llvm-project/pstl/test/test_lexicographical_compar...

175 lines
6.5 KiB
C++
Raw Normal View History

// -*- C++ -*-
//===-- test_lexicographical_compare.cpp ----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "pstl_test_config.h"
#include <string>
#include <iostream>
#include "pstl/execution"
#include "pstl/algorithm"
#include "utils.h"
using namespace TestUtils;
struct test_one_policy
{
template <typename ExecutionPolicy, typename Iterator1, typename Iterator2, typename Predicate>
void
operator()(ExecutionPolicy&& exec, Iterator1 begin1, Iterator1 end1, Iterator2 begin2, Iterator2 end2,
Predicate pred)
{
const bool expected = std::lexicographical_compare(begin1, end1, begin2, end2, pred);
const bool actual = std::lexicographical_compare(exec, begin1, end1, begin2, end2, pred);
EXPECT_TRUE(actual == expected, "wrong return result from lexicographical compare with predicate");
}
template <typename ExecutionPolicy, typename Iterator1, typename Iterator2>
void
operator()(ExecutionPolicy&& exec, Iterator1 begin1, Iterator1 end1, Iterator2 begin2, Iterator2 end2)
{
const bool expected = std::lexicographical_compare(begin1, end1, begin2, end2);
const bool actual = std::lexicographical_compare(exec, begin1, end1, begin2, end2);
EXPECT_TRUE(actual == expected, "wrong return result from lexicographical compare without predicate");
}
};
template <typename T1, typename T2, typename Predicate>
void
test(Predicate pred)
{
const std::size_t max_n = 1000000;
Sequence<T1> in1(max_n, [](std::size_t k) { return T1(k); });
Sequence<T2> in2(2 * max_n, [](std::size_t k) { return T2(k); });
std::size_t n2;
// Test case: Call algorithm's version without predicate.
invoke_on_all_policies(test_one_policy(), in1.cbegin(), in1.cbegin() + max_n, in2.cbegin() + 3 * max_n / 10,
in2.cbegin() + 5 * max_n / 10);
// Test case: If one range is a prefix of another, the shorter range is lexicographically less than the other.
std::size_t max_n2 = max_n / 10;
invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + max_n, in2.cbegin(), in2.cbegin() + max_n2,
pred);
invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + max_n, in2.begin() + max_n2,
in2.begin() + 3 * max_n2, pred);
// Test case: If one range is a prefix of another, the shorter range is lexicographically less than the other.
max_n2 = 2 * max_n;
invoke_on_all_policies(test_one_policy(), in1.cbegin(), in1.cbegin() + max_n, in2.begin(), in2.begin() + max_n2,
pred);
for (std::size_t n1 = 0; n1 <= max_n; n1 = n1 <= 16 ? n1 + 1 : std::size_t(3.1415 * n1))
{
// Test case: If two ranges have equivalent elements and are of the same length, then the ranges are lexicographically equal.
n2 = n1;
invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.begin(), in2.begin() + n2, pred);
n2 = n1;
// Test case: two ranges have different elements and are of the same length (second sequence less than first)
std::size_t ind = n1 / 2;
in2[ind] = T2(-1);
invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.begin(), in2.begin() + n2, pred);
in2[ind] = T2(ind);
// Test case: two ranges have different elements and are of the same length (first sequence less than second)
ind = n1 / 5;
in1[ind] = T1(-1);
invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.cbegin(), in2.cbegin() + n2, pred);
in1[ind] = T1(ind);
}
}
template <typename Predicate>
void
test_string(Predicate pred)
{
const std::size_t max_n = 1000000;
std::string in1 = "";
std::string in2 = "";
for (std::size_t n1 = 0; n1 <= max_n; ++n1)
{
in1 += n1;
}
for (std::size_t n1 = 0; n1 <= 2 * max_n; ++n1)
{
in2 += n1;
}
std::size_t n2;
for (std::size_t n1 = 0; n1 < in1.size(); n1 = n1 <= 16 ? n1 + 1 : std::size_t(3.1415 * n1))
{
// Test case: If two ranges have equivalent elements and are of the same length, then the ranges are lexicographically equal.
n2 = n1;
invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.begin(), in2.begin() + n2, pred);
n2 = n1;
// Test case: two ranges have different elements and are of the same length (second sequence less than first)
in2[n1 / 2] = 'a';
invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.begin(), in2.begin() + n2, pred);
// Test case: two ranges have different elements and are of the same length (first sequence less than second)
in1[n1 / 5] = 'a';
invoke_on_all_policies(test_one_policy(), in1.begin(), in1.begin() + n1, in2.cbegin(), in2.cbegin() + n2, pred);
}
invoke_on_all_policies(test_one_policy(), in1.cbegin(), in1.cbegin() + max_n, in2.cbegin() + 3 * max_n / 10,
in2.cbegin() + 5 * max_n / 10);
}
template <typename T>
struct LocalWrapper
{
explicit LocalWrapper(std::size_t k) : my_val(k) {}
bool
operator<(const LocalWrapper<T>& w) const
{
return my_val < w.my_val;
}
private:
T my_val;
};
template <typename T>
struct test_non_const
{
template <typename Policy, typename FirstIterator, typename SecondInterator>
void
operator()(Policy&& exec, FirstIterator first_iter, SecondInterator second_iter)
{
invoke_if(exec, [&]() {
lexicographical_compare(exec, first_iter, first_iter, second_iter, second_iter, non_const(std::less<T>()));
});
}
};
int32_t
main()
{
test<uint16_t, float64_t>(std::less<float64_t>());
test<float32_t, int32_t>(std::greater<float32_t>());
#if !__PSTL_ICC_18_TEST_EARLY_EXIT_AVX_RELEASE_BROKEN
test<float64_t, int32_t>([](const float64_t x, const int32_t y) { return x * x < y * y; });
#endif
test<LocalWrapper<int32_t>, LocalWrapper<int32_t>>(
[](const LocalWrapper<int32_t>& x, const LocalWrapper<int32_t>& y) { return x < y; });
test_string([](const char x, const char y) { return x < y; });
test_algo_basic_double<int32_t>(run_for_rnd_fw<test_non_const<int32_t>>());
std::cout << done() << std::endl;
return 0;
}