llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp

1176 lines
40 KiB
C++
Raw Normal View History

//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/SystemZMCTargetDesc.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
// Return true if Expr is in the range [MinValue, MaxValue].
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
int64_t Value = CE->getValue();
return Value >= MinValue && Value <= MaxValue;
}
return false;
}
namespace {
enum RegisterKind {
GR32Reg,
GRH32Reg,
GR64Reg,
GR128Reg,
ADDR32Reg,
ADDR64Reg,
FP32Reg,
FP64Reg,
FP128Reg,
VR32Reg,
VR64Reg,
VR128Reg
};
enum MemoryKind {
BDMem,
BDXMem,
BDLMem,
BDVMem
};
class SystemZOperand : public MCParsedAsmOperand {
public:
private:
enum OperandKind {
KindInvalid,
KindToken,
KindReg,
KindAccessReg,
KindImm,
KindImmTLS,
KindMem
};
OperandKind Kind;
SMLoc StartLoc, EndLoc;
// A string of length Length, starting at Data.
struct TokenOp {
const char *Data;
unsigned Length;
};
// LLVM register Num, which has kind Kind. In some ways it might be
// easier for this class to have a register bank (general, floating-point
// or access) and a raw register number (0-15). This would postpone the
// interpretation of the operand to the add*() methods and avoid the need
// for context-dependent parsing. However, we do things the current way
// because of the virtual getReg() method, which needs to distinguish
// between (say) %r0 used as a single register and %r0 used as a pair.
// Context-dependent parsing can also give us slightly better error
// messages when invalid pairs like %r1 are used.
struct RegOp {
RegisterKind Kind;
unsigned Num;
};
// Base + Disp + Index, where Base and Index are LLVM registers or 0.
// MemKind says what type of memory this is and RegKind says what type
// the base register has (ADDR32Reg or ADDR64Reg). Length is the operand
// length for D(L,B)-style operands, otherwise it is null.
struct MemOp {
unsigned Base : 12;
unsigned Index : 12;
unsigned MemKind : 4;
unsigned RegKind : 4;
const MCExpr *Disp;
const MCExpr *Length;
};
// Imm is an immediate operand, and Sym is an optional TLS symbol
// for use with a __tls_get_offset marker relocation.
struct ImmTLSOp {
const MCExpr *Imm;
const MCExpr *Sym;
};
union {
TokenOp Token;
RegOp Reg;
unsigned AccessReg;
const MCExpr *Imm;
ImmTLSOp ImmTLS;
MemOp Mem;
};
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (!Expr)
Inst.addOperand(MCOperand::createImm(0));
else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
public:
SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
: Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
// Create particular kinds of operand.
static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
SMLoc EndLoc) {
return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
}
static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc);
Op->Token.Data = Str.data();
Op->Token.Length = Str.size();
return Op;
}
static std::unique_ptr<SystemZOperand>
createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
Op->Reg.Kind = Kind;
Op->Reg.Num = Num;
return Op;
}
static std::unique_ptr<SystemZOperand>
createAccessReg(unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = make_unique<SystemZOperand>(KindAccessReg, StartLoc, EndLoc);
Op->AccessReg = Num;
return Op;
}
static std::unique_ptr<SystemZOperand>
createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
Op->Imm = Expr;
return Op;
}
static std::unique_ptr<SystemZOperand>
createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
const MCExpr *Disp, unsigned Index, const MCExpr *Length,
SMLoc StartLoc, SMLoc EndLoc) {
auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
Op->Mem.MemKind = MemKind;
Op->Mem.RegKind = RegKind;
Op->Mem.Base = Base;
Op->Mem.Index = Index;
Op->Mem.Disp = Disp;
Op->Mem.Length = Length;
return Op;
}
static std::unique_ptr<SystemZOperand>
createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
SMLoc StartLoc, SMLoc EndLoc) {
auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
Op->ImmTLS.Imm = Imm;
Op->ImmTLS.Sym = Sym;
return Op;
}
// Token operands
bool isToken() const override {
return Kind == KindToken;
}
StringRef getToken() const {
assert(Kind == KindToken && "Not a token");
return StringRef(Token.Data, Token.Length);
}
// Register operands.
