llvm-project/clang/lib/Parse/ParseDecl.cpp

3479 lines
125 KiB
C++
Raw Normal View History

//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Declaration portions of the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Scope.h"
#include "clang/Parse/Template.h"
#include "RAIIObjectsForParser.h"
#include "llvm/ADT/SmallSet.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// C99 6.7: Declarations.
//===----------------------------------------------------------------------===//
/// ParseTypeName
/// type-name: [C99 6.7.6]
/// specifier-qualifier-list abstract-declarator[opt]
///
/// Called type-id in C++.
Action::TypeResult Parser::ParseTypeName(SourceRange *Range) {
// Parse the common declaration-specifiers piece.
DeclSpec DS;
ParseSpecifierQualifierList(DS);
// Parse the abstract-declarator, if present.
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
ParseDeclarator(DeclaratorInfo);
if (Range)
*Range = DeclaratorInfo.getSourceRange();
if (DeclaratorInfo.isInvalidType())
return true;
return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
}
/// ParseGNUAttributes - Parse a non-empty attributes list.
///
/// [GNU] attributes:
/// attribute
/// attributes attribute
///
/// [GNU] attribute:
/// '__attribute__' '(' '(' attribute-list ')' ')'
///
/// [GNU] attribute-list:
/// attrib
/// attribute_list ',' attrib
///
/// [GNU] attrib:
/// empty
/// attrib-name
/// attrib-name '(' identifier ')'
/// attrib-name '(' identifier ',' nonempty-expr-list ')'
/// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
///
/// [GNU] attrib-name:
/// identifier
/// typespec
/// typequal
/// storageclass
///
/// FIXME: The GCC grammar/code for this construct implies we need two
/// token lookahead. Comment from gcc: "If they start with an identifier
/// which is followed by a comma or close parenthesis, then the arguments
/// start with that identifier; otherwise they are an expression list."
///
/// At the moment, I am not doing 2 token lookahead. I am also unaware of
/// any attributes that don't work (based on my limited testing). Most
/// attributes are very simple in practice. Until we find a bug, I don't see
/// a pressing need to implement the 2 token lookahead.
AttributeList *Parser::ParseGNUAttributes(SourceLocation *EndLoc) {
assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
AttributeList *CurrAttr = 0;
while (Tok.is(tok::kw___attribute)) {
ConsumeToken();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"attribute")) {
SkipUntil(tok::r_paren, true); // skip until ) or ;
return CurrAttr;
}
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
SkipUntil(tok::r_paren, true); // skip until ) or ;
return CurrAttr;
}
// Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
Tok.is(tok::comma)) {
if (Tok.is(tok::comma)) {
// allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
ConsumeToken();
continue;
}
// we have an identifier or declaration specifier (const, int, etc.)
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
// check if we have a "parameterized" attribute
if (Tok.is(tok::l_paren)) {
ConsumeParen(); // ignore the left paren loc for now
if (Tok.is(tok::identifier)) {
IdentifierInfo *ParmName = Tok.getIdentifierInfo();
SourceLocation ParmLoc = ConsumeToken();
if (Tok.is(tok::r_paren)) {
// __attribute__(( mode(byte) ))
ConsumeParen(); // ignore the right paren loc for now
CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
ParmName, ParmLoc, 0, 0, CurrAttr);
} else if (Tok.is(tok::comma)) {
ConsumeToken();
// __attribute__(( format(printf, 1, 2) ))
ExprVector ArgExprs(Actions);
bool ArgExprsOk = true;
// now parse the non-empty comma separated list of expressions
while (1) {
OwningExprResult ArgExpr(ParseAssignmentExpression());
if (ArgExpr.isInvalid()) {
ArgExprsOk = false;
SkipUntil(tok::r_paren);
break;
} else {
ArgExprs.push_back(ArgExpr.release());
}
if (Tok.isNot(tok::comma))
break;
ConsumeToken(); // Eat the comma, move to the next argument
}
if (ArgExprsOk && Tok.is(tok::r_paren)) {
ConsumeParen(); // ignore the right paren loc for now
CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
AttrNameLoc, ParmName, ParmLoc,
ArgExprs.take(), ArgExprs.size(),
CurrAttr);
}
}
} else { // not an identifier
switch (Tok.getKind()) {
case tok::r_paren:
// parse a possibly empty comma separated list of expressions
// __attribute__(( nonnull() ))
ConsumeParen(); // ignore the right paren loc for now
CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
0, SourceLocation(), 0, 0, CurrAttr);
break;
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_bool:
case tok::kw_short:
case tok::kw_int:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_float:
case tok::kw_double:
case tok::kw_void:
case tok::kw_typeof:
// If it's a builtin type name, eat it and expect a rparen
// __attribute__(( vec_type_hint(char) ))
ConsumeToken();
CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
0, SourceLocation(), 0, 0, CurrAttr);
if (Tok.is(tok::r_paren))
ConsumeParen();
break;
default:
// __attribute__(( aligned(16) ))
ExprVector ArgExprs(Actions);
bool ArgExprsOk = true;
// now parse the list of expressions
while (1) {
OwningExprResult ArgExpr(ParseAssignmentExpression());
if (ArgExpr.isInvalid()) {
ArgExprsOk = false;
SkipUntil(tok::r_paren);
break;
} else {
ArgExprs.push_back(ArgExpr.release());
}
if (Tok.isNot(tok::comma))
break;
ConsumeToken(); // Eat the comma, move to the next argument
}
// Match the ')'.
if (ArgExprsOk && Tok.is(tok::r_paren)) {
ConsumeParen(); // ignore the right paren loc for now
CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
AttrNameLoc, 0, SourceLocation(), ArgExprs.take(),
ArgExprs.size(),
CurrAttr);
}
break;
}
}
} else {
CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
0, SourceLocation(), 0, 0, CurrAttr);
}
}
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
SkipUntil(tok::r_paren, false);
SourceLocation Loc = Tok.getLocation();
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
SkipUntil(tok::r_paren, false);
}
if (EndLoc)
*EndLoc = Loc;
}
return CurrAttr;
}
/// ParseMicrosoftDeclSpec - Parse an __declspec construct
///
/// [MS] decl-specifier:
/// __declspec ( extended-decl-modifier-seq )
///
/// [MS] extended-decl-modifier-seq:
/// extended-decl-modifier[opt]
/// extended-decl-modifier extended-decl-modifier-seq
AttributeList* Parser::ParseMicrosoftDeclSpec(AttributeList *CurrAttr) {
assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
ConsumeToken();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"declspec")) {
SkipUntil(tok::r_paren, true); // skip until ) or ;
return CurrAttr;
}
while (Tok.getIdentifierInfo()) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
if (Tok.is(tok::l_paren)) {
ConsumeParen();
// FIXME: This doesn't parse __declspec(property(get=get_func_name))
// correctly.
OwningExprResult ArgExpr(ParseAssignmentExpression());
if (!ArgExpr.isInvalid()) {
ExprTy* ExprList = ArgExpr.take();
CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
SourceLocation(), &ExprList, 1,
CurrAttr, true);
}
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
SkipUntil(tok::r_paren, false);
} else {
CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc,
0, SourceLocation(), 0, 0, CurrAttr, true);
}
}
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
SkipUntil(tok::r_paren, false);
return CurrAttr;
}
AttributeList* Parser::ParseMicrosoftTypeAttributes(AttributeList *CurrAttr) {
// Treat these like attributes
// FIXME: Allow Sema to distinguish between these and real attributes!
while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl) ||
Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64)) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
// FIXME: Support these properly!
continue;
CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
SourceLocation(), 0, 0, CurrAttr, true);
}
return CurrAttr;
}
/// ParseDeclaration - Parse a full 'declaration', which consists of
/// declaration-specifiers, some number of declarators, and a semicolon.
/// 'Context' should be a Declarator::TheContext value. This returns the
/// location of the semicolon in DeclEnd.
///
/// declaration: [C99 6.7]
/// block-declaration ->
/// simple-declaration
/// others [FIXME]
/// [C++] template-declaration
/// [C++] namespace-definition
/// [C++] using-directive
/// [C++] using-declaration
/// [C++0x] static_assert-declaration
/// others... [FIXME]
///
Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
SourceLocation &DeclEnd,
CXX0XAttributeList Attr) {
ParenBraceBracketBalancer BalancerRAIIObj(*this);
DeclPtrTy SingleDecl;
switch (Tok.getKind()) {
case tok::kw_template:
case tok::kw_export:
if (Attr.HasAttr)
Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
<< Attr.Range;
SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
break;
case tok::kw_namespace:
if (Attr.HasAttr)
Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
<< Attr.Range;
SingleDecl = ParseNamespace(Context, DeclEnd);
break;
case tok::kw_using:
SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd, Attr);
break;
case tok::kw_static_assert:
if (Attr.HasAttr)
Diag(Attr.Range.getBegin(), diag::err_attributes_not_allowed)
<< Attr.Range;
SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
break;
default:
return ParseSimpleDeclaration(Context, DeclEnd, Attr.AttrList, true);
}
// This routine returns a DeclGroup, if the thing we parsed only contains a
// single decl, convert it now.
return Actions.ConvertDeclToDeclGroup(SingleDecl);
}
/// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
/// declaration-specifiers init-declarator-list[opt] ';'
///[C90/C++]init-declarator-list ';' [TODO]
/// [OMP] threadprivate-directive [TODO]
///
/// If RequireSemi is false, this does not check for a ';' at the end of the
/// declaration. If it is true, it checks for and eats it.
Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
SourceLocation &DeclEnd,
AttributeList *Attr,
bool RequireSemi) {
// Parse the common declaration-specifiers piece.
ParsingDeclSpec DS(*this);
if (Attr)
DS.AddAttributes(Attr);
ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
getDeclSpecContextFromDeclaratorContext(Context));
// C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
// declaration-specifiers init-declarator-list[opt] ';'
if (Tok.is(tok::semi)) {
if (RequireSemi) ConsumeToken();
DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, AS_none,
DS);
DS.complete(TheDecl);
return Actions.ConvertDeclToDeclGroup(TheDecl);
}
return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd);
}
/// ParseDeclGroup - Having concluded that this is either a function
/// definition or a group of object declarations, actually parse the
/// result.
Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
unsigned Context,
bool AllowFunctionDefinitions,
SourceLocation *DeclEnd) {
// Parse the first declarator.
ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
ParseDeclarator(D);
// Bail out if the first declarator didn't seem well-formed.
if (!D.hasName() && !D.mayOmitIdentifier()) {
// Skip until ; or }.
SkipUntil(tok::r_brace, true, true);
if (Tok.is(tok::semi))
ConsumeToken();
return DeclGroupPtrTy();
}
if (AllowFunctionDefinitions && D.isFunctionDeclarator()) {
if (isDeclarationAfterDeclarator()) {
// Fall though. We have to check this first, though, because
// __attribute__ might be the start of a function definition in
// (extended) K&R C.
} else if (isStartOfFunctionDefinition()) {
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
Diag(Tok, diag::err_function_declared_typedef);
// Recover by treating the 'typedef' as spurious.
DS.ClearStorageClassSpecs();
}
DeclPtrTy TheDecl = ParseFunctionDefinition(D);
return Actions.ConvertDeclToDeclGroup(TheDecl);
} else {
Diag(Tok, diag::err_expected_fn_body);
SkipUntil(tok::semi);
return DeclGroupPtrTy();
}
}
llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
DeclPtrTy FirstDecl = ParseDeclarationAfterDeclarator(D);
D.complete(FirstDecl);
if (FirstDecl.get())
DeclsInGroup.push_back(FirstDecl);
// If we don't have a comma, it is either the end of the list (a ';') or an
// error, bail out.
while (Tok.is(tok::comma)) {
// Consume the comma.
ConsumeToken();
// Parse the next declarator.
