly complex.
|
|
|
|
// Note: This may extend the live range of the inputs to the icmp and thus
|
|
|
|
// increase the liveset of any statepoint we move over. This is profitable
|
|
|
|
// as long as all statepoints are in rare blocks. If we had in-register
|
|
|
|
// lowering for live values this would be a much safer transform.
|
|
|
|
auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
|
|
|
|
if (auto *BI = dyn_cast<BranchInst>(TI))
|
|
|
|
if (BI->isConditional())
|
|
|
|
return dyn_cast<Instruction>(BI->getCondition());
|
|
|
|
// TODO: Extend this to handle switches
|
|
|
|
return nullptr;
|
|
|
|
};
|
|
|
|
for (BasicBlock &BB : F) {
|
|
|
|
TerminatorInst *TI = BB.getTerminator();
|
|
|
|
if (auto *Cond = getConditionInst(TI))
|
|
|
|
// TODO: Handle more than just ICmps here. We should be able to move
|
2018-07-31 03:41:25 +08:00
|
|
|
// most instructions without side effects or memory access.
|
2015-08-13 06:11:45 +08:00
|
|
|
if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
|
|
|
|
MadeChange = true;
|
|
|
|
Cond->moveBefore(TI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-12-16 03:40:57 +08:00
|
|
|
MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
|
2015-04-11 06:07:04 +08:00
|
|
|
return MadeChange;
|
Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945
2015-02-20 09:06:44 +08:00
|
|
|
}
|
2015-04-11 06:53:14 +08:00
|
|
|
|
|
|
|
// liveness computation via standard dataflow
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
|
|
|
|
// TODO: Consider using bitvectors for liveness, the set of potentially
|
|
|
|
// interesting values should be small and easy to pre-compute.
|
|
|
|
|
|
|
|
/// Compute the live-in set for the location rbegin starting from
|
|
|
|
/// the live-out set of the basic block
|
2016-06-26 12:55:32 +08:00
|
|
|
static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
|
|
|
|
BasicBlock::reverse_iterator End,
|
2016-05-04 22:55:36 +08:00
|
|
|
SetVector<Value *> &LiveTmp) {
|
2016-06-26 12:55:32 +08:00
|
|
|
for (auto &I : make_range(Begin, End)) {
|
2015-04-11 06:53:14 +08:00
|
|
|
// KILL/Def - Remove this definition from LiveIn
|
2016-06-26 12:55:32 +08:00
|
|
|
LiveTmp.remove(&I);
|
2015-04-11 06:53:14 +08:00
|
|
|
|
|
|
|
// Don't consider *uses* in PHI nodes, we handle their contribution to
|
|
|
|
// predecessor blocks when we seed the LiveOut sets
|
|
|
|
if (isa<PHINode>(I))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// USE - Add to the LiveIn set for this instruction
|
2016-06-26 12:55:32 +08:00
|
|
|
for (Value *V : I.operands()) {
|
2015-04-11 06:53:14 +08:00
|
|
|
assert(!isUnhandledGCPointerType(V->getType()) &&
|
|
|
|
"support for FCA unimplemented");
|
2015-04-27 03:48:03 +08:00
|
|
|
if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
|
|
|
|
// The choice to exclude all things constant here is slightly subtle.
|
2015-08-09 02:27:36 +08:00
|
|
|
// There are two independent reasons:
|
2015-04-27 03:48:03 +08:00
|
|
|
// - We assume that things which are constant (from LLVM's definition)
|
|
|
|
// do not move at runtime. For example, the address of a global
|
|
|
|
// variable is fixed, even though it's contents may not be.
|
|
|
|
// - Second, we can't disallow arbitrary inttoptr constants even
|
|
|
|
// if the language frontend does. Optimization passes are free to
|
|
|
|
// locally exploit facts without respect to global reachability. This
|
|
|
|
// can create sections of code which are dynamically unreachable and
|
|
|
|
// contain just about anything. (see constants.ll in tests)
|
2015-04-11 06:53:14 +08:00
|
|
|
LiveTmp.insert(V);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-05-04 22:55:36 +08:00
|
|
|
static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
|
2015-04-11 06:53:14 +08:00
|
|
|
for (BasicBlock *Succ : successors(BB)) {
|
2016-06-26 12:55:30 +08:00
|
|
|
for (auto &I : *Succ) {
|
|
|
|
PHINode *PN = dyn_cast<PHINode>(&I);
|
|
|
|
if (!PN)
|
|
|
|
break;
|
|
|
|
|
|
|
|
Value *V = PN->getIncomingValueForBlock(BB);
|
2015-04-11 06:53:14 +08:00
|
|
|
assert(!isUnhandledGCPointerType(V->getType()) &&
|
|
|
|
"support for FCA unimplemented");
|
2016-06-26 12:55:30 +08:00
|
|
|
if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
|
2015-04-11 06:53:14 +08:00
|
|
|
LiveTmp.insert(V);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-05-04 22:55:36 +08:00
|
|
|
static SetVector<Value *> computeKillSet(BasicBlock *BB) {
|
|
|
|
SetVector<Value *> KillSet;
|
2015-04-11 06:53:14 +08:00
|
|
|
for (Instruction &I : *BB)
|
|
|
|
if (isHandledGCPointerType(I.getType()))
|
|
|
|
KillSet.insert(&I);
|
|
|
|
return KillSet;
|
|
|
|
}
|
|
|
|
|
2015-04-11 08:06:47 +08:00
|
|
|
#ifndef NDEBUG
|
2015-04-11 06:53:14 +08:00
|
|
|
/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
|
|
|
|
/// sanity check for the liveness computation.