bool isReg() const override {
return Kind == KindReg;
}
bool isReg(RegisterKind RegKind) const {
return Kind == KindReg && Reg.Kind == RegKind;
}
unsigned getReg() const override {
assert(Kind == KindReg && "Not a register");
return Reg.Num;
}
// Access register operands. Access registers aren't exposed to LLVM
// as registers.
bool isAccessReg() const {
return Kind == KindAccessReg;
}
// Immediate operands.
bool isImm() const override {
return Kind == KindImm;
}
bool isImm(int64_t MinValue, int64_t MaxValue) const {
return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
}
const MCExpr *getImm() const {
assert(Kind == KindImm && "Not an immediate");
return Imm;
}
// Immediate operands with optional TLS symbol.
bool isImmTLS() const {
return Kind == KindImmTLS;
}
// Memory operands.
bool isMem() const override {
return Kind == KindMem;
}
bool isMem(MemoryKind MemKind) const {
return (Kind == KindMem &&
(Mem.MemKind == MemKind ||
// A BDMem can be treated as a BDXMem in which the index
// register field is 0.
(Mem.MemKind == BDMem && MemKind == BDXMem)));
}
bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
return isMem(MemKind) && Mem.RegKind == RegKind;
}
bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
}
bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
}
bool isMemDisp12Len8(RegisterKind RegKind) const {
return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length, 1, 0x100);
}
void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDVMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::createReg(Mem.Index));
}
// Override MCParsedAsmOperand.
SMLoc getStartLoc() const override { return StartLoc; }
SMLoc getEndLoc() const override { return EndLoc; }
void print(raw_ostream &OS) const override;
// Used by the TableGen code to add particular types of operand
// to an instruction.
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addAccessRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
assert(Kind == KindAccessReg && "Invalid operand type");
Inst.addOperand(MCOperand::createImm(AccessReg));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
addExpr(Inst, getImm());
}
void addBDAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands");
assert(isMem(BDMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
}
void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDXMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::createReg(Mem.Index));
}
void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDLMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
addExpr(Inst, Mem.Length);
}
void addImmTLSOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands");
assert(Kind == KindImmTLS && "Invalid operand type");
addExpr(Inst, ImmTLS.Imm);
if (ImmTLS.Sym)
addExpr(Inst, ImmTLS.Sym);
}
// Used by the TableGen code to check for particular operand types.
bool isGR32() const { return isReg(GR32Reg); }
bool isGRH32() const { return isReg(GRH32Reg); }
bool isGRX32() const { return false; }
bool isGR64() const { return isReg(GR64Reg); }
bool isGR128() const { return isReg(GR128Reg); }
bool isADDR32() const { return isReg(ADDR32Reg); }
bool isADDR64() const { return isReg(ADDR64Reg); }
bool isADDR128() const { return false; }
bool isFP32() const { return isReg(FP32Reg); }
bool isFP64() const { return isReg(FP64Reg); }
bool isFP128() const { return isReg(FP128Reg); }
bool isVR32() const { return isReg(VR32Reg); }
bool isVR64() const { return isReg(VR64Reg); }
bool isVF128() const { return false; }
bool isVR128() const { return isReg(VR128Reg); }
bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); }
bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); }
bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); }
bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); }
bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); }
bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); }
bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); }
bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); }
bool isU1Imm() const { return isImm(0, 1); }
bool isU2Imm() const { return isImm(0, 3); }
bool isU3Imm() const { return isImm(0, 7); }
bool isU4Imm() const { return isImm(0, 15); }
bool isU6Imm() const { return isImm(0, 63); }
bool isU8Imm() const { return isImm(0, 255); }
bool isS8Imm() const { return isImm(-128, 127); }
bool isU12Imm() const { return isImm(0, 4095); }
bool isU16Imm() const { return isImm(0, 65535); }
bool isS16Imm() const { return isImm(-32768, 32767); }
bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
};
class SystemZAsmParser : public MCTargetAsmParser {
#define GET_ASSEMBLER_HEADER
#include "SystemZGenAsmMatcher.inc"
private:
MCAsmParser &Parser;
