llvm-project/clang/lib/Frontend/FrontendActions.cpp

846 lines
30 KiB
C++
Raw Normal View History

//===--- FrontendActions.cpp ----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "clang/Frontend/FrontendActions.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/Basic/FileManager.h"
#include "clang/Frontend/ASTConsumers.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/MultiplexConsumer.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/TemplateInstCallback.h"
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/ASTWriter.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/YAMLTraits.h"
#include <memory>
#include <system_error>
using namespace clang;
namespace {
CodeCompleteConsumer *GetCodeCompletionConsumer(CompilerInstance &CI) {
return CI.hasCodeCompletionConsumer() ? &CI.getCodeCompletionConsumer()
: nullptr;
}
void EnsureSemaIsCreated(CompilerInstance &CI, FrontendAction &Action) {
if (Action.hasCodeCompletionSupport() &&
!CI.getFrontendOpts().CodeCompletionAt.FileName.empty())
CI.createCodeCompletionConsumer();
if (!CI.hasSema())
CI.createSema(Action.getTranslationUnitKind(),
GetCodeCompletionConsumer(CI));
}
} // namespace
//===----------------------------------------------------------------------===//
// Custom Actions
//===----------------------------------------------------------------------===//
std::unique_ptr<ASTConsumer>
InitOnlyAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
return llvm::make_unique<ASTConsumer>();
}
void InitOnlyAction::ExecuteAction() {
}
//===----------------------------------------------------------------------===//
// AST Consumer Actions
//===----------------------------------------------------------------------===//
std::unique_ptr<ASTConsumer>
ASTPrintAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
if (std::unique_ptr<raw_ostream> OS =
CI.createDefaultOutputFile(false, InFile))
return CreateASTPrinter(std::move(OS), CI.getFrontendOpts().ASTDumpFilter);
return nullptr;
}
std::unique_ptr<ASTConsumer>
ASTDumpAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
return CreateASTDumper(nullptr /*Dump to stdout.*/,
CI.getFrontendOpts().ASTDumpFilter,
CI.getFrontendOpts().ASTDumpDecls,
CI.getFrontendOpts().ASTDumpAll,
CI.getFrontendOpts().ASTDumpLookups);
}
std::unique_ptr<ASTConsumer>
ASTDeclListAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
return CreateASTDeclNodeLister();
}
std::unique_ptr<ASTConsumer>
ASTViewAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
return CreateASTViewer();
}
std::unique_ptr<ASTConsumer>
DeclContextPrintAction::CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) {
return CreateDeclContextPrinter();
}
std::unique_ptr<ASTConsumer>
GeneratePCHAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
std::string Sysroot;
if (!ComputeASTConsumerArguments(CI, /*ref*/ Sysroot))
return nullptr;
std::string OutputFile;
std::unique_ptr<raw_pwrite_stream> OS =
CreateOutputFile(CI, InFile, /*ref*/ OutputFile);
if (!OS)
return nullptr;
if (!CI.getFrontendOpts().RelocatablePCH)
Sysroot.clear();
const auto &FrontendOpts = CI.getFrontendOpts();
auto Buffer = std::make_shared<PCHBuffer>();
std::vector<std::unique_ptr<ASTConsumer>> Consumers;
Consumers.push_back(llvm::make_unique<PCHGenerator>(
CI.getPreprocessor(), OutputFile, Sysroot,
Buffer, FrontendOpts.ModuleFileExtensions,
CI.getPreprocessorOpts().AllowPCHWithCompilerErrors,
FrontendOpts.IncludeTimestamps));
Consumers.push_back(CI.getPCHContainerWriter().CreatePCHContainerGenerator(
CI, InFile, OutputFile, std::move(OS), Buffer));
return llvm::make_unique<MultiplexConsumer>(std::move(Consumers));
}
bool GeneratePCHAction::ComputeASTConsumerArguments(CompilerInstance &CI,
std::string &Sysroot) {
Sysroot = CI.getHeaderSearchOpts().Sysroot;
if (CI.getFrontendOpts().RelocatablePCH && Sysroot.empty()) {
CI.getDiagnostics().Report(diag::err_relocatable_without_isysroot);
return false;
}
return true;
}
std::unique_ptr<llvm::raw_pwrite_stream>
GeneratePCHAction::CreateOutputFile(CompilerInstance &CI, StringRef InFile,
std::string &OutputFile) {
// We use createOutputFile here because this is exposed via libclang, and we
// must disable the RemoveFileOnSignal behavior.