D.clear();
// Accept attributes in an init-declarator. In the first declarator in a
// declaration, these would be part of the declspec. In subsequent
// declarators, they become part of the declarator itself, so that they
// don't apply to declarators after *this* one. Examples:
// short __attribute__((common)) var; -> declspec
// short var __attribute__((common)); -> declarator
// short x, __attribute__((common)) var; -> declarator
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseGNUAttributes(&Loc);
D.AddAttributes(AttrList, Loc);
}
ParseDeclarator(D);
DeclPtrTy ThisDecl = ParseDeclarationAfterDeclarator(D);
D.complete(ThisDecl);
if (ThisDecl.get())
DeclsInGroup.push_back(ThisDecl);
}
if (DeclEnd)
*DeclEnd = Tok.getLocation();
if (Context != Declarator::ForContext &&
ExpectAndConsume(tok::semi,
Context == Declarator::FileContext
? diag::err_invalid_token_after_toplevel_declarator
: diag::err_expected_semi_declaration)) {
SkipUntil(tok::r_brace, true, true);
if (Tok.is(tok::semi))
ConsumeToken();
}
return Actions.FinalizeDeclaratorGroup(CurScope, DS,
DeclsInGroup.data(),
DeclsInGroup.size());
}
/// \brief Parse 'declaration' after parsing 'declaration-specifiers
/// declarator'. This method parses the remainder of the declaration
/// (including any attributes or initializer, among other things) and
/// finalizes the declaration.
///
/// init-declarator: [C99 6.7]
/// declarator
/// declarator '=' initializer
/// [GNU] declarator simple-asm-expr[opt] attributes[opt]
/// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
/// [C++] declarator initializer[opt]
///
/// [C++] initializer:
/// [C++] '=' initializer-clause
/// [C++] '(' expression-list ')'
/// [C++0x] '=' 'default' [TODO]
/// [C++0x] '=' 'delete'
///
/// According to the standard grammar, =default and =delete are function
/// definitions, but that definitely doesn't fit with the parser here.
///
Parser::DeclPtrTy Parser::ParseDeclarationAfterDeclarator(Declarator &D,
const ParsedTemplateInfo &TemplateInfo) {
// If a simple-asm-expr is present, parse it.
if (Tok.is(tok::kw_asm)) {
SourceLocation Loc;
OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
if (AsmLabel.isInvalid()) {
SkipUntil(tok::semi, true, true);
return DeclPtrTy();
}
D.setAsmLabel(AsmLabel.release());
D.SetRangeEnd(Loc);
}
// If attributes are present, parse them.
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseGNUAttributes(&Loc);
D.AddAttributes(AttrList, Loc);
}
// Inform the current actions module that we just parsed this declarator.
DeclPtrTy ThisDecl;
switch (TemplateInfo.Kind) {
case ParsedTemplateInfo::NonTemplate:
ThisDecl = Actions.ActOnDeclarator(CurScope, D);
break;
case ParsedTemplateInfo::Template:
case ParsedTemplateInfo::ExplicitSpecialization:
ThisDecl = Actions.ActOnTemplateDeclarator(CurScope,
Action::MultiTemplateParamsArg(Actions,
TemplateInfo.TemplateParams->data(),
TemplateInfo.TemplateParams->size()),
D);
break;
case ParsedTemplateInfo::ExplicitInstantiation: {
Action::DeclResult ThisRes
= Actions.ActOnExplicitInstantiation(CurScope,
TemplateInfo.ExternLoc,
TemplateInfo.TemplateLoc,
D);
if (ThisRes.isInvalid()) {
SkipUntil(tok::semi, true, true);
return DeclPtrTy();
}
ThisDecl = ThisRes.get();
break;
}
}
// Parse declarator '=' initializer.
if (Tok.is(tok::equal)) {
ConsumeToken();
if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
SourceLocation DelLoc = ConsumeToken();
Actions.SetDeclDeleted(ThisDecl, DelLoc);
} else {
if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
EnterScope(0);
Actions.ActOnCXXEnterDeclInitializer(CurScope, ThisDecl);
}
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteInitializer(CurScope, ThisDecl);
ConsumeCodeCompletionToken();
SkipUntil(tok::comma, true, true);
return ThisDecl;
}
OwningExprResult Init(ParseInitializer());
if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
Actions.ActOnCXXExitDeclInitializer(CurScope, ThisDecl);
ExitScope();
}
if (Init.isInvalid()) {
SkipUntil(tok::comma, true, true);
Actions.ActOnInitializerError(ThisDecl);
} else
Actions.AddInitializerToDecl(ThisDecl, move(Init));
}
} else if (Tok.is(tok::l_paren)) {
// Parse C++ direct initializer: '(' expression-list ')'
SourceLocation LParenLoc = ConsumeParen();
ExprVector Exprs(Actions);
CommaLocsTy CommaLocs;
if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
EnterScope(0);
Actions.ActOnCXXEnterDeclInitializer(CurScope, ThisDecl);
}
if (ParseExpressionList(Exprs, CommaLocs)) {
SkipUntil(tok::r_paren);
if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
Actions.ActOnCXXExitDeclInitializer(CurScope, ThisDecl);
ExitScope();
}
} else {
// Match the ')'.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
"Unexpected number of commas!");
if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
Actions.ActOnCXXExitDeclInitializer(CurScope, ThisDecl);
ExitScope();
}
Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
move_arg(Exprs),
CommaLocs.data(), RParenLoc);
}
} else {
bool TypeContainsUndeducedAuto =
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsUndeducedAuto);
}
return ThisDecl;
}
/// ParseSpecifierQualifierList
/// specifier-qualifier-list:
/// type-specifier specifier-qualifier-list[opt]
/// type-qualifier specifier-qualifier-list[opt]
/// [GNU] attributes specifier-qualifier-list[opt]
///
void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
/// specifier-qualifier-list is a subset of declaration-specifiers. Just
/// parse declaration-specifiers and complain about extra stuff.
ParseDeclarationSpecifiers(DS);
// Validate declspec for type-name.
unsigned Specs = DS.getParsedSpecifiers();
if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
!DS.getAttributes())
Diag(Tok, diag::err_typename_requires_specqual);
// Issue diagnostic and remove storage class if present.
if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
else
Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
DS.ClearStorageClassSpecs();
}
// Issue diagnostic and remove function specfier if present.
if (Specs & DeclSpec::PQ_FunctionSpecifier) {
if (DS.isInlineSpecified())
Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.isVirtualSpecified())
Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.isExplicitSpecified())
Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
DS.ClearFunctionSpecs();
}
}
/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
/// specified token is valid after the identifier in a declarator which
/// immediately follows the declspec. For example, these things are valid:
///
/// int x [ 4]; // direct-declarator
/// int x ( int y); // direct-declarator
/// int(int x ) // direct-declarator
/// int x ; // simple-declaration
/// int x = 17; // init-declarator-list
/// int x , y; // init-declarator-list
/// int x __asm__ ("foo"); // init-declarator-list
/// int x : 4; // struct-declarator
/// int x { 5}; // C++'0x unified initializers
///
/// This is not, because 'x' does not immediately follow the declspec (though
/// ')' happens to be valid anyway).
/// int (x)
///
static bool isValidAfterIdentifierInDeclarator(const Token &T) {
return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
}
/// ParseImplicitInt - This method is called when we have an non-typename
/// identifier in a declspec (which normally terminates the decl spec) when
/// the declspec has no type specifier. In this case, the declspec is either
/// malformed or is "implicit int" (in K&R and C89).
///
/// This method handles diagnosing this prettily and returns false if the
/// declspec is done being processed. If it recovers and thinks there may be
/// other pieces of declspec after it, it returns true.
///
bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS) {
assert(Tok.is(tok::identifier) && "should have identifier");
SourceLocation Loc = Tok.getLocation();
// If we see an identifier that is not a type name, we normally would
// parse it as the identifer being declared. However, when a typename
// is typo'd or the definition is not included, this will incorrectly
// parse the typename as the identifier name and fall over misparsing
// later parts of the diagnostic.
//
// As such, we try to do some look-ahead in cases where this would
// otherwise be an "implicit-int" case to see if this is invalid. For
// example: "static foo_t x = 4;" In this case, if we parsed foo_t as
// an identifier with implicit int, we'd get a parse error because the
// next token is obviously invalid for a type. Parse these as a case
// with an invalid type specifier.
assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
// Since we know that this either implicit int (which is rare) or an
// error, we'd do lookahead to try to do better recovery.
if (isValidAfterIdentifierInDeclarator(NextToken())) {
// If this token is valid for implicit int, e.g. "static x = 4", then
// we just avoid eating the identifier, so it will be parsed as the
// identifier in the declarator.
return false;
}
// Otherwise, if we don't consume this token, we are going to emit an
// error anyway. Try to recover from various common problems. Check
// to see if this was a reference to a tag name without a tag specified.
// This is a common problem in C (saying 'foo' instead of 'struct foo').
//
// C++ doesn't need this, and isTagName doesn't take SS.
if (SS == 0) {
const char *TagName = 0;
tok::TokenKind TagKind = tok::unknown;
switch (Actions.isTagName(*Tok.getIdentifierInfo(), CurScope)) {
default: break;
case DeclSpec::TST_enum: TagName="enum" ;TagKind=tok::kw_enum ;break;
case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
}
if (TagName) {
Diag(Loc, diag::err_use_of_tag_name_without_tag)
<< Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
<< FixItHint::CreateInsertion(Tok.getLocation(),TagName);
// Parse this as a tag as if the missing tag were present.
if (TagKind == tok::kw_enum)
ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
else
ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
return true;
}
}
// This is almost certainly an invalid type name. Let the action emit a
// diagnostic and attempt to recover.
Action::TypeTy *T = 0;
if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
CurScope, SS, T)) {
// The action emitted a diagnostic, so we don't have to.
if (T) {
// The action has suggested that the type T could be used. Set that as
// the type in the declaration specifiers, consume the would-be type
// name token, and we're done.
const char *PrevSpec;
unsigned DiagID;
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
false);
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
// There may be other declaration specifiers after this.
return true;
}
// Fall through; the action had no suggestion for us.
} else {
// The action did not emit a diagnostic, so emit one now.
SourceRange R;
if (SS) R = SS->getRange();
Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
}
// Mark this as an error.
const char *PrevSpec;
unsigned DiagID;
DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
// TODO: Could inject an invalid typedef decl in an enclosing scope to
// avoid rippling error messages on subsequent uses of the same type,
// could be useful if #include was forgotten.
return false;
}
/// \brief Determine the declaration specifier context from the declarator
/// context.
///
/// \param Context the declarator context, which is one of the
/// Declarator::TheContext enumerator values.
Parser::DeclSpecContext
Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
if (Context == Declarator::MemberContext)
return DSC_class;
if (Context == Declarator::FileContext)
return DSC_top_level;
return DSC_normal;
}
/// ParseDeclarationSpecifiers
/// declaration-specifiers: [C99 6.7]
/// storage-class-specifier declaration-specifiers[opt]
/// type-specifier declaration-specifiers[opt]
/// [C99] function-specifier declaration-specifiers[opt]
/// [GNU] attributes declaration-specifiers[opt]
///
/// storage-class-specifier: [C99 6.7.1]
/// 'typedef'
/// 'extern'
/// 'static'
/// 'auto'
/// 'register'
/// [C++] 'mutable'
/// [GNU] '__thread'
/// function-specifier: [C99 6.7.4]
/// [C99] 'inline'
/// [C++] 'virtual'
/// [C++] 'explicit'
/// 'friend': [C++ dcl.friend]
/// 'constexpr': [C++0x dcl.constexpr]
///
void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS,
DeclSpecContext DSContext) {
if (Tok.is(tok::code_completion)) {
Action::CodeCompletionContext CCC = Action::CCC_Namespace;
if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
CCC = DSContext == DSC_class? Action::CCC_MemberTemplate
: Action::CCC_Template;
else if (DSContext == DSC_class)
CCC = Action::CCC_Class;
else if (ObjCImpDecl)
CCC = Action::CCC_ObjCImplementation;
Actions.CodeCompleteOrdinaryName(CurScope, CCC);
ConsumeCodeCompletionToken();
}
DS.SetRangeStart(Tok.getLocation());
while (1) {
bool isInvalid = false;
const char *PrevSpec = 0;
unsigned DiagID = 0;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
default:
DoneWithDeclSpec:
// If this is not a declaration specifier token, we're done reading decl
// specifiers. First verify that DeclSpec's are consistent.