enum RegisterGroup {
RegGR,
RegFP,
RegV,
RegAccess
};
struct Register {
RegisterGroup Group;
unsigned Num;
SMLoc StartLoc, EndLoc;
};
bool parseRegister(Register &Reg);
bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs,
bool IsAddress = false);
OperandMatchResultTy parseRegister(OperandVector &Operands,
RegisterGroup Group, const unsigned *Regs,
RegisterKind Kind);
OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
bool parseAddress(unsigned &Base, const MCExpr *&Disp,
unsigned &Index, bool &IsVector, const MCExpr *&Length,
const unsigned *Regs, RegisterKind RegKind);
bool ParseDirectiveInsn(SMLoc L);
OperandMatchResultTy parseAddress(OperandVector &Operands,
MemoryKind MemKind, const unsigned *Regs,
RegisterKind RegKind);
OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
int64_t MaxVal, bool AllowTLS);
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
public:
SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
const MCInstrInfo &MII,
const MCTargetOptions &Options)
: MCTargetAsmParser(Options, sti), Parser(parser) {
MCAsmParserExtension::Initialize(Parser);
// Alias the .word directive to .short.
parser.addAliasForDirective(".word", ".short");
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
}
// Override MCTargetAsmParser.
bool ParseDirective(AsmToken DirectiveID) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
// Used by the TableGen code to parse particular operand types.
OperandMatchResultTy parseGR32(OperandVector &Operands) {
return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg);
}
OperandMatchResultTy parseGRH32(OperandVector &Operands) {
return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg);
}
OperandMatchResultTy parseGRX32(OperandVector &Operands) {
llvm_unreachable("GRX32 should only be used for pseudo instructions");
}
OperandMatchResultTy parseGR64(OperandVector &Operands) {
return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg);
}
OperandMatchResultTy parseGR128(OperandVector &Operands) {
return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg);
}
OperandMatchResultTy parseADDR32(OperandVector &Operands) {
return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg);
}
OperandMatchResultTy parseADDR64(OperandVector &Operands) {
return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg);
}
OperandMatchResultTy parseADDR128(OperandVector &Operands) {
llvm_unreachable("Shouldn't be used as an operand");
}
OperandMatchResultTy parseFP32(OperandVector &Operands) {
return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg);
}
OperandMatchResultTy parseFP64(OperandVector &Operands) {
return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg);
}
OperandMatchResultTy parseFP128(OperandVector &Operands) {
return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg);
}
OperandMatchResultTy parseVR32(OperandVector &Operands) {
return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg);
}
OperandMatchResultTy parseVR64(OperandVector &Operands) {
return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg);
}
OperandMatchResultTy parseVF128(OperandVector &Operands) {
llvm_unreachable("Shouldn't be used as an operand");
}
OperandMatchResultTy parseVR128(OperandVector &Operands) {
return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg);
}
OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
return parseAnyRegister(Operands);
}
OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg);
}
OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg);
}
OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg);
}
OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg);
}
OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg);
}
OperandMatchResultTy parseAccessReg(OperandVector &Operands);
OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
}
OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
}
OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
}
OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
}
};
} // end anonymous namespace
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#include "SystemZGenAsmMatcher.inc"
// Used for the .insn directives; contains information needed to parse the
// operands in the directive.
struct InsnMatchEntry {
StringRef Format;
uint64_t Opcode;
int32_t NumOperands;
MatchClassKind OperandKinds[5];
};
// For equal_range comparison.
struct CompareInsn {
bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
return LHS.Format < RHS;
}
bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
return LHS < RHS.Format;
}
bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
return LHS.Format < RHS.Format;
}
};
// Table initializing information for parsing the .insn directive.