// We use a temporary to avoid race conditions.
std::unique_ptr<raw_pwrite_stream> OS =
CI.createOutputFile(CI.getFrontendOpts().OutputFile, /*Binary=*/true,
/*RemoveFileOnSignal=*/false, InFile,
/*Extension=*/"", /*useTemporary=*/true);
if (!OS)
return nullptr;
OutputFile = CI.getFrontendOpts().OutputFile;
return OS;
}
bool GeneratePCHAction::shouldEraseOutputFiles() {
if (getCompilerInstance().getPreprocessorOpts().AllowPCHWithCompilerErrors)
return false;
return ASTFrontendAction::shouldEraseOutputFiles();
}
bool GeneratePCHAction::BeginSourceFileAction(CompilerInstance &CI) {
CI.getLangOpts().CompilingPCH = true;
return true;
}
std::unique_ptr<ASTConsumer>
GenerateModuleAction::CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) {
std::unique_ptr<raw_pwrite_stream> OS = CreateOutputFile(CI, InFile);
if (!OS)
return nullptr;
std::string OutputFile = CI.getFrontendOpts().OutputFile;
std::string Sysroot;
auto Buffer = std::make_shared<PCHBuffer>();
std::vector<std::unique_ptr<ASTConsumer>> Consumers;
Consumers.push_back(llvm::make_unique<PCHGenerator>(
CI.getPreprocessor(), OutputFile, Sysroot,
Buffer, CI.getFrontendOpts().ModuleFileExtensions,
/*AllowASTWithErrors=*/false,
/*IncludeTimestamps=*/
+CI.getFrontendOpts().BuildingImplicitModule));
Consumers.push_back(CI.getPCHContainerWriter().CreatePCHContainerGenerator(
CI, InFile, OutputFile, std::move(OS), Buffer));
return llvm::make_unique<MultiplexConsumer>(std::move(Consumers));
}
bool GenerateModuleFromModuleMapAction::BeginSourceFileAction(
CompilerInstance &CI) {
if (!CI.getLangOpts().Modules) {
CI.getDiagnostics().Report(diag::err_module_build_requires_fmodules);
return false;
}
return GenerateModuleAction::BeginSourceFileAction(CI);
}
std::unique_ptr<raw_pwrite_stream>
GenerateModuleFromModuleMapAction::CreateOutputFile(CompilerInstance &CI,
StringRef InFile) {
// If no output file was provided, figure out where this module would go
// in the module cache.
if (CI.getFrontendOpts().OutputFile.empty()) {
StringRef ModuleMapFile = CI.getFrontendOpts().OriginalModuleMap;
if (ModuleMapFile.empty())
ModuleMapFile = InFile;
HeaderSearch &HS = CI.getPreprocessor().getHeaderSearchInfo();
CI.getFrontendOpts().OutputFile =
HS.getCachedModuleFileName(CI.getLangOpts().CurrentModule,
ModuleMapFile);
}
// We use createOutputFile here because this is exposed via libclang, and we
// must disable the RemoveFileOnSignal behavior.