DS.Finish(Diags, PP);
return;
case tok::coloncolon: // ::foo::bar
// C++ scope specifier. Annotate and loop, or bail out on error.
if (TryAnnotateCXXScopeToken(true)) {
if (!DS.hasTypeSpecifier())
DS.SetTypeSpecError();
goto DoneWithDeclSpec;
}
if (Tok.is(tok::coloncolon)) // ::new or ::delete
goto DoneWithDeclSpec;
continue;
case tok::annot_cxxscope: {
if (DS.hasTypeSpecifier())
goto DoneWithDeclSpec;
CXXScopeSpec SS;
SS.setScopeRep(Tok.getAnnotationValue());
SS.setRange(Tok.getAnnotationRange());
// We are looking for a qualified typename.
Token Next = NextToken();
if (Next.is(tok::annot_template_id) &&
static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
->Kind == TNK_Type_template) {
// We have a qualified template-id, e.g., N::A<int>
// C++ [class.qual]p2:
// In a lookup in which the constructor is an acceptable lookup
// result and the nested-name-specifier nominates a class C:
//
// - if the name specified after the
// nested-name-specifier, when looked up in C, is the
// injected-class-name of C (Clause 9), or
//
// - if the name specified after the nested-name-specifier
// is the same as the identifier or the
// simple-template-id's template-name in the last
// component of the nested-name-specifier,
//
// the name is instead considered to name the constructor of
// class C.
//
// Thus, if the template-name is actually the constructor
// name, then the code is ill-formed; this interpretation is
// reinforced by the NAD status of core issue 635.
TemplateIdAnnotation *TemplateId
= static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue());
if ((DSContext == DSC_top_level ||
(DSContext == DSC_class && DS.isFriendSpecified())) &&
TemplateId->Name &&
Actions.isCurrentClassName(*TemplateId->Name, CurScope, &SS)) {
if (isConstructorDeclarator()) {
// The user meant this to be an out-of-line constructor
// definition, but template arguments are not allowed
// there. Just allow this as a constructor; we'll
// complain about it later.
goto DoneWithDeclSpec;
}
// The user meant this to name a type, but it actually names
// a constructor with some extraneous template
// arguments. Complain, then parse it as a type as the user
// intended.
Diag(TemplateId->TemplateNameLoc,
diag::err_out_of_line_template_id_names_constructor)
<< TemplateId->Name;
}
DS.getTypeSpecScope() = SS;
ConsumeToken(); // The C++ scope.
assert(Tok.is(tok::annot_template_id) &&
"ParseOptionalCXXScopeSpecifier not working");
AnnotateTemplateIdTokenAsType(&SS);
continue;
}
if (Next.is(tok::annot_typename)) {
DS.getTypeSpecScope() = SS;
ConsumeToken(); // The C++ scope.
if (Tok.getAnnotationValue())
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc,
PrevSpec, DiagID,
Tok.getAnnotationValue());
else
DS.SetTypeSpecError();
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeToken(); // The typename
}
if (Next.isNot(tok::identifier))
goto DoneWithDeclSpec;
// If we're in a context where the identifier could be a class name,
// check whether this is a constructor declaration.
if ((DSContext == DSC_top_level ||
(DSContext == DSC_class && DS.isFriendSpecified())) &&
Actions.isCurrentClassName(*Next.getIdentifierInfo(), CurScope,
&SS)) {
if (isConstructorDeclarator())
goto DoneWithDeclSpec;
// As noted in C++ [class.qual]p2 (cited above), when the name
// of the class is qualified in a context where it could name
// a constructor, its a constructor name. However, we've
// looked at the declarator, and the user probably meant this
// to be a type. Complain that it isn't supposed to be treated
// as a type, then proceed to parse it as a type.
Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
<< Next.getIdentifierInfo();
}
TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
Next.getLocation(), CurScope, &SS);
// If the referenced identifier is not a type, then this declspec is
// erroneous: We already checked about that it has no type specifier, and
// C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
// typename.
if (TypeRep == 0) {
ConsumeToken(); // Eat the scope spec so the identifier is current.
if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
goto DoneWithDeclSpec;
}
DS.getTypeSpecScope() = SS;
ConsumeToken(); // The C++ scope.
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, TypeRep);
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // The typename.
continue;
}
case tok::annot_typename: {
if (Tok.getAnnotationValue())
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, Tok.getAnnotationValue());
else
DS.SetTypeSpecError();
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeToken(); // The typename
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
// Objective-C interface. If we don't have Objective-C or a '<', this is
// just a normal reference to a typedef name.
if (!Tok.is(tok::less) || !getLang().ObjC1)
continue;
SourceLocation LAngleLoc, EndProtoLoc;
llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
LAngleLoc, EndProtoLoc);
DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
ProtocolLocs.data(), LAngleLoc);
DS.SetRangeEnd(EndProtoLoc);
continue;
}
// typedef-name
case tok::identifier: {
// In C++, check to see if this is a scope specifier like foo::bar::, if
// so handle it as such. This is important for ctor parsing.
if (getLang().CPlusPlus) {
if (TryAnnotateCXXScopeToken(true)) {
if (!DS.hasTypeSpecifier())
DS.SetTypeSpecError();
goto DoneWithDeclSpec;
}
if (!Tok.is(tok::identifier))
continue;
}
// This identifier can only be a typedef name if we haven't already seen
// a type-specifier. Without this check we misparse:
// typedef int X; struct Y { short X; }; as 'short int'.
if (DS.hasTypeSpecifier())
goto DoneWithDeclSpec;
// Check for need to substitute AltiVec keyword tokens.
if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
break;
// It has to be available as a typedef too!
TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
Tok.getLocation(), CurScope);
// If this is not a typedef name, don't parse it as part of the declspec,
// it must be an implicit int or an error.
if (TypeRep == 0) {
if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
goto DoneWithDeclSpec;
}
// If we're in a context where the identifier could be a class name,
// check whether this is a constructor declaration.
if (getLang().CPlusPlus && DSContext == DSC_class &&
Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
isConstructorDeclarator())
goto DoneWithDeclSpec;
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, TypeRep);
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // The identifier
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
// Objective-C interface. If we don't have Objective-C or a '<', this is
// just a normal reference to a typedef name.
if (!Tok.is(tok::less) || !getLang().ObjC1)
continue;
SourceLocation LAngleLoc, EndProtoLoc;
llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
LAngleLoc, EndProtoLoc);
DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
ProtocolLocs.data(), LAngleLoc);
DS.SetRangeEnd(EndProtoLoc);
// Need to support trailing type qualifiers (e.g. "id<p> const").
// If a type specifier follows, it will be diagnosed elsewhere.
continue;
}
// type-name
case tok::annot_template_id: {
TemplateIdAnnotation *TemplateId
= static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
if (TemplateId->Kind != TNK_Type_template) {
// This template-id does not refer to a type name, so we're
// done with the type-specifiers.
goto DoneWithDeclSpec;
}
// If we're in a context where the template-id could be a
// constructor name or specialization, check whether this is a
// constructor declaration.
if (getLang().CPlusPlus && DSContext == DSC_class &&
Actions.isCurrentClassName(*TemplateId->Name, CurScope) &&
isConstructorDeclarator())
goto DoneWithDeclSpec;
// Turn the template-id annotation token into a type annotation
// token, then try again to parse it as a type-specifier.
AnnotateTemplateIdTokenAsType();
continue;
}
// GNU attributes support.
case tok::kw___attribute:
DS.AddAttributes(ParseGNUAttributes());
continue;
// Microsoft declspec support.
case tok::kw___declspec:
DS.AddAttributes(ParseMicrosoftDeclSpec());
continue;
// Microsoft single token adornments.
case tok::kw___forceinline:
// FIXME: Add handling here!
break;
case tok::kw___ptr64:
case tok::kw___w64:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
DS.AddAttributes(ParseMicrosoftTypeAttributes());
continue;
// storage-class-specifier
case tok::kw_typedef:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec,
DiagID);
break;
case tok::kw_extern:
if (DS.isThreadSpecified())
Diag(Tok, diag::ext_thread_before) << "extern";
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec,
DiagID);
break;
case tok::kw___private_extern__:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
PrevSpec, DiagID);
break;
case tok::kw_static:
if (DS.isThreadSpecified())
Diag(Tok, diag::ext_thread_before) << "static";
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec,
DiagID);
break;
case tok::kw_auto:
if (getLang().CPlusPlus0x)
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
DiagID);
else
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
DiagID);
break;
case tok::kw_register:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec,
DiagID);
break;
case tok::kw_mutable:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec,
DiagID);
break;
case tok::kw___thread:
isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
break;
// function-specifier
case tok::kw_inline:
isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
break;
case tok::kw_virtual:
isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
break;
case tok::kw_explicit:
isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
break;
// friend
case tok::kw_friend:
if (DSContext == DSC_class)
isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
else {
PrevSpec = ""; // not actually used by the diagnostic
DiagID = diag::err_friend_invalid_in_context;
isInvalid = true;
}
break;
// constexpr
case tok::kw_constexpr:
isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
break;
// type-specifier
case tok::kw_short:
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
DiagID);
break;
case tok::kw_long:
if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
DiagID);
else
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
DiagID);
break;
case tok::kw_signed:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
DiagID);
break;
case tok::kw_unsigned:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Complex:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Imaginary:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
DiagID);
break;
case tok::kw_void:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
DiagID);
break;
case tok::kw_char:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
DiagID);
break;
case tok::kw_int:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
DiagID);
break;
case tok::kw_float:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
DiagID);
break;
case tok::kw_double:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
DiagID);
break;
case tok::kw_wchar_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
DiagID);
break;
case tok::kw_char16_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
DiagID);
break;
case tok::kw_char32_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
DiagID);
break;
case tok::kw_bool:
case tok::kw__Bool:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Decimal32:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Decimal64:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Decimal128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
DiagID);
break;
case tok::kw___vector:
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
break;
case tok::kw___pixel:
isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
break;
// class-specifier:
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union: {
tok::TokenKind Kind = Tok.getKind();
ConsumeToken();
ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
continue;
}
// enum-specifier:
case tok::kw_enum:
ConsumeToken();
ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
continue;
// cv-qualifier:
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
getLang());
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
getLang());
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
getLang());
break;
// C++ typename-specifier:
case tok::kw_typename:
if (TryAnnotateTypeOrScopeToken()) {
DS.SetTypeSpecError();
goto DoneWithDeclSpec;
}
if (!Tok.is(tok::kw_typename))
continue;
break;
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
continue;
case tok::kw_decltype:
ParseDecltypeSpecifier(DS);
continue;
case tok::less:
// GCC ObjC supports types like "<SomeProtocol>" as a synonym for
// "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
// but we support it.
if (DS.hasTypeSpecifier() || !getLang().ObjC1)
goto DoneWithDeclSpec;
{
SourceLocation LAngleLoc, EndProtoLoc;
llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
LAngleLoc, EndProtoLoc);
DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
ProtocolLocs.data(), LAngleLoc);
DS.SetRangeEnd(EndProtoLoc);
Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
<< FixItHint::CreateInsertion(Loc, "id")
<< SourceRange(Loc, EndProtoLoc);
// Need to support trailing type qualifiers (e.g. "id<p> const").
// If a type specifier follows, it will be diagnosed elsewhere.
continue;
}
}
// If the specifier wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
assert(DiagID);
Diag(Tok, DiagID) << PrevSpec;
}
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
}
}
/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
/// primarily follow the C++ grammar with additions for C99 and GNU,
/// which together subsume the C grammar. Note that the C++
/// type-specifier also includes the C type-qualifier (for const,
/// volatile, and C99 restrict). Returns true if a type-specifier was
/// found (and parsed), false otherwise.