static struct InsnMatchEntry InsnMatchTable[] = {
/* Format, Opcode, NumOperands, OperandKinds */
{ "e", SystemZ::InsnE, 1,
{ MCK_U16Imm } },
{ "ri", SystemZ::InsnRI, 3,
{ MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
{ "rie", SystemZ::InsnRIE, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
{ "ril", SystemZ::InsnRIL, 3,
{ MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
{ "rilu", SystemZ::InsnRILU, 3,
{ MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
{ "ris", SystemZ::InsnRIS, 5,
{ MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
{ "rr", SystemZ::InsnRR, 3,
{ MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
{ "rre", SystemZ::InsnRRE, 3,
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
{ "rrf", SystemZ::InsnRRF, 5,
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
{ "rrs", SystemZ::InsnRRS, 5,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
{ "rs", SystemZ::InsnRS, 4,
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
{ "rse", SystemZ::InsnRSE, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
{ "rsi", SystemZ::InsnRSI, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
{ "rsy", SystemZ::InsnRSY, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
{ "rx", SystemZ::InsnRX, 3,
{ MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
{ "rxe", SystemZ::InsnRXE, 3,
{ MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
{ "rxf", SystemZ::InsnRXF, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
{ "rxy", SystemZ::InsnRXY, 3,
{ MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
{ "s", SystemZ::InsnS, 2,
{ MCK_U32Imm, MCK_BDAddr64Disp12 } },
{ "si", SystemZ::InsnSI, 3,
{ MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
{ "sil", SystemZ::InsnSIL, 3,
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
{ "siy", SystemZ::InsnSIY, 3,
{ MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
{ "ss", SystemZ::InsnSS, 4,
{ MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
{ "sse", SystemZ::InsnSSE, 3,
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
{ "ssf", SystemZ::InsnSSF, 4,
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }
};
void SystemZOperand::print(raw_ostream &OS) const {
llvm_unreachable("Not implemented");
}
// Parse one register of the form %<prefix><number>.
bool SystemZAsmParser::parseRegister(Register &Reg) {
Reg.StartLoc = Parser.getTok().getLoc();
// Eat the % prefix.
if (Parser.getTok().isNot(AsmToken::Percent))
return Error(Parser.getTok().getLoc(), "register expected");
Parser.Lex();
// Expect a register name.
if (Parser.getTok().isNot(AsmToken::Identifier))
return Error(Reg.StartLoc, "invalid register");
// Check that there's a prefix.
StringRef Name = Parser.getTok().getString();
if (Name.size() < 2)
return Error(Reg.StartLoc, "invalid register");
char Prefix = Name[0];
// Treat the rest of the register name as a register number.
if (Name.substr(1).getAsInteger(10, Reg.Num))
return Error(Reg.StartLoc, "invalid register");
// Look for valid combinations of prefix and number.
if (Prefix == 'r' && Reg.Num < 16)
Reg.Group = RegGR;
else if (Prefix == 'f' && Reg.Num < 16)
Reg.Group = RegFP;
else if (Prefix == 'v' && Reg.Num < 32)
Reg.Group = RegV;
else if (Prefix == 'a' && Reg.Num < 16)
Reg.Group = RegAccess;
else
return Error(Reg.StartLoc, "invalid register");
Reg.EndLoc = Parser.getTok().getLoc();
Parser.Lex();
return false;
}
// Parse a register of group Group. If Regs is nonnull, use it to map
// the raw register number to LLVM numbering, with zero entries
// indicating an invalid register. IsAddress says whether the
// register appears in an address context. Allow FP Group if expecting
// RegV Group, since the f-prefix yields the FP group even while used
// with vector instructions.
bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group,
const unsigned *Regs, bool IsAddress) {
if (parseRegister(Reg))
return true;
if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV))
return Error(Reg.StartLoc, "invalid operand for instruction");
if (Regs && Regs[Reg.Num] == 0)
return Error(Reg.StartLoc, "invalid register pair");
if (Reg.Num == 0 && IsAddress)
return Error(Reg.StartLoc, "%r0 used in an address");
if (Regs)
Reg.Num = Regs[Reg.Num];
return false;
}
// Parse a register and add it to Operands. The other arguments are as above.
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group,
const unsigned *Regs, RegisterKind Kind) {
if (Parser.getTok().isNot(AsmToken::Percent))
return MatchOperand_NoMatch;
Register Reg;
bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg);
if (parseRegister(Reg, Group, Regs, IsAddress))
return MatchOperand_ParseFail;
Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num,
Reg.StartLoc, Reg.EndLoc));
return MatchOperand_Success;
}
// Parse any type of register (including integers) and add it to Operands.