// We use a temporary to avoid race conditions.
return CI.createOutputFile(CI.getFrontendOpts().OutputFile, /*Binary=*/true,
/*RemoveFileOnSignal=*/false, InFile,
/*Extension=*/"", /*useTemporary=*/true,
/*CreateMissingDirectories=*/true);
}
bool GenerateModuleInterfaceAction::BeginSourceFileAction(
CompilerInstance &CI) {
if (!CI.getLangOpts().ModulesTS) {
CI.getDiagnostics().Report(diag::err_module_interface_requires_modules_ts);
return false;
}
CI.getLangOpts().setCompilingModule(LangOptions::CMK_ModuleInterface);
return GenerateModuleAction::BeginSourceFileAction(CI);
}
std::unique_ptr<raw_pwrite_stream>
GenerateModuleInterfaceAction::CreateOutputFile(CompilerInstance &CI,
StringRef InFile) {
return CI.createDefaultOutputFile(/*Binary=*/true, InFile, "pcm");
}
SyntaxOnlyAction::~SyntaxOnlyAction() {
}
std::unique_ptr<ASTConsumer>
SyntaxOnlyAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
return llvm::make_unique<ASTConsumer>();
}
std::unique_ptr<ASTConsumer>
DumpModuleInfoAction::CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) {
return llvm::make_unique<ASTConsumer>();
}
std::unique_ptr<ASTConsumer>
VerifyPCHAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
return llvm::make_unique<ASTConsumer>();
}
void VerifyPCHAction::ExecuteAction() {
CompilerInstance &CI = getCompilerInstance();
bool Preamble = CI.getPreprocessorOpts().PrecompiledPreambleBytes.first != 0;
const std::string &Sysroot = CI.getHeaderSearchOpts().Sysroot;
std::unique_ptr<ASTReader> Reader(new ASTReader(
CI.getPreprocessor(), &CI.getASTContext(), CI.getPCHContainerReader(),
CI.getFrontendOpts().ModuleFileExtensions,
Sysroot.empty() ? "" : Sysroot.c_str(),
/*DisableValidation*/ false,
/*AllowPCHWithCompilerErrors*/ false,
/*AllowConfigurationMismatch*/ true,
/*ValidateSystemInputs*/ true));
Reader->ReadAST(getCurrentFile(),
Preamble ? serialization::MK_Preamble
: serialization::MK_PCH,
SourceLocation(),
ASTReader::ARR_ConfigurationMismatch);
}
namespace {
struct TemplightEntry {
std::string Name;
std::string Kind;
std::string Event;
std::string DefinitionLocation;
std::string PointOfInstantiation;
};
} // namespace
namespace llvm {
namespace yaml {
template <> struct MappingTraits<TemplightEntry> {
static void mapping(IO &io, TemplightEntry &fields) {
io.mapRequired("name", fields.Name);
io.mapRequired("kind", fields.Kind);
io.mapRequired("event", fields.Event);
io.mapRequired("orig", fields.DefinitionLocation);
io.mapRequired("poi", fields.PointOfInstantiation);
}
};
} // namespace yaml
} // namespace llvm
namespace {
class DefaultTemplateInstCallback : public TemplateInstantiationCallback {
using CodeSynthesisContext = Sema::CodeSynthesisContext;
public:
void initialize(const Sema &) override {}
void finalize(const Sema &) override {}
void atTemplateBegin(const Sema &TheSema,
const CodeSynthesisContext &Inst) override {
displayTemplightEntry<true>(llvm::outs(), TheSema, Inst);
}
void atTemplateEnd(const Sema &TheSema,
const CodeSynthesisContext &Inst) override {
displayTemplightEntry<false>(llvm::outs(), TheSema, Inst);
}
private:
static std::string toString(CodeSynthesisContext::SynthesisKind Kind) {
switch (Kind) {
case CodeSynthesisContext::TemplateInstantiation:
return "TemplateInstantiation";
case CodeSynthesisContext::DefaultTemplateArgumentInstantiation:
return "DefaultTemplateArgumentInstantiation";
case CodeSynthesisContext::DefaultFunctionArgumentInstantiation:
return "DefaultFunctionArgumentInstantiation";
case CodeSynthesisContext::ExplicitTemplateArgumentSubstitution:
return "ExplicitTemplateArgumentSubstitution";
case CodeSynthesisContext::DeducedTemplateArgumentSubstitution:
return "DeducedTemplateArgumentSubstitution";
case CodeSynthesisContext::PriorTemplateArgumentSubstitution:
return "PriorTemplateArgumentSubstitution";
case CodeSynthesisContext::DefaultTemplateArgumentChecking:
return "DefaultTemplateArgumentChecking";
case CodeSynthesisContext::ExceptionSpecInstantiation:
return "ExceptionSpecInstantiation";
case CodeSynthesisContext::DeclaringSpecialMember:
return "DeclaringSpecialMember";
case CodeSynthesisContext::DefiningSynthesizedFunction:
return "DefiningSynthesizedFunction";
case CodeSynthesisContext::Memoization:
return "Memoization";
}
return "";
}
template <bool BeginInstantiation>
static void displayTemplightEntry(llvm::raw_ostream &Out, const Sema &TheSema,
const CodeSynthesisContext &Inst) {
std::string YAML;
{
llvm::raw_string_ostream OS(YAML);
llvm::yaml::Output YO(OS);
TemplightEntry Entry =
getTemplightEntry<BeginInstantiation>(TheSema, Inst);
llvm::yaml::EmptyContext Context;
llvm::yaml::yamlize(YO, Entry, true, Context);
}
Out << "---" << YAML << "\n";
}
template <bool BeginInstantiation>
static TemplightEntry getTemplightEntry(const Sema &TheSema,
const CodeSynthesisContext &Inst) {
TemplightEntry Entry;
Entry.Kind = toString(Inst.Kind);
Entry.Event = BeginInstantiation ? "Begin" : "End";
if (auto *NamedTemplate = dyn_cast_or_null<NamedDecl>(Inst.Entity)) {
llvm::raw_string_ostream OS(Entry.Name);
NamedTemplate->getNameForDiagnostic(OS, TheSema.getLangOpts(), true);
const PresumedLoc DefLoc =
TheSema.getSourceManager().getPresumedLoc(Inst.Entity->getLocation());
if(!DefLoc.isInvalid())
Entry.DefinitionLocation = std::string(DefLoc.getFilename()) + ":" +
std::to_string(DefLoc.getLine()) + ":" +
std::to_string(DefLoc.getColumn());
}
const PresumedLoc PoiLoc =
TheSema.getSourceManager().getPresumedLoc(Inst.PointOfInstantiation);
if (!PoiLoc.isInvalid()) {
Entry.PointOfInstantiation = std::string(PoiLoc.getFilename()) + ":" +
std::to_string(PoiLoc.getLine()) + ":" +
std::to_string(PoiLoc.getColumn());
}
return Entry;
}
};
} // namespace
std::unique_ptr<ASTConsumer>
TemplightDumpAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
return llvm::make_unique<ASTConsumer>();
}
void TemplightDumpAction::ExecuteAction() {
CompilerInstance &CI = getCompilerInstance();
// This part is normally done by ASTFrontEndAction, but needs to happen
// before Templight observers can be created
// FIXME: Move the truncation aspect of this into Sema, we delayed this till
// here so the source manager would be initialized.
EnsureSemaIsCreated(CI, *this);
CI.getSema().TemplateInstCallbacks.push_back(
llvm::make_unique<DefaultTemplateInstCallback>());
ASTFrontendAction::ExecuteAction();
}
namespace {
/// AST reader listener that dumps module information for a module
/// file.