///
/// type-specifier: [C++ 7.1.5]
/// simple-type-specifier
/// class-specifier
/// enum-specifier
/// elaborated-type-specifier [TODO]
/// cv-qualifier
///
/// cv-qualifier: [C++ 7.1.5.1]
/// 'const'
/// 'volatile'
/// [C99] 'restrict'
///
/// simple-type-specifier: [ C++ 7.1.5.2]
/// '::'[opt] nested-name-specifier[opt] type-name [TODO]
/// '::'[opt] nested-name-specifier 'template' template-id [TODO]
/// 'char'
/// 'wchar_t'
/// 'bool'
/// 'short'
/// 'int'
/// 'long'
/// 'signed'
/// 'unsigned'
/// 'float'
/// 'double'
/// 'void'
/// [C99] '_Bool'
/// [C99] '_Complex'
/// [C99] '_Imaginary' // Removed in TC2?
/// [GNU] '_Decimal32'
/// [GNU] '_Decimal64'
/// [GNU] '_Decimal128'
/// [GNU] typeof-specifier
/// [OBJC] class-name objc-protocol-refs[opt] [TODO]
/// [OBJC] typedef-name objc-protocol-refs[opt] [TODO]
/// [C++0x] 'decltype' ( expression )
/// [AltiVec] '__vector'
bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
const char *&PrevSpec,
unsigned &DiagID,
const ParsedTemplateInfo &TemplateInfo,
bool SuppressDeclarations) {
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
case tok::identifier: // foo::bar
// If we already have a type specifier, this identifier is not a type.
if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
return false;
// Check for need to substitute AltiVec keyword tokens.
if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
break;
// Fall through.
case tok::kw_typename: // typename foo::bar
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
if (Tok.is(tok::identifier))
return false;
return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
TemplateInfo, SuppressDeclarations);
case tok::coloncolon: // ::foo::bar
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
TemplateInfo, SuppressDeclarations);
// simple-type-specifier:
case tok::annot_typename: {
if (Tok.getAnnotationValue())
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, Tok.getAnnotationValue());
else
DS.SetTypeSpecError();
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeToken(); // The typename
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
// Objective-C interface. If we don't have Objective-C or a '<', this is
// just a normal reference to a typedef name.
if (!Tok.is(tok::less) || !getLang().ObjC1)
return true;
SourceLocation LAngleLoc, EndProtoLoc;
llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
LAngleLoc, EndProtoLoc);
DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
ProtocolLocs.data(), LAngleLoc);
DS.SetRangeEnd(EndProtoLoc);
return true;
}
case tok::kw_short:
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
break;
case tok::kw_long:
if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
DiagID);
else
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
DiagID);
break;
case tok::kw_signed:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
break;
case tok::kw_unsigned:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Complex:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Imaginary:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
DiagID);
break;
case tok::kw_void:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
break;
case tok::kw_char:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
break;
case tok::kw_int:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
break;
case tok::kw_float:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
break;
case tok::kw_double:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
break;
case tok::kw_wchar_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
break;
case tok::kw_char16_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
break;
case tok::kw_char32_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
break;
case tok::kw_bool:
case tok::kw__Bool:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
break;
case tok::kw__Decimal32:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Decimal64:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Decimal128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
DiagID);
break;
case tok::kw___vector:
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
break;
case tok::kw___pixel:
isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
break;
// class-specifier:
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union: {
tok::TokenKind Kind = Tok.getKind();
ConsumeToken();
ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
SuppressDeclarations);
return true;
}
// enum-specifier:
case tok::kw_enum:
ConsumeToken();
ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
return true;
// cv-qualifier:
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec,
DiagID, getLang());
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
DiagID, getLang());
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
DiagID, getLang());
break;
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
return true;
// C++0x decltype support.
case tok::kw_decltype:
ParseDecltypeSpecifier(DS);
return true;
2009-06-27 07:44:14 +08:00
// C++0x auto support.
case tok::kw_auto:
if (!getLang().CPlusPlus0x)
return false;
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
2009-06-27 07:44:14 +08:00
break;
case tok::kw___ptr64:
case tok::kw___w64:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
DS.AddAttributes(ParseMicrosoftTypeAttributes());
return true;
default:
// Not a type-specifier; do nothing.
return false;
}
// If the specifier combination wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
// Pick between error or extwarn.
Diag(Tok, DiagID) << PrevSpec;
}
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // whatever we parsed above.
return true;
}
/// ParseStructDeclaration - Parse a struct declaration without the terminating
/// semicolon.
///
/// struct-declaration:
/// specifier-qualifier-list struct-declarator-list
/// [GNU] __extension__ struct-declaration
/// [GNU] specifier-qualifier-list
/// struct-declarator-list:
/// struct-declarator
/// struct-declarator-list ',' struct-declarator
/// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
/// struct-declarator:
/// declarator
/// [GNU] declarator attributes[opt]
/// declarator[opt] ':' constant-expression
/// [GNU] declarator[opt] ':' constant-expression attributes[opt]
///
void Parser::
ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
if (Tok.is(tok::kw___extension__)) {
// __extension__ silences extension warnings in the subexpression.
ExtensionRAIIObject O(Diags); // Use RAII to do this.
ConsumeToken();
return ParseStructDeclaration(DS, Fields);
}
// Parse the common specifier-qualifiers-list piece.
SourceLocation DSStart = Tok.getLocation();
ParseSpecifierQualifierList(DS);
// If there are no declarators, this is a free-standing declaration
// specifier. Let the actions module cope with it.
if (Tok.is(tok::semi)) {
Actions.ParsedFreeStandingDeclSpec(CurScope, AS_none, DS);
return;
}
// Read struct-declarators until we find the semicolon.
bool FirstDeclarator = true;
while (1) {
ParsingDeclRAIIObject PD(*this);
FieldDeclarator DeclaratorInfo(DS);
// Attributes are only allowed here on successive declarators.
if (!FirstDeclarator && Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseGNUAttributes(&Loc);
DeclaratorInfo.D.AddAttributes(AttrList, Loc);
}
/// struct-declarator: declarator
/// struct-declarator: declarator[opt] ':' constant-expression
if (Tok.isNot(tok::colon)) {
// Don't parse FOO:BAR as if it were a typo for FOO::BAR.
ColonProtectionRAIIObject X(*this);
ParseDeclarator(DeclaratorInfo.D);
}
if (Tok.is(tok::colon)) {
ConsumeToken();
OwningExprResult Res(ParseConstantExpression());
if (Res.isInvalid())
SkipUntil(tok::semi, true, true);
else
DeclaratorInfo.BitfieldSize = Res.release();
}
// If attributes exist after the declarator, parse them.
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseGNUAttributes(&Loc);
DeclaratorInfo.D.AddAttributes(AttrList, Loc);
}
// We're done with this declarator; invoke the callback.
DeclPtrTy D = Fields.invoke(DeclaratorInfo);
PD.complete(D);
// If we don't have a comma, it is either the end of the list (a ';')
// or an error, bail out.
if (Tok.isNot(tok::comma))
return;
// Consume the comma.
ConsumeToken();
FirstDeclarator = false;
}
}
/// ParseStructUnionBody
/// struct-contents:
/// struct-declaration-list
/// [EXT] empty
/// [GNU] "struct-declaration-list" without terminatoring ';'
/// struct-declaration-list:
/// struct-declaration
/// struct-declaration-list struct-declaration
/// [OBC] '@' 'defs' '(' class-name ')'
///
void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
unsigned TagType, DeclPtrTy TagDecl) {
PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
PP.getSourceManager(),
"parsing struct/union body");
SourceLocation LBraceLoc = ConsumeBrace();
ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
Unify the code for defining tags in C and C++, so that we always introduce a Scope for the body of a tag. This reduces the number of semantic differences between C and C++ structs and unions, and will help with other features (e.g., anonymous unions) in C. Some important points: - Fields are now in the "member" namespace (IDNS_Member), to keep them separate from tags and ordinary names in C. See the new test in Sema/member-reference.c for an example of why this matters. In C++, ordinary and member name lookup will find members in both the ordinary and member namespace, so the difference between IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but only in C++!). - We always introduce a Scope and push a DeclContext when we're defining a tag, in both C and C++. Previously, we had different actions and different Scope/CurContext behavior for enums, C structs/unions, and C++ structs/unions/classes. Now, it's one pair of actions. (Yay!) There's still some fuzziness in the handling of struct/union/enum definitions within other struct/union/enum definitions in C. We'll need to do some more cleanup to eliminate some reliance on CurContext before we can solve this issue for real. What we want is for something like this: struct X { struct T { int x; } t; }; to introduce T into translation unit scope (placing it at the appropriate point in the IdentifierResolver chain, too), but it should still have struct X as its lexical declaration context. PushOnScopeChains isn't smart enough to do that yet, though, so there's a FIXME test in nested-redef.c llvm-svn: 61940
2009-01-09 04:45:30 +08:00
Actions.ActOnTagStartDefinition(CurScope, TagDecl);
// Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
// C++.
if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
Diag(Tok, diag::ext_empty_struct_union_enum)
<< DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
// While we still have something to read, read the declarations in the struct.
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
// Each iteration of this loop reads one struct-declaration.
// Check for extraneous top-level semicolon.
if (Tok.is(tok::semi)) {
Diag(Tok, diag::ext_extra_struct_semi)
<< DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
<< FixItHint::CreateRemoval(Tok.getLocation());
ConsumeToken();
continue;
}
// Parse all the comma separated declarators.
DeclSpec DS;
if (!Tok.is(tok::at)) {
struct CFieldCallback : FieldCallback {
Parser &P;
DeclPtrTy TagDecl;
llvm::SmallVectorImpl<DeclPtrTy> &FieldDecls;
CFieldCallback(Parser &P, DeclPtrTy TagDecl,
llvm::SmallVectorImpl<DeclPtrTy> &FieldDecls) :
P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
virtual DeclPtrTy invoke(FieldDeclarator &FD) {
// Install the declarator into the current TagDecl.
DeclPtrTy Field = P.Actions.ActOnField(P.CurScope, TagDecl,
FD.D.getDeclSpec().getSourceRange().getBegin(),
FD.D, FD.BitfieldSize);
FieldDecls.push_back(Field);
return Field;
}
} Callback(*this, TagDecl, FieldDecls);
ParseStructDeclaration(DS, Callback);
} else { // Handle @defs
ConsumeToken();
if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
Diag(Tok, diag::err_unexpected_at);
SkipUntil(tok::semi, true);
continue;
}
ConsumeToken();
ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
if (!Tok.is(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
SkipUntil(tok::semi, true);
continue;
}
llvm::SmallVector<DeclPtrTy, 16> Fields;
Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
Tok.getIdentifierInfo(), Fields);
FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
ConsumeToken();
ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
}
if (Tok.is(tok::semi)) {
ConsumeToken();
} else if (Tok.is(tok::r_brace)) {
ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
break;
} else {
ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
// Skip to end of block or statement to avoid ext-warning on extra ';'.