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
// Handle integer values.
if (Parser.getTok().is(AsmToken::Integer)) {
const MCExpr *Register;
SMLoc StartLoc = Parser.getTok().getLoc();
if (Parser.parseExpression(Register))
return MatchOperand_ParseFail;
if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
int64_t Value = CE->getValue();
if (Value < 0 || Value > 15) {
Error(StartLoc, "invalid register");
return MatchOperand_ParseFail;
}
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
}
else {
Register Reg;
if (parseRegister(Reg))
return MatchOperand_ParseFail;
// Map to the correct register kind.
RegisterKind Kind;
unsigned RegNo;
if (Reg.Group == RegGR) {
Kind = GR64Reg;
RegNo = SystemZMC::GR64Regs[Reg.Num];
}
else if (Reg.Group == RegFP) {
Kind = FP64Reg;
RegNo = SystemZMC::FP64Regs[Reg.Num];
}
else if (Reg.Group == RegV) {
Kind = VR128Reg;
RegNo = SystemZMC::VR128Regs[Reg.Num];
}
else {
return MatchOperand_ParseFail;
}
Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
Reg.StartLoc, Reg.EndLoc));
}
return MatchOperand_Success;
}
// Parse a memory operand into Base, Disp, Index and Length.
// Regs maps asm register numbers to LLVM register numbers and RegKind
// says what kind of address register we're using (ADDR32Reg or ADDR64Reg).
bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp,
unsigned &Index, bool &IsVector,
const MCExpr *&Length, const unsigned *Regs,
RegisterKind RegKind) {
// Parse the displacement, which must always be present.
if (getParser().parseExpression(Disp))
return true;
// Parse the optional base and index.
Index = 0;
Base = 0;
IsVector = false;
Length = nullptr;
if (getLexer().is(AsmToken::LParen)) {
Parser.Lex();
if (getLexer().is(AsmToken::Percent)) {
// Parse the first register and decide whether it's a base or an index.
Register Reg;
if (parseRegister(Reg))
return true;
if (Reg.Group == RegV) {
// A vector index register. The base register is optional.
IsVector = true;
Index = SystemZMC::VR128Regs[Reg.Num];
} else if (Reg.Group == RegGR) {
if (Reg.Num == 0)
return Error(Reg.StartLoc, "%r0 used in an address");
// If the are two registers, the first one is the index and the
// second is the base.
if (getLexer().is(AsmToken::Comma))
Index = Regs[Reg.Num];
else
Base = Regs[Reg.Num];
} else
return Error(Reg.StartLoc, "invalid address register");
} else {
// Parse the length.
if (getParser().parseExpression(Length))
return true;
}
// Check whether there's a second register. It's the base if so.
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
Register Reg;
if (parseRegister(Reg, RegGR, Regs, RegKind))
return true;
Base = Reg.Num;
}
// Consume the closing bracket.
if (getLexer().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "unexpected token in address");
Parser.Lex();
}
return false;
}
// Parse a memory operand and add it to Operands. The other arguments
// are as above.
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
const unsigned *Regs, RegisterKind RegKind) {
SMLoc StartLoc = Parser.getTok().getLoc();
unsigned Base, Index;
bool IsVector;
const MCExpr *Disp;
const MCExpr *Length;
if (parseAddress(Base, Disp, Index, IsVector, Length, Regs, RegKind))
return MatchOperand_ParseFail;
if (IsVector && MemKind != BDVMem) {
Error(StartLoc, "invalid use of vector addressing");
return MatchOperand_ParseFail;
}
if (!IsVector && MemKind == BDVMem) {
Error(StartLoc, "vector index required in address");
return MatchOperand_ParseFail;
}
if (Index && MemKind != BDXMem && MemKind != BDVMem) {
Error(StartLoc, "invalid use of indexed addressing");
return MatchOperand_ParseFail;
}
if (Length && MemKind != BDLMem) {
Error(StartLoc, "invalid use of length addressing");
return MatchOperand_ParseFail;
}
if (!Length && MemKind == BDLMem) {
Error(StartLoc, "missing length in address");
return MatchOperand_ParseFail;
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
Index, Length, StartLoc,
EndLoc));
return MatchOperand_Success;
}
bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".insn")
return ParseDirectiveInsn(DirectiveID.getLoc());
return true;
}
/// ParseDirectiveInsn
/// ::= .insn [ format, encoding, (operands (, operands)*) ]
bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
MCAsmParser &Parser = getParser();
// Expect instruction format as identifier.
