llvm-project/lld/MachO/InputFiles.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

270 lines
9.8 KiB
C++
Raw Normal View History

//===- InputFiles.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains functions to parse Mach-O object files. In this comment,
// we describe the Mach-O file structure and how we parse it.
//
// Mach-O is not very different from ELF or COFF. The notion of symbols,
// sections and relocations exists in Mach-O as it does in ELF and COFF.
//
// Perhaps the notion that is new to those who know ELF/COFF is "subsections".
// In ELF/COFF, sections are an atomic unit of data copied from input files to
// output files. When we merge or garbage-collect sections, we treat each
// section as an atomic unit. In Mach-O, that's not the case. Sections can
// consist of multiple subsections, and subsections are a unit of merging and
// garbage-collecting. Therefore, Mach-O's subsections are more similar to
// ELF/COFF's sections than Mach-O's sections are.
//
// A section can have multiple symbols. A symbol that does not have the
// N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
// definition, a symbol is always present at the beginning of each subsection. A
// symbol with N_ALT_ENTRY attribute does not start a new subsection and can
// point to a middle of a subsection.
//
// The notion of subsections also affects how relocations are represented in
// Mach-O. All references within a section need to be explicitly represented as
// relocations if they refer to different subsections, because we obviously need
// to fix up addresses if subsections are laid out in an output file differently
// than they were in object files. To represent that, Mach-O relocations can
// refer to an unnamed location via its address. Scattered relocations (those
// with the R_SCATTERED bit set) always refer to unnamed locations.
// Non-scattered relocations refer to an unnamed location if r_extern is not set
// and r_symbolnum is zero.
//
// Without the above differences, I think you can use your knowledge about ELF
// and COFF for Mach-O.
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "InputSection.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::macho;
std::vector<InputFile *> macho::inputFiles;
// Open a given file path and return it as a memory-mapped file.
Optional<MemoryBufferRef> macho::readFile(StringRef path) {
// Open a file.
auto mbOrErr = MemoryBuffer::getFile(path);
if (auto ec = mbOrErr.getError()) {
error("cannot open " + path + ": " + ec.message());
return None;
}
std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
MemoryBufferRef mbref = mb->getMemBufferRef();
make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
// If this is a regular non-fat file, return it.
const char *buf = mbref.getBufferStart();
auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf);
if (read32be(&hdr->magic) != MachO::FAT_MAGIC)
return mbref;
// Object files and archive files may be fat files, which contains
// multiple real files for different CPU ISAs. Here, we search for a
// file that matches with the current link target and returns it as
// a MemoryBufferRef.
auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr));
for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
if (reinterpret_cast<const char *>(arch + i + 1) >
buf + mbref.getBufferSize()) {
error(path + ": fat_arch struct extends beyond end of file");
return None;
}
if (read32be(&arch[i].cputype) != target->cpuType ||
read32be(&arch[i].cpusubtype) != target->cpuSubtype)
continue;
uint32_t offset = read32be(&arch[i].offset);
uint32_t size = read32be(&arch[i].size);
if (offset + size > mbref.getBufferSize())
error(path + ": slice extends beyond end of file");
return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
}
error("unable to find matching architecture in " + path);
return None;
}
static const load_command *findCommand(const mach_header_64 *hdr,
uint32_t type) {
const uint8_t *p =
reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64);
for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
auto *cmd = reinterpret_cast<const load_command *>(p);
if (cmd->cmd == type)
return cmd;
p += cmd->cmdsize;