SkipUntil(tok::r_brace, true, true);
// If we stopped at a ';', eat it.
if (Tok.is(tok::semi)) ConsumeToken();
}
}
SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
llvm::OwningPtr<AttributeList> AttrList;
// If attributes exist after struct contents, parse them.
if (Tok.is(tok::kw___attribute))
AttrList.reset(ParseGNUAttributes());
Actions.ActOnFields(CurScope,
RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
LBraceLoc, RBraceLoc,
AttrList.get());
Unify the code for defining tags in C and C++, so that we always introduce a Scope for the body of a tag. This reduces the number of semantic differences between C and C++ structs and unions, and will help with other features (e.g., anonymous unions) in C. Some important points: - Fields are now in the "member" namespace (IDNS_Member), to keep them separate from tags and ordinary names in C. See the new test in Sema/member-reference.c for an example of why this matters. In C++, ordinary and member name lookup will find members in both the ordinary and member namespace, so the difference between IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but only in C++!). - We always introduce a Scope and push a DeclContext when we're defining a tag, in both C and C++. Previously, we had different actions and different Scope/CurContext behavior for enums, C structs/unions, and C++ structs/unions/classes. Now, it's one pair of actions. (Yay!) There's still some fuzziness in the handling of struct/union/enum definitions within other struct/union/enum definitions in C. We'll need to do some more cleanup to eliminate some reliance on CurContext before we can solve this issue for real. What we want is for something like this: struct X { struct T { int x; } t; }; to introduce T into translation unit scope (placing it at the appropriate point in the IdentifierResolver chain, too), but it should still have struct X as its lexical declaration context. PushOnScopeChains isn't smart enough to do that yet, though, so there's a FIXME test in nested-redef.c llvm-svn: 61940
2009-01-09 04:45:30 +08:00
StructScope.Exit();
Actions.ActOnTagFinishDefinition(CurScope, TagDecl, RBraceLoc);
}
/// ParseEnumSpecifier
/// enum-specifier: [C99 6.7.2.2]
/// 'enum' identifier[opt] '{' enumerator-list '}'
///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
/// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
/// '}' attributes[opt]
/// 'enum' identifier
/// [GNU] 'enum' attributes[opt] identifier
///
/// [C++] elaborated-type-specifier:
/// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier
///
void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS) {
// Parse the tag portion of this.
if (Tok.is(tok::code_completion)) {
// Code completion for an enum name.
Actions.CodeCompleteTag(CurScope, DeclSpec::TST_enum);
ConsumeCodeCompletionToken();
}
llvm::OwningPtr<AttributeList> Attr;
// If attributes exist after tag, parse them.
if (Tok.is(tok::kw___attribute))
Attr.reset(ParseGNUAttributes());
CXXScopeSpec &SS = DS.getTypeSpecScope();
if (getLang().CPlusPlus) {
if (ParseOptionalCXXScopeSpecifier(SS, 0, false))
return;
if (SS.isSet() && Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
if (Tok.isNot(tok::l_brace)) {
// Has no name and is not a definition.
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
}
}
// Must have either 'enum name' or 'enum {...}'.
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
Diag(Tok, diag::err_expected_ident_lbrace);
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
// If an identifier is present, consume and remember it.
IdentifierInfo *Name = 0;
SourceLocation NameLoc;
if (Tok.is(tok::identifier)) {
Name = Tok.getIdentifierInfo();
NameLoc = ConsumeToken();
}
// There are three options here. If we have 'enum foo;', then this is a
// forward declaration. If we have 'enum foo {...' then this is a
// definition. Otherwise we have something like 'enum foo xyz', a reference.
//
// This is needed to handle stuff like this right (C99 6.7.2.3p11):
// enum foo {..}; void bar() { enum foo; } <- new foo in bar.
// enum foo {..}; void bar() { enum foo x; } <- use of old foo.
//
Action::TagUseKind TUK;
if (Tok.is(tok::l_brace))
TUK = Action::TUK_Definition;
else if (Tok.is(tok::semi))
TUK = Action::TUK_Declaration;
else
TUK = Action::TUK_Reference;
// enums cannot be templates, although they can be referenced from a
// template.
if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
TUK != Action::TUK_Reference) {
Diag(Tok, diag::err_enum_template);
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
bool Owned = false;
bool IsDependent = false;
SourceLocation TSTLoc = NameLoc.isValid()? NameLoc : StartLoc;
const char *PrevSpec = 0;
unsigned DiagID;
DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TUK,
StartLoc, SS, Name, NameLoc, Attr.get(),
AS,
Action::MultiTemplateParamsArg(Actions),
Owned, IsDependent);
if (IsDependent) {
// This enum has a dependent nested-name-specifier. Handle it as a
// dependent tag.
if (!Name) {
DS.SetTypeSpecError();
Diag(Tok, diag::err_expected_type_name_after_typename);
return;
}
TypeResult Type = Actions.ActOnDependentTag(CurScope, DeclSpec::TST_enum,
TUK, SS, Name, StartLoc,
NameLoc);
if (Type.isInvalid()) {
DS.SetTypeSpecError();
return;
}
if (DS.SetTypeSpecType(DeclSpec::TST_typename, TSTLoc, PrevSpec, DiagID,
Type.get(), false))
Diag(StartLoc, DiagID) << PrevSpec;
return;
}
if (!TagDecl.get()) {
// The action failed to produce an enumeration tag. If this is a
// definition, consume the entire definition.
if (Tok.is(tok::l_brace)) {
ConsumeBrace();
SkipUntil(tok::r_brace);
}
DS.SetTypeSpecError();
return;
}
if (Tok.is(tok::l_brace))
ParseEnumBody(StartLoc, TagDecl);
// FIXME: The DeclSpec should keep the locations of both the keyword and the
// name (if there is one).
if (DS.SetTypeSpecType(DeclSpec::TST_enum, TSTLoc, PrevSpec, DiagID,
TagDecl.getAs<void>(), Owned))
Diag(StartLoc, DiagID) << PrevSpec;
}
/// ParseEnumBody - Parse a {} enclosed enumerator-list.
/// enumerator-list:
/// enumerator
/// enumerator-list ',' enumerator
/// enumerator:
/// enumeration-constant
/// enumeration-constant '=' constant-expression
/// enumeration-constant:
/// identifier
///
void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
// Enter the scope of the enum body and start the definition.
ParseScope EnumScope(this, Scope::DeclScope);
Unify the code for defining tags in C and C++, so that we always introduce a Scope for the body of a tag. This reduces the number of semantic differences between C and C++ structs and unions, and will help with other features (e.g., anonymous unions) in C. Some important points: - Fields are now in the "member" namespace (IDNS_Member), to keep them separate from tags and ordinary names in C. See the new test in Sema/member-reference.c for an example of why this matters. In C++, ordinary and member name lookup will find members in both the ordinary and member namespace, so the difference between IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but only in C++!). - We always introduce a Scope and push a DeclContext when we're defining a tag, in both C and C++. Previously, we had different actions and different Scope/CurContext behavior for enums, C structs/unions, and C++ structs/unions/classes. Now, it's one pair of actions. (Yay!) There's still some fuzziness in the handling of struct/union/enum definitions within other struct/union/enum definitions in C. We'll need to do some more cleanup to eliminate some reliance on CurContext before we can solve this issue for real. What we want is for something like this: struct X { struct T { int x; } t; }; to introduce T into translation unit scope (placing it at the appropriate point in the IdentifierResolver chain, too), but it should still have struct X as its lexical declaration context. PushOnScopeChains isn't smart enough to do that yet, though, so there's a FIXME test in nested-redef.c llvm-svn: 61940
2009-01-09 04:45:30 +08:00
Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
SourceLocation LBraceLoc = ConsumeBrace();
// C does not allow an empty enumerator-list, C++ does [dcl.enum].
if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
Diag(Tok, diag::error_empty_enum);
llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
DeclPtrTy LastEnumConstDecl;
// Parse the enumerator-list.
while (Tok.is(tok::identifier)) {
IdentifierInfo *Ident = Tok.getIdentifierInfo();
SourceLocation IdentLoc = ConsumeToken();
SourceLocation EqualLoc;
OwningExprResult AssignedVal(Actions);
if (Tok.is(tok::equal)) {
EqualLoc = ConsumeToken();
AssignedVal = ParseConstantExpression();
if (AssignedVal.isInvalid())
SkipUntil(tok::comma, tok::r_brace, true, true);
}
// Install the enumerator constant into EnumDecl.
DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
LastEnumConstDecl,
IdentLoc, Ident,
EqualLoc,
AssignedVal.release());
EnumConstantDecls.push_back(EnumConstDecl);
LastEnumConstDecl = EnumConstDecl;
if (Tok.isNot(tok::comma))
break;
SourceLocation CommaLoc = ConsumeToken();
if (Tok.isNot(tok::identifier) &&
!(getLang().C99 || getLang().CPlusPlus0x))
Diag(CommaLoc, diag::ext_enumerator_list_comma)
<< getLang().CPlusPlus
<< FixItHint::CreateRemoval(CommaLoc);
}
// Eat the }.
SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
llvm::OwningPtr<AttributeList> Attr;
// If attributes exist after the identifier list, parse them.
if (Tok.is(tok::kw___attribute))
Attr.reset(ParseGNUAttributes()); // FIXME: where do they do?
Unify the code for defining tags in C and C++, so that we always introduce a Scope for the body of a tag. This reduces the number of semantic differences between C and C++ structs and unions, and will help with other features (e.g., anonymous unions) in C. Some important points: - Fields are now in the "member" namespace (IDNS_Member), to keep them separate from tags and ordinary names in C. See the new test in Sema/member-reference.c for an example of why this matters. In C++, ordinary and member name lookup will find members in both the ordinary and member namespace, so the difference between IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but only in C++!). - We always introduce a Scope and push a DeclContext when we're defining a tag, in both C and C++. Previously, we had different actions and different Scope/CurContext behavior for enums, C structs/unions, and C++ structs/unions/classes. Now, it's one pair of actions. (Yay!) There's still some fuzziness in the handling of struct/union/enum definitions within other struct/union/enum definitions in C. We'll need to do some more cleanup to eliminate some reliance on CurContext before we can solve this issue for real. What we want is for something like this: struct X { struct T { int x; } t; }; to introduce T into translation unit scope (placing it at the appropriate point in the IdentifierResolver chain, too), but it should still have struct X as its lexical declaration context. PushOnScopeChains isn't smart enough to do that yet, though, so there's a FIXME test in nested-redef.c llvm-svn: 61940
2009-01-09 04:45:30 +08:00
Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
EnumConstantDecls.data(), EnumConstantDecls.size(),
CurScope, Attr.get());
Unify the code for defining tags in C and C++, so that we always introduce a Scope for the body of a tag. This reduces the number of semantic differences between C and C++ structs and unions, and will help with other features (e.g., anonymous unions) in C. Some important points: - Fields are now in the "member" namespace (IDNS_Member), to keep them separate from tags and ordinary names in C. See the new test in Sema/member-reference.c for an example of why this matters. In C++, ordinary and member name lookup will find members in both the ordinary and member namespace, so the difference between IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but only in C++!). - We always introduce a Scope and push a DeclContext when we're defining a tag, in both C and C++. Previously, we had different actions and different Scope/CurContext behavior for enums, C structs/unions, and C++ structs/unions/classes. Now, it's one pair of actions. (Yay!) There's still some fuzziness in the handling of struct/union/enum definitions within other struct/union/enum definitions in C. We'll need to do some more cleanup to eliminate some reliance on CurContext before we can solve this issue for real. What we want is for something like this: struct X { struct T { int x; } t; }; to introduce T into translation unit scope (placing it at the appropriate point in the IdentifierResolver chain, too), but it should still have struct X as its lexical declaration context. PushOnScopeChains isn't smart enough to do that yet, though, so there's a FIXME test in nested-redef.c llvm-svn: 61940
2009-01-09 04:45:30 +08:00
EnumScope.Exit();
Actions.ActOnTagFinishDefinition(CurScope, EnumDecl, RBraceLoc);
}
/// isTypeSpecifierQualifier - Return true if the current token could be the
/// start of a type-qualifier-list.
bool Parser::isTypeQualifier() const {
switch (Tok.getKind()) {
default: return false;
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
return true;
}
}
/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
/// is definitely a type-specifier. Return false if it isn't part of a type
/// specifier or if we're not sure.
bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
switch (Tok.getKind()) {
default: return false;
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
case tok::kw___vector:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// typedef-name
case tok::annot_typename:
return true;
}
}
/// isTypeSpecifierQualifier - Return true if the current token could be the
/// start of a specifier-qualifier-list.
bool Parser::isTypeSpecifierQualifier() {
switch (Tok.getKind()) {
default: return false;
case tok::identifier: // foo::bar
if (TryAltiVecVectorToken())
return true;
// Fall through.