StringRef Format;
SMLoc ErrorLoc = Parser.getTok().getLoc();
if (Parser.parseIdentifier(Format))
return Error(ErrorLoc, "expected instruction format");
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
// Find entry for this format in InsnMatchTable.
auto EntryRange =
std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
Format, CompareInsn());
// If first == second, couldn't find a match in the table.
if (EntryRange.first == EntryRange.second)
return Error(ErrorLoc, "unrecognized format");
struct InsnMatchEntry *Entry = EntryRange.first;
// Format should match from equal_range.
assert(Entry->Format == Format);
// Parse the following operands using the table's information.
for (int i = 0; i < Entry->NumOperands; i++) {
MatchClassKind Kind = Entry->OperandKinds[i];
SMLoc StartLoc = Parser.getTok().getLoc();
// Always expect commas as separators for operands.
if (getLexer().isNot(AsmToken::Comma))
return Error(StartLoc, "unexpected token in directive");
Lex();
// Parse operands.
OperandMatchResultTy ResTy;
if (Kind == MCK_AnyReg)
ResTy = parseAnyReg(Operands);
else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
ResTy = parseBDXAddr64(Operands);
else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
ResTy = parseBDAddr64(Operands);
else if (Kind == MCK_PCRel32)
ResTy = parsePCRel32(Operands);
else if (Kind == MCK_PCRel16)
ResTy = parsePCRel16(Operands);
else {
// Only remaining operand kind is an immediate.
const MCExpr *Expr;
SMLoc StartLoc = Parser.getTok().getLoc();
// Expect immediate expression.
if (Parser.parseExpression(Expr))
return Error(StartLoc, "unexpected token in directive");
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
ResTy = MatchOperand_Success;
}
if (ResTy != MatchOperand_Success)
return true;
}
// Build the instruction with the parsed operands.
MCInst Inst = MCInstBuilder(Entry->Opcode);
for (size_t i = 0; i < Operands.size(); i++) {
MCParsedAsmOperand &Operand = *Operands[i];
MatchClassKind Kind = Entry->OperandKinds[i];
// Verify operand.
unsigned Res = validateOperandClass(Operand, Kind);
if (Res != Match_Success)
return Error(Operand.getStartLoc(), "unexpected operand type");
// Add operands to instruction.
SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
if (ZOperand.isReg())
ZOperand.addRegOperands(Inst, 1);
else if (ZOperand.isMem(BDMem))
ZOperand.addBDAddrOperands(Inst, 2);
else if (ZOperand.isMem(BDXMem))
ZOperand.addBDXAddrOperands(Inst, 3);
else if (ZOperand.isImm())
ZOperand.addImmOperands(Inst, 1);
else
llvm_unreachable("unexpected operand type");
}
// Emit as a regular instruction.
Parser.getStreamer().EmitInstruction(Inst, getSTI());
return false;
}
bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
Register Reg;
if (parseRegister(Reg))
return true;
if (Reg.Group == RegGR)
RegNo = SystemZMC::GR64Regs[Reg.Num];
else if (Reg.Group == RegFP)
RegNo = SystemZMC::FP64Regs[Reg.Num];
else if (Reg.Group == RegV)
RegNo = SystemZMC::VR128Regs[Reg.Num];
else
// FIXME: Access registers aren't modelled as LLVM registers yet.
return Error(Reg.StartLoc, "invalid operand for instruction");
StartLoc = Reg.StartLoc;
EndLoc = Reg.EndLoc;
return false;
}
bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (parseOperand(Operands, Name)) {
return true;
}
// Read any subsequent operands.
