llvm-project/clang/lib/CodeGen/CGCall.cpp

799 lines
25 KiB
C++
Raw Normal View History

//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These classes wrap the information about a call or function
// definition used to handle ABI compliancy.
//
//===----------------------------------------------------------------------===//
#include "CGCall.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Attributes.h"
using namespace clang;
using namespace CodeGen;
/***/
// FIXME: Use iterator and sidestep silly type array creation.
CGFunctionInfo::CGFunctionInfo(const FunctionTypeNoProto *FTNP)
: IsVariadic(true)
{
ArgTypes.push_back(FTNP->getResultType());
}
CGFunctionInfo::CGFunctionInfo(const FunctionTypeProto *FTP)
: IsVariadic(FTP->isVariadic())
{
ArgTypes.push_back(FTP->getResultType());
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
ArgTypes.push_back(FTP->getArgType(i));
}
// FIXME: Is there really any reason to have this still?
CGFunctionInfo::CGFunctionInfo(const FunctionDecl *FD)
{
const FunctionType *FTy = FD->getType()->getAsFunctionType();
const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(FTy);
ArgTypes.push_back(FTy->getResultType());
if (FTP) {
IsVariadic = FTP->isVariadic();
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
ArgTypes.push_back(FTP->getArgType(i));
} else {
IsVariadic = true;
}
}
CGFunctionInfo::CGFunctionInfo(const ObjCMethodDecl *MD,
const ASTContext &Context)
: IsVariadic(MD->isVariadic())
{
ArgTypes.push_back(MD->getResultType());
ArgTypes.push_back(MD->getSelfDecl()->getType());
ArgTypes.push_back(Context.getObjCSelType());
for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
e = MD->param_end(); i != e; ++i)
ArgTypes.push_back((*i)->getType());
}
ArgTypeIterator CGFunctionInfo::argtypes_begin() const {
return ArgTypes.begin();
}
ArgTypeIterator CGFunctionInfo::argtypes_end() const {
return ArgTypes.end();
}
/***/
CGCallInfo::CGCallInfo(QualType _ResultType, const CallArgList &_Args) {
ArgTypes.push_back(_ResultType);
for (CallArgList::const_iterator i = _Args.begin(), e = _Args.end(); i!=e; ++i)
ArgTypes.push_back(i->second);
}
ArgTypeIterator CGCallInfo::argtypes_begin() const {
return ArgTypes.begin();
}
ArgTypeIterator CGCallInfo::argtypes_end() const {
return ArgTypes.end();
}
/***/
/// ABIArgInfo - Helper class to encapsulate information about how a
/// specific C type should be passed to or returned from a function.
class ABIArgInfo {
public:
enum Kind {
Default,
StructRet, /// Only valid for aggregate return types.
Coerce, /// Only valid for aggregate return types, the argument
/// should be accessed by coercion to a provided type.
ByVal, /// Only valid for aggregate argument types. The
/// structure should be passed "byval" with the
/// specified alignment (0 indicates default
/// alignment).
Expand, /// Only valid for aggregate argument types. The
/// structure should be expanded into consecutive
/// arguments for its constituent fields. Currently
/// expand is only allowed on structures whose fields
/// are all scalar types or are themselves expandable
/// types.