case tok::kw_typename: // typename T::type
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
if (Tok.is(tok::identifier))
return false;
return isTypeSpecifierQualifier();
case tok::coloncolon: // ::foo::bar
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
if (TryAnnotateTypeOrScopeToken())
return true;
return isTypeSpecifierQualifier();
// GNU attributes support.
case tok::kw___attribute:
// GNU typeof support.
case tok::kw_typeof:
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
case tok::kw___vector:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
// typedef-name
case tok::annot_typename:
return true;
// GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
case tok::less:
return getLang().ObjC1;
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
case tok::kw___w64:
case tok::kw___ptr64:
return true;
}
}
/// isDeclarationSpecifier() - Return true if the current token is part of a
/// declaration specifier.
bool Parser::isDeclarationSpecifier() {
switch (Tok.getKind()) {
default: return false;
case tok::identifier: // foo::bar
// Unfortunate hack to support "Class.factoryMethod" notation.
if (getLang().ObjC1 && NextToken().is(tok::period))
return false;
if (TryAltiVecVectorToken())
return true;
// Fall through.
case tok::kw_typename: // typename T::type
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
if (Tok.is(tok::identifier))
return false;
return isDeclarationSpecifier();
case tok::coloncolon: // ::foo::bar
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
return isDeclarationSpecifier();
// storage-class-specifier
case tok::kw_typedef:
case tok::kw_extern:
case tok::kw___private_extern__:
case tok::kw_static:
case tok::kw_auto:
case tok::kw_register:
case tok::kw___thread:
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
case tok::kw___vector:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
// function-specifier
case tok::kw_inline:
case tok::kw_virtual:
case tok::kw_explicit:
// typedef-name
case tok::annot_typename:
2007-08-10 01:01:07 +08:00
// GNU typeof support.
case tok::kw_typeof:
2007-08-10 01:01:07 +08:00
// GNU attributes.
case tok::kw___attribute:
return true;
// GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
case tok::less:
return getLang().ObjC1;
case tok::kw___declspec:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
case tok::kw___w64:
case tok::kw___ptr64:
case tok::kw___forceinline:
return true;
}
}
bool Parser::isConstructorDeclarator() {
TentativeParsingAction TPA(*this);
// Parse the C++ scope specifier.
CXXScopeSpec SS;
if (ParseOptionalCXXScopeSpecifier(SS, 0, true)) {
TPA.Revert();
return false;
}
// Parse the constructor name.
if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
// We already know that we have a constructor name; just consume
// the token.
ConsumeToken();
} else {
TPA.Revert();
return false;
}
// Current class name must be followed by a left parentheses.
if (Tok.isNot(tok::l_paren)) {
TPA.Revert();
return false;
}
ConsumeParen();
// A right parentheses or ellipsis signals that we have a constructor.
if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
TPA.Revert();
return true;
}
// If we need to, enter the specified scope.
DeclaratorScopeObj DeclScopeObj(*this, SS);
if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(CurScope, SS))
DeclScopeObj.EnterDeclaratorScope();
// Check whether the next token(s) are part of a declaration
// specifier, in which case we have the start of a parameter and,
// therefore, we know that this is a constructor.
bool IsConstructor = isDeclarationSpecifier();
TPA.Revert();
return IsConstructor;
}
/// ParseTypeQualifierListOpt
/// type-qualifier-list: [C99 6.7.5]
/// type-qualifier
/// [GNU] attributes [ only if AttributesAllowed=true ]
/// type-qualifier-list type-qualifier
/// [GNU] type-qualifier-list attributes [ only if AttributesAllowed=true ]
/// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
/// if CXX0XAttributesAllowed = true
///
void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool GNUAttributesAllowed,
bool CXX0XAttributesAllowed) {
if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
SourceLocation Loc = Tok.getLocation();
CXX0XAttributeList Attr = ParseCXX0XAttributes();
if (CXX0XAttributesAllowed)
DS.AddAttributes(Attr.AttrList);
else
Diag(Loc, diag::err_attributes_not_allowed);
}
while (1) {
bool isInvalid = false;
const char *PrevSpec = 0;
unsigned DiagID = 0;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID,
getLang());
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
getLang());
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
getLang());
break;
case tok::kw___w64:
case tok::kw___ptr64:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
if (GNUAttributesAllowed) {
DS.AddAttributes(ParseMicrosoftTypeAttributes());
continue;
}
goto DoneWithTypeQuals;
case tok::kw___attribute:
if (GNUAttributesAllowed) {
DS.AddAttributes(ParseGNUAttributes());
continue; // do *not* consume the next token!
}
// otherwise, FALL THROUGH!
default:
DoneWithTypeQuals:
// If this is not a type-qualifier token, we're done reading type
// qualifiers. First verify that DeclSpec's are consistent.
DS.Finish(Diags, PP);
return;
}
// If the specifier combination wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
Diag(Tok, DiagID) << PrevSpec;
}
ConsumeToken();
}
}
/// ParseDeclarator - Parse and verify a newly-initialized declarator.
///
void Parser::ParseDeclarator(Declarator &D) {
/// This implements the 'declarator' production in the C grammar, then checks
/// for well-formedness and issues diagnostics.
ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
}
/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
/// is parsed by the function passed to it. Pass null, and the direct-declarator
/// isn't parsed at all, making this function effectively parse the C++
/// ptr-operator production.
///
/// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
/// [C] pointer[opt] direct-declarator
/// [C++] direct-declarator
/// [C++] ptr-operator declarator
///
/// pointer: [C99 6.7.5]
/// '*' type-qualifier-list[opt]
/// '*' type-qualifier-list[opt] pointer
///
/// ptr-operator:
/// '*' cv-qualifier-seq[opt]
/// '&'
/// [C++0x] '&&'
/// [GNU] '&' restrict[opt] attributes[opt]
/// [GNU?] '&&' restrict[opt] attributes[opt]
/// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
void Parser::ParseDeclaratorInternal(Declarator &D,
DirectDeclParseFunction DirectDeclParser) {
if (Diags.hasAllExtensionsSilenced())
D.setExtension();
// C++ member pointers start with a '::' or a nested-name.
// Member pointers get special handling, since there's no place for the
// scope spec in the generic path below.
2009-03-25 01:04:48 +08:00
if (getLang().CPlusPlus &&
(Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
Tok.is(tok::annot_cxxscope))) {
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, true); // ignore fail
if (SS.isNotEmpty()) {
if (Tok.isNot(tok::star)) {
// The scope spec really belongs to the direct-declarator.
D.getCXXScopeSpec() = SS;
if (DirectDeclParser)
(this->*DirectDeclParser)(D);
return;
}
SourceLocation Loc = ConsumeToken();
D.SetRangeEnd(Loc);
DeclSpec DS;
ParseTypeQualifierListOpt(DS);
D.ExtendWithDeclSpec(DS);
// Recurse to parse whatever is left.
ParseDeclaratorInternal(D, DirectDeclParser);
// Sema will have to catch (syntactically invalid) pointers into global
// scope. It has to catch pointers into namespace scope anyway.
D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
Loc, DS.TakeAttributes()),
/* Don't replace range end. */SourceLocation());
return;
}
}
tok::TokenKind Kind = Tok.getKind();
// Not a pointer, C++ reference, or block.
if (Kind != tok::star && Kind != tok::caret &&
2009-03-25 01:04:48 +08:00
(Kind != tok::amp || !getLang().CPlusPlus) &&
// We parse rvalue refs in C++03, because otherwise the errors are scary.
(Kind != tok::ampamp || !getLang().CPlusPlus)) {
if (DirectDeclParser)
(this->*DirectDeclParser)(D);
return;
}
// Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
// '&&' -> rvalue reference
SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
D.SetRangeEnd(Loc);
if (Kind == tok::star || Kind == tok::caret) {
// Is a pointer.
DeclSpec DS;
ParseTypeQualifierListOpt(DS);
D.ExtendWithDeclSpec(DS);
// Recursively parse the declarator.
ParseDeclaratorInternal(D, DirectDeclParser);
if (Kind == tok::star)
// Remember that we parsed a pointer type, and remember the type-quals.
D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
DS.TakeAttributes()),
SourceLocation());
else
// Remember that we parsed a Block type, and remember the type-quals.
D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
Loc, DS.TakeAttributes()),
SourceLocation());
} else {
// Is a reference
DeclSpec DS;
// Complain about rvalue references in C++03, but then go on and build
// the declarator.
if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
Diag(Loc, diag::err_rvalue_reference);
// C++ 8.3.2p1: cv-qualified references are ill-formed except when the
// cv-qualifiers are introduced through the use of a typedef or of a
// template type argument, in which case the cv-qualifiers are ignored.
//
// [GNU] Retricted references are allowed.
// [GNU] Attributes on references are allowed.
// [C++0x] Attributes on references are not allowed.
ParseTypeQualifierListOpt(DS, true, false);
D.ExtendWithDeclSpec(DS);
if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
Diag(DS.getConstSpecLoc(),
diag::err_invalid_reference_qualifier_application) << "const";
if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
Diag(DS.getVolatileSpecLoc(),
diag::err_invalid_reference_qualifier_application) << "volatile";
}
// Recursively parse the declarator.
ParseDeclaratorInternal(D, DirectDeclParser);
if (D.getNumTypeObjects() > 0) {
// C++ [dcl.ref]p4: There shall be no references to references.
DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
if (InnerChunk.Kind == DeclaratorChunk::Reference) {
if (const IdentifierInfo *II = D.getIdentifier())
Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
<< II;
else
Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
<< "type name";
// Once we've complained about the reference-to-reference, we
// can go ahead and build the (technically ill-formed)
// declarator: reference collapsing will take care of it.
}
}
// Remember that we parsed a reference type. It doesn't have type-quals.
D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
DS.TakeAttributes(),
Kind == tok::amp),
SourceLocation());
}
}
/// ParseDirectDeclarator
/// direct-declarator: [C99 6.7.5]
/// [C99] identifier
/// '(' declarator ')'
/// [GNU] '(' attributes declarator ')'
/// [C90] direct-declarator '[' constant-expression[opt] ']'
/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
/// direct-declarator '(' parameter-type-list ')'
/// direct-declarator '(' identifier-list[opt] ')'
/// [GNU] direct-declarator '(' parameter-forward-declarations
/// parameter-type-list[opt] ')'
/// [C++] direct-declarator '(' parameter-declaration-clause ')'
/// cv-qualifier-seq[opt] exception-specification[opt]
/// [C++] declarator-id
///
/// declarator-id: [C++ 8]
/// id-expression
/// '::'[opt] nested-name-specifier[opt] type-name
///
/// id-expression: [C++ 5.1]
/// unqualified-id
/// qualified-id
///
/// unqualified-id: [C++ 5.1]
/// identifier
/// operator-function-id
/// conversion-function-id
/// '~' class-name
/// template-id
///
void Parser::ParseDirectDeclarator(Declarator &D) {
DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
// ParseDeclaratorInternal might already have parsed the scope.
if (D.getCXXScopeSpec().isEmpty()) {
ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), /*ObjectType=*/0,
true);
}
if (D.getCXXScopeSpec().isValid()) {
if (Actions.ShouldEnterDeclaratorScope(CurScope, D.getCXXScopeSpec()))
// Change the declaration context for name lookup, until this function
// is exited (and the declarator has been parsed).
DeclScopeObj.EnterDeclaratorScope();
}
if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
// We found something that indicates the start of an unqualified-id.
// Parse that unqualified-id.
bool AllowConstructorName;
if (D.getDeclSpec().hasTypeSpecifier())
AllowConstructorName = false;
else if (D.getCXXScopeSpec().isSet())
AllowConstructorName =
(D.getContext() == Declarator::FileContext ||
(D.getContext() == Declarator::MemberContext &&
D.getDeclSpec().isFriendSpecified()));
else
AllowConstructorName = (D.getContext() == Declarator::MemberContext);
if (ParseUnqualifiedId(D.getCXXScopeSpec(),
/*EnteringContext=*/true,
/*AllowDestructorName=*/true,
AllowConstructorName,
/*ObjectType=*/0,
D.getName()) ||
// Once we're past the identifier, if the scope was bad, mark the
// whole declarator bad.