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
if (parseOperand(Operands, Name)) {
return true;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
return Error(Loc, "unexpected token in argument list");
}
}
// Consume the EndOfStatement.
Parser.Lex();
return false;
}
bool SystemZAsmParser::parseOperand(OperandVector &Operands,
StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
// Check for a register. All real register operands should have used
// a context-dependent parse routine, which gives the required register
// class. The code is here to mop up other cases, like those where
// the instruction isn't recognized.
if (Parser.getTok().is(AsmToken::Percent)) {
Register Reg;
if (parseRegister(Reg))
return true;
Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
return false;
}
// The only other type of operand is an immediate or address. As above,
// real address operands should have used a context-dependent parse routine,
// so we treat any plain expression as an immediate.
SMLoc StartLoc = Parser.getTok().getLoc();
unsigned Base, Index;
bool IsVector;
const MCExpr *Expr, *Length;
if (parseAddress(Base, Expr, Index, IsVector, Length, SystemZMC::GR64Regs,
ADDR64Reg))
return true;
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
if (Base || Index || Length)
Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
else
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
return false;
}
bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult;
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm);
switch (MatchResult) {
case Match_Success:
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst, getSTI());
return false;
case Match_MissingFeature: {
assert(ErrorInfo && "Unknown missing feature!");
// Special case the error message for the very common case where only
// a single subtarget feature is missing
std::string Msg = "instruction requires:";
uint64_t Mask = 1;
for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) {
if (ErrorInfo & Mask) {
Msg += " ";
Msg += getSubtargetFeatureName(ErrorInfo & Mask);
}
Mask <<= 1;
}
return Error(IDLoc, Msg);
}
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction");
}
llvm_unreachable("Unexpected match type");
}
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parseAccessReg(OperandVector &Operands) {
if (Parser.getTok().isNot(AsmToken::Percent))
return MatchOperand_NoMatch;
Register Reg;
if (parseRegister(Reg, RegAccess, nullptr))
return MatchOperand_ParseFail;
Operands.push_back(SystemZOperand::createAccessReg(Reg.Num,
Reg.StartLoc,
Reg.EndLoc));
return MatchOperand_Success;
}
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
int64_t MaxVal, bool AllowTLS) {
MCContext &Ctx = getContext();
MCStreamer &Out = getStreamer();
const MCExpr *Expr;
SMLoc StartLoc = Parser.getTok().getLoc();
if (getParser().parseExpression(Expr))
return MatchOperand_NoMatch;
// For consistency with the GNU assembler, treat immediates as offsets
// from ".".
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
int64_t Value = CE->getValue();
if ((Value & 1) || Value < MinVal || Value > MaxVal) {
Error(StartLoc, "offset out of range");
return MatchOperand_ParseFail;
}
MCSymbol *Sym = Ctx.createTempSymbol();
Out.EmitLabel(Sym);
const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
Ctx);
Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
}
// Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
const MCExpr *Sym = nullptr;
if (AllowTLS && getLexer().is(AsmToken::Colon)) {
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "unexpected token");
return MatchOperand_ParseFail;
}
MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
StringRef Name = Parser.getTok().getString();
if (Name == "tls_gdcall")
Kind = MCSymbolRefExpr::VK_TLSGD;
else if (Name == "tls_ldcall")
Kind = MCSymbolRefExpr::VK_TLSLDM;
else {
Error(Parser.getTok().getLoc(), "unknown TLS tag");
return MatchOperand_ParseFail;
}
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Colon)) {
Error(Parser.getTok().getLoc(), "unexpected token");
return MatchOperand_ParseFail;
}
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "unexpected token");
return MatchOperand_ParseFail;
}
StringRef Identifier = Parser.getTok().getString();
Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
Kind, Ctx);
Parser.Lex();
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
if (AllowTLS)
Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
StartLoc, EndLoc));
else
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
return MatchOperand_Success;
}
// Force static initialization.
extern "C" void LLVMInitializeSystemZAsmParser() {
RegisterMCAsmParser<SystemZAsmParser> X(TheSystemZTarget);
}