KindFirst=Default, KindLast=Expand
};
private:
Kind TheKind;
const llvm::Type *TypeData;
unsigned UIntData;
ABIArgInfo(Kind K, const llvm::Type *TD=0,
unsigned UI=0) : TheKind(K),
TypeData(TD),
UIntData(0) {}
public:
static ABIArgInfo getDefault() {
return ABIArgInfo(Default);
}
static ABIArgInfo getStructRet() {
return ABIArgInfo(StructRet);
}
static ABIArgInfo getCoerce(const llvm::Type *T) {
assert(T->isSingleValueType() && "Can only coerce to simple types");
return ABIArgInfo(Coerce, T);
}
static ABIArgInfo getByVal(unsigned Alignment) {
return ABIArgInfo(ByVal, 0, Alignment);
}
static ABIArgInfo getExpand() {
return ABIArgInfo(Expand);
}
Kind getKind() const { return TheKind; }
bool isDefault() const { return TheKind == Default; }
bool isStructRet() const { return TheKind == StructRet; }
bool isCoerce() const { return TheKind == Coerce; }
bool isByVal() const { return TheKind == ByVal; }
bool isExpand() const { return TheKind == Expand; }
// Coerce accessors
const llvm::Type *getCoerceToType() const {
assert(TheKind == Coerce && "Invalid kind!");
return TypeData;
}
// ByVal accessors
unsigned getByValAlignment() const {
assert(TheKind == ByVal && "Invalid kind!");
return UIntData;
}
};
/***/
/// isEmptyStruct - Return true iff a structure has no non-empty
/// members. Note that a structure with a flexible array member is not
/// considered empty.
static bool isEmptyStruct(QualType T) {
const RecordType *RT = T->getAsStructureType();
if (!RT)
return 0;
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return false;
for (RecordDecl::field_const_iterator i = RD->field_begin(),
e = RD->field_end(); i != e; ++i) {
const FieldDecl *FD = *i;
if (!isEmptyStruct(FD->getType()))
return false;
}
return true;
}
/// isSingleElementStruct - Determine if a structure is a "single
/// element struct", i.e. it has exactly one non-empty field or
/// exactly one field which is itself a single element
/// struct. Structures with flexible array members are never
/// considered single element structs.
///
/// \return The field declaration for the single non-empty field, if
/// it exists.
static const FieldDecl *isSingleElementStruct(QualType T) {
const RecordType *RT = T->getAsStructureType();
if (!RT)
return 0;
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return 0;
const FieldDecl *Found = 0;
for (RecordDecl::field_const_iterator i = RD->field_begin(),
e = RD->field_end(); i != e; ++i) {
const FieldDecl *FD = *i;
QualType FT = FD->getType();
if (isEmptyStruct(FT)) {
// Ignore
} else if (Found) {
return 0;
} else if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
Found = FD;
} else {
Found = isSingleElementStruct(FT);
if (!Found)
return 0;
}
}
return Found;
}
static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
if (!Ty->getAsBuiltinType() && !Ty->isPointerType())
return false;
uint64_t Size = Context.getTypeSize(Ty);
return Size == 32 || Size == 64;
}
static bool areAllFields32Or64BitBasicType(const RecordDecl *RD,
ASTContext &Context) {
for (RecordDecl::field_const_iterator i = RD->field_begin(),
e = RD->field_end(); i != e; ++i) {
const FieldDecl *FD = *i;
if (!is32Or64BitBasicType(FD->getType(), Context))
return false;
// If this is a bit-field we need to make sure it is still a
// 32-bit or 64-bit type.
if (Expr *BW = FD->getBitWidth()) {
unsigned Width = BW->getIntegerConstantExprValue(Context).getZExtValue();
if (Width <= 16)
return false;
}
}
return true;
}
static ABIArgInfo classifyReturnType(QualType RetTy,
ASTContext &Context) {
assert(!RetTy->isArrayType() &&
"Array types cannot be passed directly.");
if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
// Classify "single element" structs as their element type.
const FieldDecl *SeltFD = isSingleElementStruct(RetTy);
if (SeltFD) {
QualType SeltTy = SeltFD->getType()->getDesugaredType();
if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) {
// FIXME: This is gross, it would be nice if we could just
// pass back SeltTy and have clients deal with it. Is it worth
// supporting coerce to both LLVM and clang Types?
if (BT->isIntegerType()) {
uint64_t Size = Context.getTypeSize(SeltTy);
return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size));
} else if (BT->getKind() == BuiltinType::Float) {
return ABIArgInfo::getCoerce(llvm::Type::FloatTy);
} else if (BT->getKind() == BuiltinType::Double) {
return ABIArgInfo::getCoerce(llvm::Type::DoubleTy);
}
} else if (SeltTy->isPointerType()) {
// FIXME: It would be really nice if this could come out as
// the proper pointer type.