}
return nullptr;
}
std::vector<InputSection *>
InputFile::parseSections(ArrayRef<section_64> sections) {
std::vector<InputSection *> ret;
ret.reserve(sections.size());
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
for (const section_64 &sec : sections) {
InputSection *isec = make<InputSection>();
isec->file = this;
isec->name = StringRef(sec.sectname, strnlen(sec.sectname, 16));
isec->segname = StringRef(sec.segname, strnlen(sec.segname, 16));
isec->data = {buf + sec.offset, static_cast<size_t>(sec.size)};
if (sec.align >= 32)
error("alignment " + std::to_string(sec.align) + " of section " +
isec->name + " is too large");
else
isec->align = 1 << sec.align;
isec->flags = sec.flags;
ret.push_back(isec);
}
return ret;
}
void InputFile::parseRelocations(const section_64 &sec,
std::vector<Reloc> &relocs) {
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
ArrayRef<any_relocation_info> relInfos(
reinterpret_cast<const any_relocation_info *>(buf + sec.reloff),
sec.nreloc);
for (const any_relocation_info &anyRel : relInfos) {
Reloc r;
if (anyRel.r_word0 & R_SCATTERED) {
error("TODO: Scattered relocations not supported");
} else {
auto rel = reinterpret_cast<const relocation_info &>(anyRel);
r.type = rel.r_type;
r.offset = rel.r_address;
r.addend = target->getImplicitAddend(buf + sec.offset + r.offset, r.type);
if (rel.r_extern)
r.target = symbols[rel.r_symbolnum];
else {
error("TODO: Non-extern relocations are not supported");
continue;
}
}
relocs.push_back(r);
}
}
ObjFile::ObjFile(MemoryBufferRef mb) : InputFile(ObjKind, mb) {
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());
ArrayRef<section_64> objSections;
if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) {
auto *c = reinterpret_cast<const segment_command_64 *>(cmd);
objSections = ArrayRef<section_64>{
reinterpret_cast<const section_64 *>(c + 1), c->nsects};
sections = parseSections(objSections);
}
// TODO: Error on missing LC_SYMTAB?
if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
auto *c = reinterpret_cast<const symtab_command *>(cmd);
const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
ArrayRef<const nlist_64> nList(
reinterpret_cast<const nlist_64 *>(buf + c->symoff), c->nsyms);
symbols.reserve(c->nsyms);
for (const nlist_64 &sym : nList) {
StringRef name = strtab + sym.n_strx;
// Undefined symbol
if (!sym.n_sect) {
symbols.push_back(symtab->addUndefined(name));
continue;
}
InputSection *isec = sections[sym.n_sect - 1];
const section_64 &objSec = objSections[sym.n_sect - 1];
uint64_t value = sym.n_value - objSec.addr;
// Global defined symbol
if (sym.n_type & N_EXT) {
symbols.push_back(symtab->addDefined(name, isec, value));
continue;
}
// Local defined symbol
symbols.push_back(make<Defined>(name, isec, value));
}
}
// The relocations may refer to the symbols, so we parse them after we have
// the symbols loaded.
if (!sections.empty()) {
auto it = sections.begin();
for (const section_64 &sec : objSections) {
parseRelocations(sec, (*it)->relocs);
++it;
}
}
}
DylibFile::DylibFile(MemoryBufferRef mb) : InputFile(DylibKind, mb) {
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());
// Initialize dylibName.
if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
auto *c = reinterpret_cast<const dylib_command *>(cmd);
dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
} else {
error("dylib " + getName() + " missing LC_ID_DYLIB load command");
return;
}
// Initialize symbols.
if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
auto *c = reinterpret_cast<const symtab_command *>(cmd);
const char *strtab = reinterpret_cast<const char *>(buf + c->stroff);
ArrayRef<const nlist_64> nList(
reinterpret_cast<const nlist_64 *>(buf + c->symoff), c->nsyms);
symbols.reserve(c->nsyms);
for (const nlist_64 &sym : nList) {
StringRef name = strtab + sym.n_strx;
// TODO: Figure out what to do about undefined symbols: ignore or warn
// if unsatisfied? Also make sure we handle re-exported symbols
// correctly.
symbols.push_back(symtab->addDylib(name, this));
}
}
}
// Returns "<internal>" or "baz.o".
std::string lld::toString(const InputFile *file) {
return file ? std::string(file->getName()) : "<internal>";
}