llvm-project/llvm/lib/VMCore/iOperators.cpp

206 lines
7.2 KiB
C++
Raw Normal View History

//===-- iOperators.cpp - Implement binary Operators ------------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
2001-06-07 04:29:01 +08:00
//
// This file implements the nontrivial binary operator instructions.
2001-06-07 04:29:01 +08:00
//
//===----------------------------------------------------------------------===//
#include "llvm/iOperators.h"
2001-06-07 04:29:01 +08:00
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/BasicBlock.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// BinaryOperator Class
//===----------------------------------------------------------------------===//
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
const Type *Ty, const std::string &Name,
Instruction *InsertBefore)
: Instruction(Ty, iType, Name, InsertBefore) {
Operands.reserve(2);
Operands.push_back(Use(S1, this));
Operands.push_back(Use(S2, this));
assert(S1 && S2 && S1->getType() == S2->getType());
#ifndef NDEBUG
switch (iType) {
case Add: case Sub:
case Mul: case Div:
case Rem:
assert(Ty == S1->getType() &&
"Arithmetic operation should return same type as operands!");
assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case And: case Or:
case Xor:
assert(Ty == S1->getType() &&
"Logical operation should return same type as operands!");
assert(Ty->isIntegral() &&
"Tried to create an logical operation on a non-integral type!");
break;
case SetLT: case SetGT: case SetLE:
case SetGE: case SetEQ: case SetNE:
assert(Ty == Type::BoolTy && "Setcc must return bool!");
default:
break;
}
#endif
}
BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
const std::string &Name,
Instruction *InsertBefore) {
assert(S1->getType() == S2->getType() &&
"Cannot create binary operator with two operands of differing type!");
switch (Op) {
// Binary comparison operators...
case SetLT: case SetGT: case SetLE:
case SetGE: case SetEQ: case SetNE:
return new SetCondInst(Op, S1, S2, Name, InsertBefore);
default:
return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
}
}
BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
Instruction *InsertBefore) {
if (!Op->getType()->isFloatingPoint())
return new BinaryOperator(Instruction::Sub,
Constant::getNullValue(Op->getType()), Op,
Op->getType(), Name, InsertBefore);
else
return new BinaryOperator(Instruction::Sub,
ConstantFP::get(Op->getType(), -0.0), Op,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
Instruction *InsertBefore) {
return new BinaryOperator(Instruction::Xor, Op,
ConstantIntegral::getAllOnesValue(Op->getType()),
Op->getType(), Name, InsertBefore);
}
// isConstantAllOnes - Helper function for several functions below
2002-08-16 00:15:36 +08:00
static inline bool isConstantAllOnes(const Value *V) {
return isa<ConstantIntegral>(V) &&cast<ConstantIntegral>(V)->isAllOnesValue();
}
bool BinaryOperator::isNeg(const Value *V) {
2002-08-16 00:15:36 +08:00
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
if (Bop->getOpcode() == Instruction::Sub)
if (!V->getType()->isFloatingPoint())
return Bop->getOperand(0) == Constant::getNullValue(Bop->getType());
else
return Bop->getOperand(0) == ConstantFP::get(Bop->getType(), -0.0);
return false;
}
bool BinaryOperator::isNot(const Value *V) {
2002-08-16 00:15:36 +08:00
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
return (Bop->getOpcode() == Instruction::Xor &&
(isConstantAllOnes(Bop->getOperand(1)) ||
isConstantAllOnes(Bop->getOperand(0))));
return false;
}
2002-08-16 00:15:36 +08:00
Value *BinaryOperator::getNegArgument(BinaryOperator *Bop) {
assert(isNeg(Bop) && "getNegArgument from non-'neg' instruction!");
return Bop->getOperand(1);
}
2002-08-16 00:15:36 +08:00
const Value *BinaryOperator::getNegArgument(const BinaryOperator *Bop) {
return getNegArgument((BinaryOperator*)Bop);
}
2002-08-16 00:15:36 +08:00
Value *BinaryOperator::getNotArgument(BinaryOperator *Bop) {
assert(isNot(Bop) && "getNotArgument on non-'not' instruction!");
Value *Op0 = Bop->getOperand(0);
Value *Op1 = Bop->getOperand(1);
if (isConstantAllOnes(Op0)) return Op1;
2002-08-16 00:15:36 +08:00
assert(isConstantAllOnes(Op1));
return Op0;
}
2002-08-16 00:15:36 +08:00
const Value *BinaryOperator::getNotArgument(const BinaryOperator *Bop) {
return getNotArgument((BinaryOperator*)Bop);
}
// swapOperands - Exchange the two operands to this instruction. This
// instruction is safe to use on any binary instruction and does not
// modify the semantics of the instruction. If the instruction is
// order dependent (SetLT f.e.) the opcode is changed.
//
bool BinaryOperator::swapOperands() {
if (isCommutative())
; // If the instruction is commutative, it is safe to swap the operands
else if (SetCondInst *SCI = dyn_cast<SetCondInst>(this))
iType = SCI->getSwappedCondition();
else
return true; // Can't commute operands
std::swap(Operands[0], Operands[1]);
return false;
}
2001-06-07 04:29:01 +08:00
//===----------------------------------------------------------------------===//
// SetCondInst Class
//===----------------------------------------------------------------------===//
SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2,
const std::string &Name, Instruction *InsertBefore)
: BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertBefore) {
2001-06-07 04:29:01 +08:00
// Make sure it's a valid type... getInverseCondition will assert out if not.
assert(getInverseCondition(Opcode));
2001-06-07 04:29:01 +08:00
}
// getInverseCondition - Return the inverse of the current condition opcode.
// For example seteq -> setne, setgt -> setle, setlt -> setge, etc...
//
Instruction::BinaryOps SetCondInst::getInverseCondition(BinaryOps Opcode) {
switch (Opcode) {
default:
assert(0 && "Unknown setcc opcode!");
case SetEQ: return SetNE;
case SetNE: return SetEQ;
case SetGT: return SetLE;
case SetLT: return SetGE;
case SetGE: return SetLT;
case SetLE: return SetGT;
}
}
// getSwappedCondition - Return the condition opcode that would be the result
// of exchanging the two operands of the setcc instruction without changing
// the result produced. Thus, seteq->seteq, setle->setge, setlt->setgt, etc.
//
Instruction::BinaryOps SetCondInst::getSwappedCondition(BinaryOps Opcode) {
switch (Opcode) {
default: assert(0 && "Unknown setcc instruction!");
case SetEQ: case SetNE: return Opcode;
case SetGT: return SetLT;
case SetLT: return SetGT;
case SetGE: return SetLE;
case SetLE: return SetGE;
}
}