llvm::Type *PtrTy =
llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
return ABIArgInfo::getCoerce(PtrTy);
}
}
uint64_t Size = Context.getTypeSize(RetTy);
if (Size == 8) {
return ABIArgInfo::getCoerce(llvm::Type::Int8Ty);
} else if (Size == 16) {
return ABIArgInfo::getCoerce(llvm::Type::Int16Ty);
} else if (Size == 32) {
return ABIArgInfo::getCoerce(llvm::Type::Int32Ty);
} else if (Size == 64) {
return ABIArgInfo::getCoerce(llvm::Type::Int64Ty);
} else {
return ABIArgInfo::getStructRet();
}
} else {
return ABIArgInfo::getDefault();
}
}
static ABIArgInfo classifyArgumentType(QualType Ty,
ASTContext &Context) {
assert(!Ty->isArrayType() && "Array types cannot be passed directly.");
if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
// Structures with flexible arrays are always byval.
if (const RecordType *RT = Ty->getAsStructureType())
if (RT->getDecl()->hasFlexibleArrayMember())
return ABIArgInfo::getByVal(0);
// Expand empty structs (i.e. ignore)
uint64_t Size = Context.getTypeSize(Ty);
if (Ty->isStructureType() && Size == 0)
return ABIArgInfo::getExpand();
// Expand structs with size <= 128-bits which consist only of
// basic types (int, long long, float, double, xxx*). This is
// non-recursive and does not ignore empty fields.
if (const RecordType *RT = Ty->getAsStructureType()) {
if (Context.getTypeSize(Ty) <= 4*32 &&
areAllFields32Or64BitBasicType(RT->getDecl(), Context))
return ABIArgInfo::getExpand();
}
return ABIArgInfo::getByVal(0);
} else {
return ABIArgInfo::getDefault();
}
}
static ABIArgInfo getABIReturnInfo(QualType Ty,
ASTContext &Context) {
ABIArgInfo Info = classifyReturnType(Ty, Context);
// Ensure default on aggregate types is StructRet.
if (Info.isDefault() && CodeGenFunction::hasAggregateLLVMType(Ty))
return ABIArgInfo::getStructRet();
return Info;
}
static ABIArgInfo getABIArgumentInfo(QualType Ty,
ASTContext &Context) {
ABIArgInfo Info = classifyArgumentType(Ty, Context);
// Ensure default on aggregate types is ByVal.
if (Info.isDefault() && CodeGenFunction::hasAggregateLLVMType(Ty))
return ABIArgInfo::getByVal(0);
return Info;
}
/***/
void CodeGenTypes::GetExpandedTypes(QualType Ty,
std::vector<const llvm::Type*> &ArgTys) {
const RecordType *RT = Ty->getAsStructureType();
assert(RT && "Can only expand structure types.");
const RecordDecl *RD = RT->getDecl();
assert(!RD->hasFlexibleArrayMember() &&
"Cannot expand structure with flexible array.");
for (RecordDecl::field_const_iterator i = RD->field_begin(),
e = RD->field_end(); i != e; ++i) {
const FieldDecl *FD = *i;
assert(!FD->isBitField() &&
"Cannot expand structure with bit-field members.");
QualType FT = FD->getType();
if (CodeGenFunction::hasAggregateLLVMType(FT)) {
GetExpandedTypes(FT, ArgTys);
} else {
ArgTys.push_back(ConvertType(FT));
}
}
}
llvm::Function::arg_iterator
CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
llvm::Function::arg_iterator AI) {
const RecordType *RT = Ty->getAsStructureType();
assert(RT && "Can only expand structure types.");
RecordDecl *RD = RT->getDecl();
assert(LV.isSimple() &&
"Unexpected non-simple lvalue during struct expansion.");
llvm::Value *Addr = LV.getAddress();
for (RecordDecl::field_iterator i = RD->field_begin(),
e = RD->field_end(); i != e; ++i) {
FieldDecl *FD = *i;
QualType FT = FD->getType();
// FIXME: What are the right qualifiers here?
