2013-10-16 07:33:07 +08:00
|
|
|
; RUN: llc -mtriple=x86_64-linux -mcpu=nehalem < %s | FileCheck %s --check-prefix=LIN
|
|
|
|
; RUN: llc -mtriple=x86_64-win32 -mcpu=nehalem < %s | FileCheck %s --check-prefix=WIN
|
2014-12-04 21:49:51 +08:00
|
|
|
; RUN: llc -mtriple=i686-win32 -mcpu=nehalem < %s | FileCheck %s --check-prefix=LIN32
|
2010-03-17 03:08:20 +08:00
|
|
|
; rdar://7398554
|
2010-03-16 07:23:03 +08:00
|
|
|
|
|
|
|
; When doing vector gather-scatter index calculation with 32-bit indices,
|
2014-12-04 21:49:51 +08:00
|
|
|
; use an efficient mov/shift sequence rather than shuffling each individual
|
2010-03-16 07:23:03 +08:00
|
|
|
; element out of the index vector.
|
|
|
|
|
2014-12-04 21:49:51 +08:00
|
|
|
; CHECK-LABEL: foo:
|
|
|
|
; LIN: movdqa (%rsi), %xmm0
|
|
|
|
; LIN: pand (%rdx), %xmm0
|
|
|
|
; LIN: pextrq $1, %xmm0, %r[[REG4:.+]]
|
2017-04-26 15:08:44 +08:00
|
|
|
; LIN: movq %xmm0, %r[[REG2:.+]]
|
2014-12-04 21:49:51 +08:00
|
|
|
; LIN: movslq %e[[REG2]], %r[[REG1:.+]]
|
|
|
|
; LIN: sarq $32, %r[[REG2]]
|
|
|
|
; LIN: movslq %e[[REG4]], %r[[REG3:.+]]
|
|
|
|
; LIN: sarq $32, %r[[REG4]]
|
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target.
The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information.
Please note that the patch extensively affects the X86 MC instr scheduling for SNB.
Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX.
The updated and extended information about each instruction includes the following details:
•static latency of the instruction
•number of uOps from which the instruction consists of
•all ports used by the instruction's' uOPs
For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5:
def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> {
let Latency = 9;
let NumMicroOps = 6;
let ResourceCycles = [1,2,2,1];
}
def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>;
def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>;
def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>;
def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>;
Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script.
Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb
Differential Revision: https://reviews.llvm.org/D35019#inline-304691
llvm-svn: 307529
2017-07-10 17:53:16 +08:00
|
|
|
; LIN: movsd (%rdi,%r[[REG3]],8), %xmm1
|
|
|
|
; LIN: movhpd (%rdi,%r[[REG4]],8), %xmm1
|
|
|
|
; LIN: movq %rdi, %xmm1
|
|
|
|
; LIN: movq %r[[REG3]], %xmm0
|
2017-06-28 19:23:31 +08:00
|
|
|
|
2014-12-04 21:49:51 +08:00
|
|
|
; WIN: movdqa (%rdx), %xmm0
|
|
|
|
; WIN: pand (%r8), %xmm0
|
|
|
|
; WIN: pextrq $1, %xmm0, %r[[REG4:.+]]
|
2017-04-26 15:08:44 +08:00
|
|
|
; WIN: movq %xmm0, %r[[REG2:.+]]
|
2014-12-04 21:49:51 +08:00
|
|
|
; WIN: movslq %e[[REG2]], %r[[REG1:.+]]
|
|
|
|
; WIN: sarq $32, %r[[REG2]]
|
|
|
|
; WIN: movslq %e[[REG4]], %r[[REG3:.+]]
|
|
|
|
; WIN: sarq $32, %r[[REG4]]
|
This patch completely replaces the scheduling information for the SandyBridge architecture target by modifying the file X86SchedSandyBridge.td located under the X86 Target.
The SandyBridge architects have provided us with a more accurate information about each instruction latency, number of uOPs and used ports and I used it to replace the existing estimated SNB instructions scheduling and to add missing scheduling information.
Please note that the patch extensively affects the X86 MC instr scheduling for SNB.
Also note that this patch will be followed by additional patches for the remaining target architectures HSW, IVB, BDW, SKL and SKX.
The updated and extended information about each instruction includes the following details:
•static latency of the instruction
•number of uOps from which the instruction consists of
•all ports used by the instruction's' uOPs
For example, the following code dictates that instructions, ADC64mr, ADC8mr, SBB64mr, SBB8mr have a static latency of 9 cycles. Each of these instructions is decoded into 6 micro operations which use ports 4, ports 2 or 3 and port 0 and ports 0 or 1 or 5:
def SBWriteResGroup94 : SchedWriteRes<[SBPort4,SBPort23,SBPort0,SBPort015]> {
let Latency = 9;
let NumMicroOps = 6;
let ResourceCycles = [1,2,2,1];
}
def: InstRW<[SBWriteResGroup94], (instregex "ADC64mr")>;
def: InstRW<[SBWriteResGroup94], (instregex "ADC8mr")>;
def: InstRW<[SBWriteResGroup94], (instregex "SBB64mr")>;
def: InstRW<[SBWriteResGroup94], (instregex "SBB8mr")>;
Note that apart for the header, most of the X86SchedSandyBridge.td file was generated by a script.