class DumpModuleInfoListener : public ASTReaderListener {
llvm::raw_ostream &Out;
public:
DumpModuleInfoListener(llvm::raw_ostream &Out) : Out(Out) { }
#define DUMP_BOOLEAN(Value, Text) \
Out.indent(4) << Text << ": " << (Value? "Yes" : "No") << "\n"
bool ReadFullVersionInformation(StringRef FullVersion) override {
Out.indent(2)
<< "Generated by "
<< (FullVersion == getClangFullRepositoryVersion()? "this"
: "a different")
<< " Clang: " << FullVersion << "\n";
return ASTReaderListener::ReadFullVersionInformation(FullVersion);
}
void ReadModuleName(StringRef ModuleName) override {
Out.indent(2) << "Module name: " << ModuleName << "\n";
}
void ReadModuleMapFile(StringRef ModuleMapPath) override {
Out.indent(2) << "Module map file: " << ModuleMapPath << "\n";
}
bool ReadLanguageOptions(const LangOptions &LangOpts, bool Complain,
bool AllowCompatibleDifferences) override {
Out.indent(2) << "Language options:\n";
#define LANGOPT(Name, Bits, Default, Description) \
DUMP_BOOLEAN(LangOpts.Name, Description);
#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
Out.indent(4) << Description << ": " \
<< static_cast<unsigned>(LangOpts.get##Name()) << "\n";
#define VALUE_LANGOPT(Name, Bits, Default, Description) \
Out.indent(4) << Description << ": " << LangOpts.Name << "\n";
#define BENIGN_LANGOPT(Name, Bits, Default, Description)
#define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description)
#include "clang/Basic/LangOptions.def"
if (!LangOpts.ModuleFeatures.empty()) {
Out.indent(4) << "Module features:\n";
for (StringRef Feature : LangOpts.ModuleFeatures)
Out.indent(6) << Feature << "\n";
}
return false;
}
bool ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain,
bool AllowCompatibleDifferences) override {
Out.indent(2) << "Target options:\n";
Out.indent(4) << " Triple: " << TargetOpts.Triple << "\n";
Out.indent(4) << " CPU: " << TargetOpts.CPU << "\n";
Out.indent(4) << " ABI: " << TargetOpts.ABI << "\n";
if (!TargetOpts.FeaturesAsWritten.empty()) {
Out.indent(4) << "Target features:\n";
for (unsigned I = 0, N = TargetOpts.FeaturesAsWritten.size();
I != N; ++I) {
Out.indent(6) << TargetOpts.FeaturesAsWritten[I] << "\n";
}
}
return false;
}
bool ReadDiagnosticOptions(IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts,
bool Complain) override {
Out.indent(2) << "Diagnostic options:\n";
#define DIAGOPT(Name, Bits, Default) DUMP_BOOLEAN(DiagOpts->Name, #Name);
#define ENUM_DIAGOPT(Name, Type, Bits, Default) \
Out.indent(4) << #Name << ": " << DiagOpts->get##Name() << "\n";
#define VALUE_DIAGOPT(Name, Bits, Default) \
Out.indent(4) << #Name << ": " << DiagOpts->Name << "\n";
#include "clang/Basic/DiagnosticOptions.def"
Out.indent(4) << "Diagnostic flags:\n";
for (const std::string &Warning : DiagOpts->Warnings)
Out.indent(6) << "-W" << Warning << "\n";
for (const std::string &Remark : DiagOpts->Remarks)
Out.indent(6) << "-R" << Remark << "\n";
return false;
}
bool ReadHeaderSearchOptions(const HeaderSearchOptions &HSOpts,
StringRef SpecificModuleCachePath,
bool Complain) override {