LValue LV = EmitLValueForField(Addr, FD, false, 0);
if (CodeGenFunction::hasAggregateLLVMType(FT)) {
AI = ExpandTypeFromArgs(FT, LV, AI);
} else {
EmitStoreThroughLValue(RValue::get(AI), LV, FT);
++AI;
}
}
return AI;
}
void
CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
llvm::SmallVector<llvm::Value*, 16> &Args) {
const RecordType *RT = Ty->getAsStructureType();
assert(RT && "Can only expand structure types.");
RecordDecl *RD = RT->getDecl();
assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
llvm::Value *Addr = RV.getAggregateAddr();
for (RecordDecl::field_iterator i = RD->field_begin(),
e = RD->field_end(); i != e; ++i) {
FieldDecl *FD = *i;
QualType FT = FD->getType();
// FIXME: What are the right qualifiers here?
LValue LV = EmitLValueForField(Addr, FD, false, 0);
if (CodeGenFunction::hasAggregateLLVMType(FT)) {
ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
} else {
RValue RV = EmitLoadOfLValue(LV, FT);
assert(RV.isScalar() &&
"Unexpected non-scalar rvalue during struct expansion.");
Args.push_back(RV.getScalarVal());
}
}
}
/***/
const llvm::FunctionType *
CodeGenTypes::GetFunctionType(const CGCallInfo &CI, bool IsVariadic) {
return GetFunctionType(CI.argtypes_begin(), CI.argtypes_end(), IsVariadic);
}
const llvm::FunctionType *
CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
return GetFunctionType(FI.argtypes_begin(), FI.argtypes_end(), FI.isVariadic());
}
const llvm::FunctionType *
CodeGenTypes::GetFunctionType(ArgTypeIterator begin, ArgTypeIterator end,
bool IsVariadic) {
std::vector<const llvm::Type*> ArgTys;
const llvm::Type *ResultType = 0;
QualType RetTy = *begin;
ABIArgInfo RetAI = getABIReturnInfo(RetTy, getContext());
switch (RetAI.getKind()) {
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
case ABIArgInfo::Default:
if (RetTy->isVoidType()) {
ResultType = llvm::Type::VoidTy;
} else {
ResultType = ConvertType(RetTy);
}
break;
case ABIArgInfo::StructRet: {
ResultType = llvm::Type::VoidTy;
const llvm::Type *STy = ConvertType(RetTy);
ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
break;
}
case ABIArgInfo::Coerce:
ResultType = RetAI.getCoerceToType();
break;
}
for (++begin; begin != end; ++begin) {
ABIArgInfo AI = getABIArgumentInfo(*begin, getContext());
const llvm::Type *Ty = ConvertType(*begin);
switch (AI.getKind()) {
case ABIArgInfo::Coerce:
case ABIArgInfo::StructRet:
assert(0 && "Invalid ABI kind for non-return argument");
case ABIArgInfo::ByVal:
// byval arguments are always on the stack, which is addr space #0.