Reviewers: zvi, chandlerc, RKSimon, m_zuckerman, craig.topper, igorb
Differential Revision: https://reviews.llvm.org/D35019#inline-304691
llvm-svn: 307529
2017-07-10 17:53:16 +08:00
|
|
|
; WIN: movsd (%rcx,%r[[REG3]],8), %xmm1
|
|
|
|
; WIN: movhpd (%rcx,%r[[REG4]],8), %xmm1
|
|
|
|
; WIN: movdqa (%r[[REG2]]), %xmm0
|
|
|
|
; WIN: movq %r[[REG2]], %xmm1
|
2010-03-16 07:23:03 +08:00
|
|
|
|
|
|
|
define <4 x double> @foo(double* %p, <4 x i32>* %i, <4 x i32>* %h) nounwind {
|
2015-02-28 05:17:42 +08:00
|
|
|
%a = load <4 x i32>, <4 x i32>* %i
|
|
|
|
%b = load <4 x i32>, <4 x i32>* %h
|
2010-03-16 07:23:03 +08:00
|
|
|
%j = and <4 x i32> %a, %b
|
|
|
|
%d0 = extractelement <4 x i32> %j, i32 0
|
|
|
|
%d1 = extractelement <4 x i32> %j, i32 1
|
|
|
|
%d2 = extractelement <4 x i32> %j, i32 2
|
|
|
|
%d3 = extractelement <4 x i32> %j, i32 3
|
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
2015-02-28 03:29:02 +08:00
|
|
|
%q0 = getelementptr double, double* %p, i32 %d0
|
|
|
|
%q1 = getelementptr double, double* %p, i32 %d1
|
|
|
|
%q2 = getelementptr double, double* %p, i32 %d2
|
|
|
|
%q3 = getelementptr double, double* %p, i32 %d3
|
2015-02-28 05:17:42 +08:00
|
|
|
%r0 = load double, double* %q0
|
|
|
|
%r1 = load double, double* %q1
|
|
|
|
%r2 = load double, double* %q2
|
|
|
|
%r3 = load double, double* %q3
|
2010-03-16 07:23:03 +08:00
|
|
|
%v0 = insertelement <4 x double> undef, double %r0, i32 0
|
|
|
|
%v1 = insertelement <4 x double> %v0, double %r1, i32 1
|
|
|
|
%v2 = insertelement <4 x double> %v1, double %r2, i32 2
|
|
|
|
%v3 = insertelement <4 x double> %v2, double %r3, i32 3
|
|
|
|
ret <4 x double> %v3
|
|
|
|
}
|
2014-12-04 21:49:51 +08:00
|
|
|
|
|
|
|
; Check that the sequence previously used above, which bounces the vector off the
|
|
|
|
; cache works for x86-32. Note that in this case it will not be used for index
|
|
|
|
; calculation, since indexes are 32-bit, not 64.
|
|
|
|
; CHECK-LABEL: old:
|
|
|
|
; LIN32: movaps %xmm0, (%esp)
|
|
|
|
; LIN32-DAG: {{(mov|and)}}l (%esp),
|
|
|
|
; LIN32-DAG: {{(mov|and)}}l 4(%esp),
|
|
|
|
; LIN32-DAG: {{(mov|and)}}l 8(%esp),
|
|
|
|
; LIN32-DAG: {{(mov|and)}}l 12(%esp),
|
|
|
|
define <4 x i64> @old(double* %p, <4 x i32>* %i, <4 x i32>* %h, i64 %f) nounwind {
|
2015-02-28 05:17:42 +08:00
|
|
|
%a = load <4 x i32>, <4 x i32>* %i
|
|
|
|
%b = load <4 x i32>, <4 x i32>* %h
|
2014-12-04 21:49:51 +08:00
|
|
|
%j = and <4 x i32> %a, %b
|
|
|
|
%d0 = extractelement <4 x i32> %j, i32 0
|
|
|
|
%d1 = extractelement <4 x i32> %j, i32 1
|
|
|
|
%d2 = extractelement <4 x i32> %j, i32 2
|
|
|
|
%d3 = extractelement <4 x i32> %j, i32 3
|
|
|
|
%q0 = zext i32 %d0 to i64
|
|
|
|
%q1 = zext i32 %d1 to i64
|
|
|
|
%q2 = zext i32 %d2 to i64
|
|
|
|
%q3 = zext i32 %d3 to i64
|
|
|
|
%r0 = and i64 %q0, %f
|
|
|
|
%r1 = and i64 %q1, %f
|
|
|
|
%r2 = and i64 %q2, %f
|
|
|
|
%r3 = and i64 %q3, %f
|
|
|
|
%v0 = insertelement <4 x i64> undef, i64 %r0, i32 0
|
|
|
|
%v1 = insertelement <4 x i64> %v0, i64 %r1, i32 1
|
|
|
|
%v2 = insertelement <4 x i64> %v1, i64 %r2, i32 2
|
|
|
|
%v3 = insertelement <4 x i64> %v2, i64 %r3, i32 3
|
|
|
|
ret <4 x i64> %v3
|
|
|
|
}
|