|
2016-05-04 22:55:36 +08:00
|
|
|
static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
|
2015-04-11 06:53:14 +08:00
|
|
|
TerminatorInst *TI, bool TermOkay = false) {
|
|
|
|
for (Value *V : Live) {
|
|
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
|
|
// The terminator can be a member of the LiveOut set. LLVM's definition
|
|
|
|
// of instruction dominance states that V does not dominate itself. As
|
|
|
|
// such, we need to special case this to allow it.
|
|
|
|
if (TermOkay && TI == I)
|
|
|
|
continue;
|
|
|
|
assert(DT.dominates(I, TI) &&
|
|
|
|
"basic SSA liveness expectation violated by liveness analysis");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Check that all the liveness sets used during the computation of liveness
|
|
|
|
/// obey basic SSA properties. This is useful for finding cases where we miss
|
|
|
|
/// a def.
|
|
|
|
static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
|
|
|
|
BasicBlock &BB) {
|
|
|
|
checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
|
|
|
|
checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
|
|
|
|
checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
|
|
|
|
}
|
2015-04-11 08:06:47 +08:00
|
|
|
#endif
|
2015-04-11 06:53:14 +08:00
|
|
|
|
|
|
|
static void computeLiveInValues(DominatorTree &DT, Function &F,
|
|
|
|
GCPtrLivenessData &Data) {
|
2016-01-30 09:24:31 +08:00
|
|
|
SmallSetVector<BasicBlock *, 32> Worklist;
|
2015-04-11 06:53:14 +08:00
|
|
|
|
|
|
|
// Seed the liveness for each individual block
|
|
|
|
for (BasicBlock &BB : F) {
|
|
|
|
Data.KillSet[&BB] = computeKillSet(&BB);
|
|
|
|
Data.LiveSet[&BB].clear();
|
|
|
|
computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (Value *Kill : Data.KillSet[&BB])
|
|
|
|
assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
|
|
|
|
#endif
|
|
|
|
|
2016-05-04 22:55:36 +08:00
|
|
|
Data.LiveOut[&BB] = SetVector<Value *>();
|
2015-04-11 06:53:14 +08:00
|
|
|
computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
|
|
|
|
Data.LiveIn[&BB] = Data.LiveSet[&BB];
|
2016-05-04 22:55:36 +08:00
|
|
|
Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
|
|
|
|
Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
|
2015-04-11 06:53:14 +08:00
|
|
|
if (!Data.LiveIn[&BB].empty())
|
2016-06-26 12:55:26 +08:00
|
|
|
Worklist.insert(pred_begin(&BB), pred_end(&BB));
|
2015-04-11 06:53:14 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Propagate that liveness until stable
|
|
|
|
while (!Worklist.empty()) {
|
2016-06-26 12:55:26 +08:00
|
|
|
BasicBlock *BB = Worklist.pop_back_val();
|
2015-04-11 06:53:14 +08:00
|
|
|
|
2016-06-26 12:55:26 +08:00
|
|
|
// Compute our new liveout set, then exit early if it hasn't changed despite
|
|
|
|
// the contribution of our successor.
|
2016-05-04 22:55:36 +08:00
|
|
|
SetVector<Value *> LiveOut = Data.LiveOut[BB];
|
2015-04-11 06:53:14 +08:00
|
|
|
const auto OldLiveOutSize = LiveOut.size();
|
|
|
|
for (BasicBlock *Succ : successors(BB)) {
|
|
|
|
assert(Data.LiveIn.count(Succ));
|
2016-05-04 22:55:36 +08:00
|
|
|
LiveOut.set_union(Data.LiveIn[Succ]);
|
2015-04-11 06:53:14 +08:00
|
|
|
}
|
|
|
|
// assert OutLiveOut is a subset of LiveOut
|
|
|
|
if (OldLiveOutSize == LiveOut.size()) {
|
|
|
|
// If the sets are the same size, then we didn't actually add anything
|
2016-06-26 12:55:26 +08:00
|
|
|
// when unioning our successors LiveIn. Thus, the LiveIn of this block
|
2015-04-11 06:53:14 +08:00
|
|
|
// hasn't changed.