ArgTys.push_back(llvm::PointerType::getUnqual(Ty));
assert(AI.getByValAlignment() == 0 && "FIXME: alignment unhandled");
break;
case ABIArgInfo::Default:
ArgTys.push_back(Ty);
break;
case ABIArgInfo::Expand:
GetExpandedTypes(*begin, ArgTys);
break;
}
}
return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
}
bool CodeGenModule::ReturnTypeUsesSret(QualType RetTy) {
return getABIReturnInfo(RetTy, getContext()).isStructRet();
}
void CodeGenModule::ConstructAttributeList(const Decl *TargetDecl,
ArgTypeIterator begin,
ArgTypeIterator end,
AttributeListType &PAL) {
unsigned FuncAttrs = 0;
unsigned RetAttrs = 0;
if (TargetDecl) {
if (TargetDecl->getAttr<NoThrowAttr>())
FuncAttrs |= llvm::Attribute::NoUnwind;
if (TargetDecl->getAttr<NoReturnAttr>())
FuncAttrs |= llvm::Attribute::NoReturn;
if (TargetDecl->getAttr<PureAttr>())
FuncAttrs |= llvm::Attribute::ReadOnly;
if (TargetDecl->getAttr<ConstAttr>())
FuncAttrs |= llvm::Attribute::ReadNone;
}
QualType RetTy = *begin;
unsigned Index = 1;
ABIArgInfo RetAI = getABIReturnInfo(RetTy, getContext());
switch (RetAI.getKind()) {
case ABIArgInfo::Default:
if (RetTy->isPromotableIntegerType()) {
if (RetTy->isSignedIntegerType()) {
RetAttrs |= llvm::Attribute::SExt;
} else if (RetTy->isUnsignedIntegerType()) {
RetAttrs |= llvm::Attribute::ZExt;
}
}
break;
case ABIArgInfo::StructRet:
PAL.push_back(llvm::AttributeWithIndex::get(Index,
llvm::Attribute::StructRet|
llvm::Attribute::NoAlias));
++Index;
break;
case ABIArgInfo::Coerce:
break;
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
}
if (RetAttrs)
PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
for (++begin; begin != end; ++begin) {
QualType ParamType = *begin;
unsigned Attributes = 0;
ABIArgInfo AI = getABIArgumentInfo(ParamType, getContext());
switch (AI.getKind()) {
case ABIArgInfo::StructRet:
case ABIArgInfo::Coerce:
assert(0 && "Invalid ABI kind for non-return argument");
case ABIArgInfo::ByVal:
Attributes |= llvm::Attribute::ByVal;
assert(AI.getByValAlignment() == 0 && "FIXME: alignment unhandled");
break;
case ABIArgInfo::Default:
if (ParamType->isPromotableIntegerType()) {
if (ParamType->isSignedIntegerType()) {
Attributes |= llvm::Attribute::SExt;
} else if (ParamType->isUnsignedIntegerType()) {
Attributes |= llvm::Attribute::ZExt;
}
}
break;
case ABIArgInfo::Expand: {
std::vector<const llvm::Type*> Tys;
// FIXME: This is rather inefficient. Do we ever actually need
// to do anything here? The result should be just reconstructed
// on the other side, so extension should be a non-issue.
getTypes().GetExpandedTypes(ParamType, Tys);
Index += Tys.size();
continue;
}
}
if (Attributes)
PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
++Index;
}
if (FuncAttrs)
PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
}
void CodeGenFunction::EmitFunctionProlog(llvm::Function *Fn,
QualType RetTy,
const FunctionArgList &Args) {
// Emit allocs for param decls. Give the LLVM Argument nodes names.
llvm::Function::arg_iterator AI = Fn->arg_begin();
// Name the struct return argument.
if (CGM.ReturnTypeUsesSret(RetTy)) {
AI->setName("agg.result");
++AI;
}
for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
i != e; ++i) {
const VarDecl *Arg = i->first;
QualType Ty = i->second;
ABIArgInfo ArgI = getABIArgumentInfo(Ty, getContext());
switch (ArgI.getKind()) {
case ABIArgInfo::ByVal:
case ABIArgInfo::Default: {
assert(AI != Fn->arg_end() && "Argument mismatch!");
llvm::Value* V = AI;
if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
// This must be a promotion, for something like
// "void a(x) short x; {..."
V = EmitScalarConversion(V, Ty, Arg->getType());
}
EmitParmDecl(*Arg, V);
break;
}
case ABIArgInfo::Expand: {
// If this was structure was expand into multiple arguments then
// we need to create a temporary and reconstruct it from the
// arguments.
std::string Name(Arg->getName());
llvm::Value *Temp = CreateTempAlloca(ConvertType(Ty),
(Name + ".addr").c_str());
// FIXME: What are the right qualifiers here?
llvm::Function::arg_iterator End =
ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp,0), AI);
EmitParmDecl(*Arg, Temp);
// Name the arguments used in expansion and increment AI.