Out.indent(2) << "Header search options:\n";
Out.indent(4) << "System root [-isysroot=]: '" << HSOpts.Sysroot << "'\n";
Out.indent(4) << "Resource dir [ -resource-dir=]: '" << HSOpts.ResourceDir << "'\n";
Out.indent(4) << "Module Cache: '" << SpecificModuleCachePath << "'\n";
DUMP_BOOLEAN(HSOpts.UseBuiltinIncludes,
"Use builtin include directories [-nobuiltininc]");
DUMP_BOOLEAN(HSOpts.UseStandardSystemIncludes,
"Use standard system include directories [-nostdinc]");
DUMP_BOOLEAN(HSOpts.UseStandardCXXIncludes,
"Use standard C++ include directories [-nostdinc++]");
DUMP_BOOLEAN(HSOpts.UseLibcxx,
"Use libc++ (rather than libstdc++) [-stdlib=]");
return false;
}
bool ReadPreprocessorOptions(const PreprocessorOptions &PPOpts,
bool Complain,
std::string &SuggestedPredefines) override {
Out.indent(2) << "Preprocessor options:\n";
DUMP_BOOLEAN(PPOpts.UsePredefines,
"Uses compiler/target-specific predefines [-undef]");
DUMP_BOOLEAN(PPOpts.DetailedRecord,
"Uses detailed preprocessing record (for indexing)");
if (!PPOpts.Macros.empty()) {
Out.indent(4) << "Predefined macros:\n";
}
for (std::vector<std::pair<std::string, bool/*isUndef*/> >::const_iterator
I = PPOpts.Macros.begin(), IEnd = PPOpts.Macros.end();
I != IEnd; ++I) {
Out.indent(6);
if (I->second)
Out << "-U";
else
Out << "-D";
Out << I->first << "\n";
}
return false;
}
/// Indicates that a particular module file extension has been read.
void readModuleFileExtension(
const ModuleFileExtensionMetadata &Metadata) override {
Out.indent(2) << "Module file extension '"
<< Metadata.BlockName << "' " << Metadata.MajorVersion
<< "." << Metadata.MinorVersion;
if (!Metadata.UserInfo.empty()) {
Out << ": ";
Out.write_escaped(Metadata.UserInfo);
}
Out << "\n";
}
/// Tells the \c ASTReaderListener that we want to receive the
/// input files of the AST file via \c visitInputFile.
bool needsInputFileVisitation() override { return true; }
/// Tells the \c ASTReaderListener that we want to receive the
/// input files of the AST file via \c visitInputFile.
bool needsSystemInputFileVisitation() override { return true; }
/// Indicates that the AST file contains particular input file.
///
/// \returns true to continue receiving the next input file, false to stop.
bool visitInputFile(StringRef Filename, bool isSystem,
bool isOverridden, bool isExplicitModule) override {
Out.indent(2) << "Input file: " << Filename;
if (isSystem || isOverridden || isExplicitModule) {
Out << " [";
if (isSystem) {
Out << "System";
if (isOverridden || isExplicitModule)
Out << ", ";
}
if (isOverridden) {
Out << "Overridden";
if (isExplicitModule)
Out << ", ";
}
if (isExplicitModule)
Out << "ExplicitModule";
Out << "]";
}
Out << "\n";
return true;
}
#undef DUMP_BOOLEAN
};
}
bool DumpModuleInfoAction::BeginInvocation(CompilerInstance &CI) {
// The Object file reader also supports raw ast files and there is no point in
// being strict about the module file format in -module-file-info mode.
CI.getHeaderSearchOpts().ModuleFormat = "obj";
return true;
}
void DumpModuleInfoAction::ExecuteAction() {
// Set up the output file.