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
Data.LiveOut[BB] = LiveOut;
|
|
|
|
|
|
|
|
// Apply the effects of this basic block
|
2016-05-04 22:55:36 +08:00
|
|
|
SetVector<Value *> LiveTmp = LiveOut;
|
|
|
|
LiveTmp.set_union(Data.LiveSet[BB]);
|
|
|
|
LiveTmp.set_subtract(Data.KillSet[BB]);
|
2015-04-11 06:53:14 +08:00
|
|
|
|
|
|
|
assert(Data.LiveIn.count(BB));
|
2016-05-04 22:55:36 +08:00
|
|
|
const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
|
2015-04-11 06:53:14 +08:00
|
|
|
// assert: OldLiveIn is a subset of LiveTmp
|
|
|
|
if (OldLiveIn.size() != LiveTmp.size()) {
|
|
|
|
Data.LiveIn[BB] = LiveTmp;
|
2016-06-26 12:55:26 +08:00
|
|
|
Worklist.insert(pred_begin(BB), pred_end(BB));
|
2015-04-11 06:53:14 +08:00
|
|
|
}
|
2016-06-26 12:55:26 +08:00
|
|
|
} // while (!Worklist.empty())
|
2015-04-11 06:53:14 +08:00
|
|
|
|
|
|
|
#ifndef NDEBUG
|
2015-08-09 02:27:36 +08:00
|
|
|
// Sanity check our output against SSA properties. This helps catch any
|
2015-04-11 06:53:14 +08:00
|
|
|
// missing kills during the above iteration.
|
2016-06-26 12:55:26 +08:00
|
|
|
for (BasicBlock &BB : F)
|
2015-04-11 06:53:14 +08:00
|
|
|
checkBasicSSA(DT, Data, BB);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
|
|
|
|
StatepointLiveSetTy &Out) {
|
|
|
|
BasicBlock *BB = Inst->getParent();
|
|
|
|
|
|
|
|
// Note: The copy is intentional and required
|
|
|
|
assert(Data.LiveOut.count(BB));
|
2016-05-04 22:55:36 +08:00
|
|
|
SetVector<Value *> LiveOut = Data.LiveOut[BB];
|
2015-04-11 06:53:14 +08:00
|
|
|
|
|
|
|
// We want to handle the statepoint itself oddly. It's
|
|
|
|
// call result is not live (normal), nor are it's arguments
|
|
|
|
// (unless they're used again later). This adjustment is
|
|
|
|
// specifically what we need to relocate
|
ADT: Give ilist<T>::reverse_iterator a handle to the current node
Reverse iterators to doubly-linked lists can be simpler (and cheaper)
than std::reverse_iterator. Make it so.
In particular, change ilist<T>::reverse_iterator so that it is *never*
invalidated unless the node it references is deleted. This matches the
guarantees of ilist<T>::iterator.
(Note: MachineBasicBlock::iterator is *not* an ilist iterator, but a
MachineInstrBundleIterator<MachineInstr>. This commit does not change
MachineBasicBlock::reverse_iterator, but it does update
MachineBasicBlock::reverse_instr_iterator. See note at end of commit
message for details on bundle iterators.)
Given the list (with the Sentinel showing twice for simplicity):
[Sentinel] <-> A <-> B <-> [Sentinel]
the following is now true:
1. begin() represents A.
2. begin() holds the pointer for A.
3. end() represents [Sentinel].
4. end() holds the poitner for [Sentinel].
5. rbegin() represents B.
6. rbegin() holds the pointer for B.
7. rend() represents [Sentinel].
8. rend() holds the pointer for [Sentinel].
The changes are #6 and #8. Here are some properties from the old
scheme (which used std::reverse_iterator):
- rbegin() held the pointer for [Sentinel] and rend() held the pointer
for A;
- operator*() cost two dereferences instead of one;
- converting from a valid iterator to its valid reverse_iterator
involved a confusing increment; and
- "RI++->erase()" left RI invalid. The unintuitive replacement was
"RI->erase(), RE = end()".
With vector-like data structures these properties are hard to avoid
(since past-the-beginning is not a valid pointer), and don't impose a
real cost (since there's still only one dereference, and all iterators
are invalidated on erase). But with lists, this was a poor design.