unsigned Index = 0;
for (; AI != End; ++AI, ++Index)
AI->setName(Name + "." + llvm::utostr(Index));
continue;
}
case ABIArgInfo::Coerce:
case ABIArgInfo::StructRet:
assert(0 && "Invalid ABI kind for non-return argument");
}
++AI;
}
assert(AI == Fn->arg_end() && "Argument mismatch!");
}
void CodeGenFunction::EmitFunctionEpilog(QualType RetTy,
llvm::Value *ReturnValue) {
llvm::Value *RV = 0;
// Functions with no result always return void.
if (ReturnValue) {
ABIArgInfo RetAI = getABIReturnInfo(RetTy, getContext());
switch (RetAI.getKind()) {
case ABIArgInfo::StructRet:
EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy);
break;
case ABIArgInfo::Default:
RV = Builder.CreateLoad(ReturnValue);
break;
case ABIArgInfo::Coerce: {
const llvm::Type *CoerceToPTy =
llvm::PointerType::getUnqual(RetAI.getCoerceToType());
RV = Builder.CreateLoad(Builder.CreateBitCast(ReturnValue, CoerceToPTy));
break;
}
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
}
}
if (RV) {
Builder.CreateRet(RV);
} else {
Builder.CreateRetVoid();
}
}
RValue CodeGenFunction::EmitCall(llvm::Value *Callee,
QualType RetTy,
const CallArgList &CallArgs) {
llvm::SmallVector<llvm::Value*, 16> Args;
// Handle struct-return functions by passing a pointer to the
// location that we would like to return into.
ABIArgInfo RetAI = getABIReturnInfo(RetTy, getContext());
switch (RetAI.getKind()) {
case ABIArgInfo::StructRet:
// Create a temporary alloca to hold the result of the call. :(
Args.push_back(CreateTempAlloca(ConvertType(RetTy)));
break;
case ABIArgInfo::Default:
case ABIArgInfo::Coerce:
break;
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
}
for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
I != E; ++I) {
ABIArgInfo ArgInfo = getABIArgumentInfo(I->second, getContext());
RValue RV = I->first;
switch (ArgInfo.getKind()) {
case ABIArgInfo::ByVal: // Default is byval
case ABIArgInfo::Default:
if (RV.isScalar()) {
Args.push_back(RV.getScalarVal());
} else if (RV.isComplex()) {
// Make a temporary alloca to pass the argument.
Args.push_back(CreateTempAlloca(ConvertType(I->second)));
StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
} else {
Args.push_back(RV.getAggregateAddr());
}
break;
case ABIArgInfo::StructRet:
case ABIArgInfo::Coerce:
assert(0 && "Invalid ABI kind for non-return argument");
break;
case ABIArgInfo::Expand:
ExpandTypeToArgs(I->second, RV, Args);
break;
}
}
llvm::CallInst *CI = Builder.CreateCall(Callee,&Args[0],&Args[0]+Args.size());
CGCallInfo CallInfo(RetTy, CallArgs);
// FIXME: Provide TargetDecl so nounwind, noreturn, etc, etc get set.
CodeGen::AttributeListType AttributeList;
CGM.ConstructAttributeList(0,
CallInfo.argtypes_begin(), CallInfo.argtypes_end(),
AttributeList);
CI->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
AttributeList.size()));
if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee))
CI->setCallingConv(F->getCallingConv());
if (CI->getType() != llvm::Type::VoidTy)
CI->setName("call");
switch (RetAI.getKind()) {
case ABIArgInfo::StructRet:
if (RetTy->isAnyComplexType())
return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
else
// Struct return.
return RValue::getAggregate(Args[0]);
case ABIArgInfo::Default:
return RValue::get(RetTy->isVoidType() ? 0 : CI);
case ABIArgInfo::Coerce: {
const llvm::Type *CoerceToPTy =
llvm::PointerType::getUnqual(RetAI.getCoerceToType());
llvm::Value *V = CreateTempAlloca(ConvertType(RetTy), "tmp");
Builder.CreateStore(CI, Builder.CreateBitCast(V, CoerceToPTy));
return RValue::getAggregate(V);
}
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
}
assert(0 && "Unhandled ABIArgInfo::Kind");
return RValue::get(0);
}