D.getCXXScopeSpec().isInvalid()) {
D.SetIdentifier(0, Tok.getLocation());
D.setInvalidType(true);
} else {
// Parsed the unqualified-id; update range information and move along.
if (D.getSourceRange().getBegin().isInvalid())
D.SetRangeBegin(D.getName().getSourceRange().getBegin());
D.SetRangeEnd(D.getName().getSourceRange().getEnd());
}
goto PastIdentifier;
}
} else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
assert(!getLang().CPlusPlus &&
"There's a C++-specific check for tok::identifier above");
assert(Tok.getIdentifierInfo() && "Not an identifier?");
D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
ConsumeToken();
goto PastIdentifier;
}
if (Tok.is(tok::l_paren)) {
// direct-declarator: '(' declarator ')'
// direct-declarator: '(' attributes declarator ')'
// Example: 'char (*X)' or 'int (*XX)(void)'
ParseParenDeclarator(D);
// If the declarator was parenthesized, we entered the declarator
// scope when parsing the parenthesized declarator, then exited
// the scope already. Re-enter the scope, if we need to.
if (D.getCXXScopeSpec().isSet()) {
if (Actions.ShouldEnterDeclaratorScope(CurScope, D.getCXXScopeSpec()))
// Change the declaration context for name lookup, until this function
// is exited (and the declarator has been parsed).
DeclScopeObj.EnterDeclaratorScope();
}
} else if (D.mayOmitIdentifier()) {
// This could be something simple like "int" (in which case the declarator
// portion is empty), if an abstract-declarator is allowed.
D.SetIdentifier(0, Tok.getLocation());
} else {
if (D.getContext() == Declarator::MemberContext)
Diag(Tok, diag::err_expected_member_name_or_semi)
<< D.getDeclSpec().getSourceRange();
else if (getLang().CPlusPlus)
Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
else
Diag(Tok, diag::err_expected_ident_lparen);
D.SetIdentifier(0, Tok.getLocation());
D.setInvalidType(true);
}
PastIdentifier:
assert(D.isPastIdentifier() &&
"Haven't past the location of the identifier yet?");
// Don't parse attributes unless we have an identifier.
if (D.getIdentifier() && getLang().CPlusPlus0x
&& isCXX0XAttributeSpecifier(true)) {
SourceLocation AttrEndLoc;
CXX0XAttributeList Attr = ParseCXX0XAttributes();
D.AddAttributes(Attr.AttrList, AttrEndLoc);
}
while (1) {
if (Tok.is(tok::l_paren)) {
// The paren may be part of a C++ direct initializer, eg. "int x(1);".
// In such a case, check if we actually have a function declarator; if it
// is not, the declarator has been fully parsed.
if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
// When not in file scope, warn for ambiguous function declarators, just
// in case the author intended it as a variable definition.
bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
if (!isCXXFunctionDeclarator(warnIfAmbiguous))
break;
}
ParseFunctionDeclarator(ConsumeParen(), D);
} else if (Tok.is(tok::l_square)) {
ParseBracketDeclarator(D);
} else {
break;
}
}
}
/// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
/// only called before the identifier, so these are most likely just grouping
/// parens for precedence. If we find that these are actually function
/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
///
/// direct-declarator:
/// '(' declarator ')'
/// [GNU] '(' attributes declarator ')'
/// direct-declarator '(' parameter-type-list ')'
/// direct-declarator '(' identifier-list[opt] ')'
/// [GNU] direct-declarator '(' parameter-forward-declarations
/// parameter-type-list[opt] ')'
///
void Parser::ParseParenDeclarator(Declarator &D) {
SourceLocation StartLoc = ConsumeParen();
assert(!D.isPastIdentifier() && "Should be called before passing identifier");
// Eat any attributes before we look at whether this is a grouping or function
// declarator paren. If this is a grouping paren, the attribute applies to
// the type being built up, for example:
// int (__attribute__(()) *x)(long y)
// If this ends up not being a grouping paren, the attribute applies to the
// first argument, for example:
// int (__attribute__(()) int x)
// In either case, we need to eat any attributes to be able to determine what
// sort of paren this is.
//
llvm::OwningPtr<AttributeList> AttrList;
bool RequiresArg = false;
if (Tok.is(tok::kw___attribute)) {
AttrList.reset(ParseGNUAttributes());
// We require that the argument list (if this is a non-grouping paren) be
// present even if the attribute list was empty.
RequiresArg = true;
}
// Eat any Microsoft extensions.
if (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64)) {
AttrList.reset(ParseMicrosoftTypeAttributes(AttrList.take()));
}
// If we haven't past the identifier yet (or where the identifier would be
// stored, if this is an abstract declarator), then this is probably just
// grouping parens. However, if this could be an abstract-declarator, then
// this could also be the start of function arguments (consider 'void()').
bool isGrouping;
if (!D.mayOmitIdentifier()) {
// If this can't be an abstract-declarator, this *must* be a grouping
// paren, because we haven't seen the identifier yet.
isGrouping = true;
} else if (Tok.is(tok::r_paren) || // 'int()' is a function.
(getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
isDeclarationSpecifier()) { // 'int(int)' is a function.
// This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
// considered to be a type, not a K&R identifier-list.
isGrouping = false;
} else {
// Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
isGrouping = true;
}
// If this is a grouping paren, handle:
// direct-declarator: '(' declarator ')'
// direct-declarator: '(' attributes declarator ')'
if (isGrouping) {
bool hadGroupingParens = D.hasGroupingParens();
D.setGroupingParens(true);
if (AttrList)
D.AddAttributes(AttrList.take(), SourceLocation());
ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
// Match the ')'.
SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
D.setGroupingParens(hadGroupingParens);
D.SetRangeEnd(Loc);
return;
}
// Okay, if this wasn't a grouping paren, it must be the start of a function
// argument list. Recognize that this declarator will never have an
// identifier (and remember where it would have been), then call into
// ParseFunctionDeclarator to handle of argument list.
D.SetIdentifier(0, Tok.getLocation());
ParseFunctionDeclarator(StartLoc, D, AttrList.take(), RequiresArg);
}
/// ParseFunctionDeclarator - We are after the identifier and have parsed the
/// declarator D up to a paren, which indicates that we are parsing function
/// arguments.
///
/// If AttrList is non-null, then the caller parsed those arguments immediately
/// after the open paren - they should be considered to be the first argument of
/// a parameter. If RequiresArg is true, then the first argument of the
/// function is required to be present and required to not be an identifier
/// list.
///
/// This method also handles this portion of the grammar:
/// parameter-type-list: [C99 6.7.5]
/// parameter-list
/// parameter-list ',' '...'
/// [C++] parameter-list '...'
///
/// parameter-list: [C99 6.7.5]
/// parameter-declaration
/// parameter-list ',' parameter-declaration
///
/// parameter-declaration: [C99 6.7.5]
/// declaration-specifiers declarator
/// [C++] declaration-specifiers declarator '=' assignment-expression
/// [GNU] declaration-specifiers declarator attributes
/// declaration-specifiers abstract-declarator[opt]
/// [C++] declaration-specifiers abstract-declarator[opt]
/// '=' assignment-expression
/// [GNU] declaration-specifiers abstract-declarator[opt] attributes
///
/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
/// and "exception-specification[opt]".
///
void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
AttributeList *AttrList,
bool RequiresArg) {
// lparen is already consumed!
assert(D.isPastIdentifier() && "Should not call before identifier!");
// This parameter list may be empty.
if (Tok.is(tok::r_paren)) {
if (RequiresArg) {
Diag(Tok, diag::err_argument_required_after_attribute);
delete AttrList;
}
SourceLocation RParenLoc = ConsumeParen(); // Eat the closing ')'.
SourceLocation EndLoc = RParenLoc;
// cv-qualifier-seq[opt].
DeclSpec DS;
bool hasExceptionSpec = false;
SourceLocation ThrowLoc;
bool hasAnyExceptionSpec = false;
llvm::SmallVector<TypeTy*, 2> Exceptions;
llvm::SmallVector<SourceRange, 2> ExceptionRanges;
if (getLang().CPlusPlus) {
ParseTypeQualifierListOpt(DS, false /*no attributes*/);
if (!DS.getSourceRange().getEnd().isInvalid())
EndLoc = DS.getSourceRange().getEnd();
// Parse exception-specification[opt].
if (Tok.is(tok::kw_throw)) {
hasExceptionSpec = true;
ThrowLoc = Tok.getLocation();
ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
hasAnyExceptionSpec);
assert(Exceptions.size() == ExceptionRanges.size() &&
"Produced different number of exception types and ranges.");
}
}
// Remember that we parsed a function type, and remember the attributes.
// int() -> no prototype, no '...'.
D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
/*variadic*/ false,
SourceLocation(),
/*arglist*/ 0, 0,
DS.getTypeQualifiers(),
hasExceptionSpec, ThrowLoc,
hasAnyExceptionSpec,
Exceptions.data(),
ExceptionRanges.data(),
Exceptions.size(),
LParenLoc, RParenLoc, D),
EndLoc);
return;
}
// Alternatively, this parameter list may be an identifier list form for a
// K&R-style function: void foo(a,b,c)
if (!getLang().CPlusPlus && Tok.is(tok::identifier)
&& !TryAltiVecVectorToken()) {
if (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) {
// K&R identifier lists can't have typedefs as identifiers, per
// C99 6.7.5.3p11.
if (RequiresArg) {
Diag(Tok, diag::err_argument_required_after_attribute);
delete AttrList;
}
// Identifier list. Note that '(' identifier-list ')' is only allowed for
// normal declarators, not for abstract-declarators. Get the first
// identifier.
Token FirstTok = Tok;
ConsumeToken(); // eat the first identifier.
// Identifier lists follow a really simple grammar: the identifiers can
// be followed *only* by a ", moreidentifiers" or ")". However, K&R
// identifier lists are really rare in the brave new modern world, and it
// is very common for someone to typo a type in a non-k&r style list. If
// we are presented with something like: "void foo(intptr x, float y)",
// we don't want to start parsing the function declarator as though it is
// a K&R style declarator just because intptr is an invalid type.
//
// To handle this, we check to see if the token after the first identifier
// is a "," or ")". Only if so, do we parse it as an identifier list.
if (Tok.is(tok::comma) || Tok.is(tok::r_paren))
return ParseFunctionDeclaratorIdentifierList(LParenLoc,
FirstTok.getIdentifierInfo(),
FirstTok.getLocation(), D);
// If we get here, the code is invalid. Push the first identifier back
// into the token stream and parse the first argument as an (invalid)
// normal argument declarator.
PP.EnterToken(Tok);
Tok = FirstTok;
}
}
// Finally, a normal, non-empty parameter type list.
// Build up an array of information about the parsed arguments.
llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
// Enter function-declaration scope, limiting any declarators to the
// function prototype scope, including parameter declarators.
ParseScope PrototypeScope(this,
Scope::FunctionPrototypeScope|Scope::DeclScope);
bool IsVariadic = false;
SourceLocation EllipsisLoc;
while (1) {
if (Tok.is(tok::ellipsis)) {
IsVariadic = true;
EllipsisLoc = ConsumeToken(); // Consume the ellipsis.
break;
}
SourceLocation DSStart = Tok.getLocation();
// Parse the declaration-specifiers.
// Just use the ParsingDeclaration "scope" of the declarator.
DeclSpec DS;
// If the caller parsed attributes for the first argument, add them now.
if (AttrList) {
DS.AddAttributes(AttrList);
AttrList = 0; // Only apply the attributes to the first parameter.
}
2009-02-28 02:38:20 +08:00
ParseDeclarationSpecifiers(DS);
// Parse the declarator. This is "PrototypeContext", because we must
// accept either 'declarator' or 'abstract-declarator' here.
Declarator ParmDecl(DS, Declarator::PrototypeContext);
ParseDeclarator(ParmDecl);
// Parse GNU attributes, if present.