std::unique_ptr<llvm::raw_fd_ostream> OutFile;
StringRef OutputFileName = getCompilerInstance().getFrontendOpts().OutputFile;
if (!OutputFileName.empty() && OutputFileName != "-") {
std::error_code EC;
OutFile.reset(new llvm::raw_fd_ostream(OutputFileName.str(), EC,
llvm::sys::fs::F_Text));
}
llvm::raw_ostream &Out = OutFile.get()? *OutFile.get() : llvm::outs();
Out << "Information for module file '" << getCurrentFile() << "':\n";
auto &FileMgr = getCompilerInstance().getFileManager();
auto Buffer = FileMgr.getBufferForFile(getCurrentFile());
StringRef Magic = (*Buffer)->getMemBufferRef().getBuffer();
bool IsRaw = (Magic.size() >= 4 && Magic[0] == 'C' && Magic[1] == 'P' &&
Magic[2] == 'C' && Magic[3] == 'H');
Out << " Module format: " << (IsRaw ? "raw" : "obj") << "\n";
Preprocessor &PP = getCompilerInstance().getPreprocessor();
DumpModuleInfoListener Listener(Out);
HeaderSearchOptions &HSOpts =
PP.getHeaderSearchInfo().getHeaderSearchOpts();
ASTReader::readASTFileControlBlock(
getCurrentFile(), FileMgr, getCompilerInstance().getPCHContainerReader(),
/*FindModuleFileExtensions=*/true, Listener,
HSOpts.ModulesValidateDiagnosticOptions);
}
//===----------------------------------------------------------------------===//
// Preprocessor Actions
//===----------------------------------------------------------------------===//
void DumpRawTokensAction::ExecuteAction() {
Preprocessor &PP = getCompilerInstance().getPreprocessor();
SourceManager &SM = PP.getSourceManager();
// Start lexing the specified input file.
const llvm::MemoryBuffer *FromFile = SM.getBuffer(SM.getMainFileID());
Lexer RawLex(SM.getMainFileID(), FromFile, SM, PP.getLangOpts());
RawLex.SetKeepWhitespaceMode(true);
Token RawTok;
RawLex.LexFromRawLexer(RawTok);
while (RawTok.isNot(tok::eof)) {
PP.DumpToken(RawTok, true);
llvm::errs() << "\n";
RawLex.LexFromRawLexer(RawTok);
}
}
void DumpTokensAction::ExecuteAction() {
Preprocessor &PP = getCompilerInstance().getPreprocessor();
// Start preprocessing the specified input file.
Token Tok;
PP.EnterMainSourceFile();
do {
PP.Lex(Tok);
PP.DumpToken(Tok, true);
llvm::errs() << "\n";
} while (Tok.isNot(tok::eof));
}
void GeneratePTHAction::ExecuteAction() {
CompilerInstance &CI = getCompilerInstance();
std::unique_ptr<raw_pwrite_stream> OS =
CI.createDefaultOutputFile(true, getCurrentFile());
2015-04-13 16:43:40 +08:00
if (!OS)
return;
CacheTokens(CI.getPreprocessor(), OS.get());
}
void PreprocessOnlyAction::ExecuteAction() {
Preprocessor &PP = getCompilerInstance().getPreprocessor();
// Ignore unknown pragmas.
PP.IgnorePragmas();
Token Tok;
// Start parsing the specified input file.
PP.EnterMainSourceFile();
do {
PP.Lex(Tok);
} while (Tok.isNot(tok::eof));
}
void PrintPreprocessedAction::ExecuteAction() {
CompilerInstance &CI = getCompilerInstance();
// Output file may need to be set to 'Binary', to avoid converting Unix style
// line feeds (<LF>) to Microsoft style line feeds (<CR><LF>).
//
// Look to see what type of line endings the file uses. If there's a
// CRLF, then we won't open the file up in binary mode. If there is
// just an LF or CR, then we will open the file up in binary mode.
// In this fashion, the output format should match the input format, unless
// the input format has inconsistent line endings.
//
// This should be a relatively fast operation since most files won't have
// all of their source code on a single line. However, that is still a
// concern, so if we scan for too long, we'll just assume the file should
// be opened in binary mode.
bool BinaryMode = true;
bool InvalidFile = false;
const SourceManager& SM = CI.getSourceManager();
const llvm::MemoryBuffer *Buffer = SM.getBuffer(SM.getMainFileID(),
&InvalidFile);
if (!InvalidFile) {
const char *cur = Buffer->getBufferStart();
const char *end = Buffer->getBufferEnd();
const char *next = (cur != end) ? cur + 1 : end;
// Limit ourselves to only scanning 256 characters into the source
// file. This is mostly a sanity check in case the file has no
// newlines whatsoever.