Specifically, the following code (which obviously works with normal
iterators) now works with ilist::reverse_iterator as well:
for (auto RI = L.rbegin(), RE = L.rend(); RI != RE;)
fooThatMightRemoveArgFromList(*RI++);
Converting between iterator and reverse_iterator for the same node uses
the getReverse() function.
reverse_iterator iterator::getReverse();
iterator reverse_iterator::getReverse();
Why doesn't iterator <=> reverse_iterator conversion use constructors?
In order to catch and update old code, reverse_iterator does not even
have an explicit conversion from iterator. It wouldn't be safe because
there would be no reasonable way to catch all the bugs from the changed
semantic (see the changes at call sites that are part of this patch).
Old code used this API:
std::reverse_iterator::reverse_iterator(iterator);
iterator std::reverse_iterator::base();
Here's how to update from old code to new (that incorporates the
semantic change), assuming I is an ilist<>::iterator and RI is an
ilist<>::reverse_iterator:
[Old] ==> [New]
reverse_iterator(I) (--I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(++I) I.getReverse()
RI.base() (--RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
(++RI).base() RI.getReverse()
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
=======================================
Note: bundle iterators are out of scope
=======================================
MachineBasicBlock::iterator, also known as
MachineInstrBundleIterator<MachineInstr>, is a wrapper to represent
MachineInstr bundles. The idea is that each operator++ takes you to the
beginning of the next bundle. Implementing a sane reverse iterator for
this is harder than ilist. Here are the options:
- Use std::reverse_iterator<MBB::i>. Store a handle to the beginning of
the next bundle. A call to operator*() runs a loop (usually
operator--() will be called 1 time, for unbundled instructions).
Increment/decrement just works. This is the status quo.
- Store a handle to the final node in the bundle. A call to operator*()
still runs a loop, but it iterates one time fewer (usually
operator--() will be called 0 times, for unbundled instructions).
Increment/decrement just works.
- Make the ilist_sentinel<MachineInstr> *always* store that it's the
sentinel (instead of just in asserts mode). Then the bundle iterator
can sniff the sentinel bit in operator++().
I initially tried implementing the end() option as part of this commit,
but updating iterator/reverse_iterator conversion call sites was
error-prone. I have a WIP series of patches that implements the final
option.
llvm-svn: 280032
2016-08-30 08:13:12 +08:00
|
|
|
computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
|
|
|
|
LiveOut);
|
2016-05-04 22:55:36 +08:00
|
|
|
LiveOut.remove(Inst);
|
2015-04-11 06:53:14 +08:00
|
|
|
Out.insert(LiveOut.begin(), LiveOut.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
|
2016-06-17 08:45:00 +08:00
|
|
|
CallSite CS,
|
2015-04-11 06:53:14 +08:00
|
|
|
PartiallyConstructedSafepointRecord &Info) {
|
|
|
|
Instruction *Inst = CS.getInstruction();
|
|
|
|
StatepointLiveSetTy Updated;
|
|
|
|
findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
|
|
|
|
|
|
|
|
// We may have base pointers which are now live that weren't before. We need
|
|
|
|
// to update the PointerToBase structure to reflect this.
|
|
|
|
for (auto V : Updated)
|
2016-06-26 12:55:23 +08:00
|
|
|
if (Info.PointerToBase.insert({V, V}).second) {
|
2017-12-28 20:03:12 +08:00
|
|
|
assert(isKnownBaseResult(V) &&
|
|
|
|
"Can't find base for unexpected live value!");
|
2015-04-11 06:53:14 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
2016-06-26 12:55:23 +08:00
|
|
|
for (auto V : Updated)
|
2015-04-11 06:53:14 +08:00
|
|
|
assert(Info.PointerToBase.count(V) &&
|
2016-06-26 12:55:23 +08:00
|
|
|
"Must be able to find base for live value!");
|
2015-04-11 06:53:14 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
// Remove any stale base mappings - this can happen since our liveness is
|
2016-06-26 12:55:23 +08:00
|
|
|
// more precise then the one inherent in the base pointer analysis.
|
2015-04-11 06:53:14 +08:00
|
|
|
DenseSet<Value *> ToErase;
|
|
|
|
for (auto KVPair : Info.PointerToBase)
|
|
|
|
if (!Updated.count(KVPair.first))
|
|
|
|
ToErase.insert(KVPair.first);
|
2016-06-26 12:55:23 +08:00
|
|
|
|
|
|
|
for (auto *V : ToErase)
|
2015-04-11 06:53:14 +08:00
|
|
|
Info.PointerToBase.erase(V);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (auto KVPair : Info.PointerToBase)
|
|
|
|
assert(Updated.count(KVPair.first) && "record for non-live value");
|
|
|
|
#endif
|
|
|
|
|
2015-10-07 10:39:18 +08:00
|
|
|
Info.LiveSet = Updated;
|
2015-04-11 06:53:14 +08:00
|
|
|
}
|