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseGNUAttributes(&Loc);
ParmDecl.AddAttributes(AttrList, Loc);
}
// Remember this parsed parameter in ParamInfo.
IdentifierInfo *ParmII = ParmDecl.getIdentifier();
// DefArgToks is used when the parsing of default arguments needs
// to be delayed.
CachedTokens *DefArgToks = 0;
// If no parameter was specified, verify that *something* was specified,
// otherwise we have a missing type and identifier.
2009-02-28 02:38:20 +08:00
if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
ParmDecl.getNumTypeObjects() == 0) {
// Completely missing, emit error.
Diag(DSStart, diag::err_missing_param);
} else {
// Otherwise, we have something. Add it and let semantic analysis try
// to grok it and add the result to the ParamInfo we are building.
// Inform the actions module about the parameter declarator, so it gets
// added to the current scope.
DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
// Parse the default argument, if any. We parse the default
// arguments in all dialects; the semantic analysis in
// ActOnParamDefaultArgument will reject the default argument in
// C.
if (Tok.is(tok::equal)) {
SourceLocation EqualLoc = Tok.getLocation();
// Parse the default argument
if (D.getContext() == Declarator::MemberContext) {
// If we're inside a class definition, cache the tokens
// corresponding to the default argument. We'll actually parse
// them when we see the end of the class definition.
// FIXME: Templates will require something similar.
// FIXME: Can we use a smart pointer for Toks?
DefArgToks = new CachedTokens;
if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
/*StopAtSemi=*/true,
/*ConsumeFinalToken=*/false)) {
delete DefArgToks;
DefArgToks = 0;
Actions.ActOnParamDefaultArgumentError(Param);
} else
Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
(*DefArgToks)[1].getLocation());
} else {
// Consume the '='.
ConsumeToken();
OwningExprResult DefArgResult(ParseAssignmentExpression());
if (DefArgResult.isInvalid()) {
Actions.ActOnParamDefaultArgumentError(Param);
SkipUntil(tok::comma, tok::r_paren, true, true);
} else {
// Inform the actions module about the default argument
Actions.ActOnParamDefaultArgument(Param, EqualLoc,
move(DefArgResult));
}
}
}
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
ParmDecl.getIdentifierLoc(), Param,
DefArgToks));
}
// If the next token is a comma, consume it and keep reading arguments.
if (Tok.isNot(tok::comma)) {
if (Tok.is(tok::ellipsis)) {
IsVariadic = true;
EllipsisLoc = ConsumeToken(); // Consume the ellipsis.
if (!getLang().CPlusPlus) {
// We have ellipsis without a preceding ',', which is ill-formed
// in C. Complain and provide the fix.
Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
<< FixItHint::CreateInsertion(EllipsisLoc, ", ");
}
}
break;
}
// Consume the comma.
ConsumeToken();
}
// Leave prototype scope.
PrototypeScope.Exit();
// If we have the closing ')', eat it.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
SourceLocation EndLoc = RParenLoc;
DeclSpec DS;
bool hasExceptionSpec = false;
SourceLocation ThrowLoc;
bool hasAnyExceptionSpec = false;
llvm::SmallVector<TypeTy*, 2> Exceptions;
llvm::SmallVector<SourceRange, 2> ExceptionRanges;
if (getLang().CPlusPlus) {
// Parse cv-qualifier-seq[opt].
ParseTypeQualifierListOpt(DS, false /*no attributes*/);
if (!DS.getSourceRange().getEnd().isInvalid())
EndLoc = DS.getSourceRange().getEnd();
// Parse exception-specification[opt].
if (Tok.is(tok::kw_throw)) {
hasExceptionSpec = true;
ThrowLoc = Tok.getLocation();
ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
hasAnyExceptionSpec);
assert(Exceptions.size() == ExceptionRanges.size() &&
"Produced different number of exception types and ranges.");
}
}
// Remember that we parsed a function type, and remember the attributes.
D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
EllipsisLoc,
ParamInfo.data(), ParamInfo.size(),
DS.getTypeQualifiers(),
hasExceptionSpec, ThrowLoc,
hasAnyExceptionSpec,
Exceptions.data(),
ExceptionRanges.data(),
Exceptions.size(),
LParenLoc, RParenLoc, D),
EndLoc);
}
/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
/// we found a K&R-style identifier list instead of a type argument list. The
/// first identifier has already been consumed, and the current token is the
/// token right after it.
///
/// identifier-list: [C99 6.7.5]
/// identifier
/// identifier-list ',' identifier
///
void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
IdentifierInfo *FirstIdent,
SourceLocation FirstIdentLoc,
Declarator &D) {
// Build up an array of information about the parsed arguments.
llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
// If there was no identifier specified for the declarator, either we are in
// an abstract-declarator, or we are in a parameter declarator which was found
// to be abstract. In abstract-declarators, identifier lists are not valid:
// diagnose this.
if (!D.getIdentifier())
Diag(FirstIdentLoc, diag::ext_ident_list_in_param);
// The first identifier was already read, and is known to be the first
// identifier in the list. Remember this identifier in ParamInfo.
ParamsSoFar.insert(FirstIdent);
ParamInfo.push_back(DeclaratorChunk::ParamInfo(FirstIdent, FirstIdentLoc,
DeclPtrTy()));
while (Tok.is(tok::comma)) {
// Eat the comma.
ConsumeToken();
// If this isn't an identifier, report the error and skip until ')'.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
SkipUntil(tok::r_paren);
return;
}
IdentifierInfo *ParmII = Tok.getIdentifierInfo();
// Reject 'typedef int y; int test(x, y)', but continue parsing.
if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
// Verify that the argument identifier has not already been mentioned.
if (!ParamsSoFar.insert(ParmII)) {
Diag(Tok, diag::err_param_redefinition) << ParmII;
} else {
// Remember this identifier in ParamInfo.
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
Tok.getLocation(),
DeclPtrTy()));
}
// Eat the identifier.
ConsumeToken();
}
// If we have the closing ')', eat it and we're done.
SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
// Remember that we parsed a function type, and remember the attributes. This
// function type is always a K&R style function type, which is not varargs and
// has no prototype.
D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
SourceLocation(),
&ParamInfo[0], ParamInfo.size(),
/*TypeQuals*/0,
/*exception*/false,
SourceLocation(), false, 0, 0, 0,
LParenLoc, RLoc, D),
RLoc);
}
/// [C90] direct-declarator '[' constant-expression[opt] ']'
/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
void Parser::ParseBracketDeclarator(Declarator &D) {
SourceLocation StartLoc = ConsumeBracket();
// C array syntax has many features, but by-far the most common is [] and [4].
// This code does a fast path to handle some of the most obvious cases.
if (Tok.getKind() == tok::r_square) {
SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
//FIXME: Use these
CXX0XAttributeList Attr;
if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier(true)) {
Attr = ParseCXX0XAttributes();
}
// Remember that we parsed the empty array type.
OwningExprResult NumElements(Actions);
D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
StartLoc, EndLoc),
EndLoc);
return;
} else if (Tok.getKind() == tok::numeric_constant &&
GetLookAheadToken(1).is(tok::r_square)) {
// [4] is very common. Parse the numeric constant expression.
OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
ConsumeToken();
SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
//FIXME: Use these
CXX0XAttributeList Attr;
if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
Attr = ParseCXX0XAttributes();
}
// If there was an error parsing the assignment-expression, recover.
if (ExprRes.isInvalid())
ExprRes.release(); // Deallocate expr, just use [].
// Remember that we parsed a array type, and remember its features.
D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0, ExprRes.release(),
StartLoc, EndLoc),
EndLoc);
return;
}
// If valid, this location is the position where we read the 'static' keyword.
SourceLocation StaticLoc;
if (Tok.is(tok::kw_static))
StaticLoc = ConsumeToken();
// If there is a type-qualifier-list, read it now.
// Type qualifiers in an array subscript are a C99 feature.
DeclSpec DS;
ParseTypeQualifierListOpt(DS, false /*no attributes*/);
// If we haven't already read 'static', check to see if there is one after the
// type-qualifier-list.
if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
StaticLoc = ConsumeToken();
// Handle "direct-declarator [ type-qual-list[opt] * ]".
bool isStar = false;
OwningExprResult NumElements(Actions);
// Handle the case where we have '[*]' as the array size. However, a leading
// star could be the start of an expression, for example 'X[*p + 4]'. Verify
// the the token after the star is a ']'. Since stars in arrays are
// infrequent, use of lookahead is not costly here.
if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
ConsumeToken(); // Eat the '*'.
if (StaticLoc.isValid()) {
Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
StaticLoc = SourceLocation(); // Drop the static.
}
isStar = true;
} else if (Tok.isNot(tok::r_square)) {
// Note, in C89, this production uses the constant-expr production instead
// of assignment-expr. The only difference is that assignment-expr allows
// things like '=' and '*='. Sema rejects these in C89 mode because they
// are not i-c-e's, so we don't need to distinguish between the two here.
// Parse the constant-expression or assignment-expression now (depending
// on dialect).
if (getLang().CPlusPlus)
NumElements = ParseConstantExpression();
else
NumElements = ParseAssignmentExpression();
}
// If there was an error parsing the assignment-expression, recover.
if (NumElements.isInvalid()) {
D.setInvalidType(true);
// If the expression was invalid, skip it.
SkipUntil(tok::r_square);
return;
}
SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
//FIXME: Use these
CXX0XAttributeList Attr;
if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
Attr = ParseCXX0XAttributes();
}
// Remember that we parsed a array type, and remember its features.
D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
StaticLoc.isValid(), isStar,
NumElements.release(),
StartLoc, EndLoc),
EndLoc);
}
/// [GNU] typeof-specifier:
/// typeof ( expressions )
/// typeof ( type-name )
/// [GNU/C++] typeof unary-expression
///
void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
Token OpTok = Tok;
SourceLocation StartLoc = ConsumeToken();
const bool hasParens = Tok.is(tok::l_paren);
bool isCastExpr;
TypeTy *CastTy;
SourceRange CastRange;
OwningExprResult Operand = ParseExprAfterTypeofSizeofAlignof(OpTok,
isCastExpr,
CastTy,
CastRange);
if (hasParens)
DS.setTypeofParensRange(CastRange);
if (CastRange.getEnd().isInvalid())
// FIXME: Not accurate, the range gets one token more than it should.
DS.SetRangeEnd(Tok.getLocation());
else
DS.SetRangeEnd(CastRange.getEnd());
if (isCastExpr) {
if (!CastTy) {
DS.SetTypeSpecError();
return;
}
const char *PrevSpec = 0;
unsigned DiagID;
// Check for duplicate type specifiers (e.g. "int typeof(int)").
if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
DiagID, CastTy))
Diag(StartLoc, DiagID) << PrevSpec;
return;
}
// If we get here, the operand to the typeof was an expresion.
if (Operand.isInvalid()) {
DS.SetTypeSpecError();
return;
}
const char *PrevSpec = 0;
unsigned DiagID;
// Check for duplicate type specifiers (e.g. "int typeof(int)").
if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
DiagID, Operand.release()))
Diag(StartLoc, DiagID) << PrevSpec;
}
/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
/// from TryAltiVecVectorToken.
bool Parser::TryAltiVecVectorTokenOutOfLine() {
Token Next = NextToken();
switch (Next.getKind()) {
default: return false;
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_void:
case tok::kw_char:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw___pixel:
Tok.setKind(tok::kw___vector);
return true;
case tok::identifier:
if (Next.getIdentifierInfo() == Ident_pixel) {
Tok.setKind(tok::kw___vector);
return true;
}
return false;
}
}
bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
bool &isInvalid) {
if (Tok.getIdentifierInfo() == Ident_vector) {
Token Next = NextToken();
switch (Next.getKind()) {
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_void:
case tok::kw_char:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw___pixel:
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
return true;
case tok::identifier:
if (Next.getIdentifierInfo() == Ident_pixel) {
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
return true;
}
break;
default:
break;
}
} else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
DS.isTypeAltiVecVector()) {
isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
return true;
}
return false;
}