if (end - cur > 256) end = cur + 256;
while (next < end) {
if (*cur == 0x0D) { // CR
if (*next == 0x0A) // CRLF
BinaryMode = false;
break;
} else if (*cur == 0x0A) // LF
break;
++cur;
++next;
}
}
std::unique_ptr<raw_ostream> OS =
CI.createDefaultOutputFile(BinaryMode, getCurrentFile());
if (!OS) return;
// If we're preprocessing a module map, start by dumping the contents of the
// module itself before switching to the input buffer.
auto &Input = getCurrentInput();
if (Input.getKind().getFormat() == InputKind::ModuleMap) {
if (Input.isFile()) {
(*OS) << "# 1 \"";
OS->write_escaped(Input.getFile());
(*OS) << "\"\n";
}
// FIXME: Include additional information here so that we don't need the
// original source files to exist on disk.
getCurrentModule()->print(*OS);
(*OS) << "#pragma clang module contents\n";
}
DoPrintPreprocessedInput(CI.getPreprocessor(), OS.get(),
CI.getPreprocessorOutputOpts());
}
void PrintPreambleAction::ExecuteAction() {
switch (getCurrentFileKind().getLanguage()) {
case InputKind::C:
case InputKind::CXX:
case InputKind::ObjC:
case InputKind::ObjCXX:
case InputKind::OpenCL:
case InputKind::CUDA:
case InputKind::HIP:
break;
case InputKind::Unknown:
case InputKind::Asm:
case InputKind::LLVM_IR:
case InputKind::RenderScript:
// We can't do anything with these.
return;
}
// We don't expect to find any #include directives in a preprocessed input.
if (getCurrentFileKind().isPreprocessed())
return;
CompilerInstance &CI = getCompilerInstance();
auto Buffer = CI.getFileManager().getBufferForFile(getCurrentFile());
if (Buffer) {
unsigned Preamble =
Lexer::ComputePreamble((*Buffer)->getBuffer(), CI.getLangOpts()).Size;
llvm::outs().write((*Buffer)->getBufferStart(), Preamble);
}
}
void DumpCompilerOptionsAction::ExecuteAction() {
CompilerInstance &CI = getCompilerInstance();
std::unique_ptr<raw_ostream> OSP =
CI.createDefaultOutputFile(false, getCurrentFile());
if (!OSP)
return;
raw_ostream &OS = *OSP;
const Preprocessor &PP = CI.getPreprocessor();
const LangOptions &LangOpts = PP.getLangOpts();
// FIXME: Rather than manually format the JSON (which is awkward due to
// needing to remove trailing commas), this should make use of a JSON library.
// FIXME: Instead of printing enums as an integral value and specifying the
// type as a separate field, use introspection to print the enumerator.
OS << "{\n";
OS << "\n\"features\" : [\n";
{
llvm::SmallString<128> Str;
#define FEATURE(Name, Predicate) \
("\t{\"" #Name "\" : " + llvm::Twine(Predicate ? "true" : "false") + "},\n") \
.toVector(Str);
#include "clang/Basic/Features.def"
#undef FEATURE
// Remove the newline and comma from the last entry to ensure this remains
// valid JSON.
OS << Str.substr(0, Str.size() - 2);
}
OS << "\n],\n";
OS << "\n\"extensions\" : [\n";
{
llvm::SmallString<128> Str;
#define EXTENSION(Name, Predicate) \
("\t{\"" #Name "\" : " + llvm::Twine(Predicate ? "true" : "false") + "},\n") \
.toVector(Str);
#include "clang/Basic/Features.def"
#undef EXTENSION
// Remove the newline and comma from the last entry to ensure this remains
// valid JSON.
OS << Str.substr(0, Str.size() - 2);
}
OS << "\n]\n";
OS << "}";
}