llvm-project/lldb/source/Plugins/SymbolFile/DWARF/SymbolFileDWARFDebugMap.cpp

1096 lines
45 KiB
C++
Raw Normal View History

//===-- SymbolFileDWARFDebugMap.cpp ----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SymbolFileDWARFDebugMap.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleList.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/Timer.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolVendor.h"
#include "lldb/Symbol/VariableList.h"
#include "SymbolFileDWARF.h"
using namespace lldb;
using namespace lldb_private;
void
SymbolFileDWARFDebugMap::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
GetPluginDescriptionStatic(),
CreateInstance);
}
void
SymbolFileDWARFDebugMap::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
const char *
SymbolFileDWARFDebugMap::GetPluginNameStatic()
{
return "symbol-file.dwarf2-debugmap";
}
const char *
SymbolFileDWARFDebugMap::GetPluginDescriptionStatic()
{
return "DWARF and DWARF3 debug symbol file reader (debug map).";
}
SymbolFile*
SymbolFileDWARFDebugMap::CreateInstance (ObjectFile* obj_file)
{
return new SymbolFileDWARFDebugMap (obj_file);
}
SymbolFileDWARFDebugMap::SymbolFileDWARFDebugMap (ObjectFile* ofile) :
SymbolFile(ofile),
m_flags(),
m_compile_unit_infos(),
m_func_indexes(),
m_glob_indexes()
{
}
SymbolFileDWARFDebugMap::~SymbolFileDWARFDebugMap()
{
}
lldb_private::ClangASTContext &
SymbolFileDWARFDebugMap::GetClangASTContext ()
{
return GetTypeList()->GetClangASTContext();
}
void
SymbolFileDWARFDebugMap::InitOSO ()
{
if (m_flags.test(kHaveInitializedOSOs))
return;
m_flags.set(kHaveInitializedOSOs);
// In order to get the abilities of this plug-in, we look at the list of
// N_OSO entries (object files) from the symbol table and make sure that
// these files exist and also contain valid DWARF. If we get any of that
// then we return the abilities of the first N_OSO's DWARF.
Symtab* symtab = m_obj_file->GetSymtab();
if (symtab)
{
//StreamFile s(0, 4, eByteOrderHost, stdout);
std::vector<uint32_t> oso_indexes;
const uint32_t oso_index_count = symtab->AppendSymbolIndexesWithType(eSymbolTypeObjectFile, oso_indexes);
symtab->AppendSymbolIndexesWithType (eSymbolTypeCode, Symtab::eDebugYes, Symtab::eVisibilityAny, m_func_indexes);
symtab->AppendSymbolIndexesWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, m_glob_indexes);
symtab->SortSymbolIndexesByValue(m_func_indexes, true);
symtab->SortSymbolIndexesByValue(m_glob_indexes, true);
if (oso_index_count > 0)
{
m_compile_unit_infos.resize(oso_index_count);
// s.Printf("%s N_OSO symbols:\n", __PRETTY_FUNCTION__);
// symtab->Dump(&s, oso_indexes);
for (uint32_t i=0; i<oso_index_count; ++i)
{
m_compile_unit_infos[i].so_symbol = symtab->SymbolAtIndex(oso_indexes[i] - 1);
if (m_compile_unit_infos[i].so_symbol->GetSiblingIndex() == 0)
m_compile_unit_infos[i].so_symbol = symtab->SymbolAtIndex(oso_indexes[i] - 2);
m_compile_unit_infos[i].oso_symbol = symtab->SymbolAtIndex(oso_indexes[i]);
uint32_t sibling_idx = m_compile_unit_infos[i].so_symbol->GetSiblingIndex();
assert (sibling_idx != 0);
assert (sibling_idx > i + 1);
m_compile_unit_infos[i].last_symbol = symtab->SymbolAtIndex (sibling_idx - 1);
m_compile_unit_infos[i].first_symbol_index = symtab->GetIndexForSymbol(m_compile_unit_infos[i].so_symbol);
m_compile_unit_infos[i].last_symbol_index = symtab->GetIndexForSymbol(m_compile_unit_infos[i].last_symbol);
}
}
}
}
Module *
SymbolFileDWARFDebugMap::GetModuleByOSOIndex (uint32_t oso_idx)
{
const uint32_t cu_count = GetNumCompileUnits();
if (oso_idx < cu_count)
return GetModuleByCompUnitInfo (&m_compile_unit_infos[oso_idx]);
return NULL;
}
Module *
SymbolFileDWARFDebugMap::GetModuleByCompUnitInfo (CompileUnitInfo *comp_unit_info)
{
if (comp_unit_info->oso_module_sp.get() == NULL)
{
Symbol *oso_symbol = comp_unit_info->oso_symbol;
if (oso_symbol)
{
FileSpec oso_file_spec(oso_symbol->GetMangled().GetName().AsCString(), true);
ModuleList::GetSharedModule (oso_file_spec,
m_obj_file->GetModule()->GetArchitecture(),
NULL, // UUID pointer
NULL, // object name
0, // object offset
comp_unit_info->oso_module_sp,
NULL,
NULL);
//comp_unit_info->oso_module_sp.reset(new Module (oso_file_spec, m_obj_file->GetModule()->GetArchitecture()));
}
}
return comp_unit_info->oso_module_sp.get();
}
bool
SymbolFileDWARFDebugMap::GetFileSpecForSO (uint32_t oso_idx, FileSpec &file_spec)
{
if (oso_idx < m_compile_unit_infos.size())
{
if (!m_compile_unit_infos[oso_idx].so_file)
{
if (m_compile_unit_infos[oso_idx].so_symbol == NULL)
return false;
std::string so_path (m_compile_unit_infos[oso_idx].so_symbol->GetMangled().GetName().AsCString());
if (m_compile_unit_infos[oso_idx].so_symbol[1].GetType() == eSymbolTypeSourceFile)
so_path += m_compile_unit_infos[oso_idx].so_symbol[1].GetMangled().GetName().AsCString();
m_compile_unit_infos[oso_idx].so_file.SetFile(so_path.c_str(), true);
}
file_spec = m_compile_unit_infos[oso_idx].so_file;
return true;
}
return false;
}
ObjectFile *
SymbolFileDWARFDebugMap::GetObjectFileByOSOIndex (uint32_t oso_idx)
{
Module *oso_module = GetModuleByOSOIndex (oso_idx);
if (oso_module)
return oso_module->GetObjectFile();
return NULL;
}
SymbolFileDWARF *
SymbolFileDWARFDebugMap::GetSymbolFile (const SymbolContext& sc)
{
CompileUnitInfo *comp_unit_info = GetCompUnitInfo (sc);
if (comp_unit_info)
return GetSymbolFileByCompUnitInfo (comp_unit_info);
return NULL;
}
ObjectFile *
SymbolFileDWARFDebugMap::GetObjectFileByCompUnitInfo (CompileUnitInfo *comp_unit_info)
{
Module *oso_module = GetModuleByCompUnitInfo (comp_unit_info);
if (oso_module)
return oso_module->GetObjectFile();
return NULL;
}
SymbolFileDWARF *
SymbolFileDWARFDebugMap::GetSymbolFileByOSOIndex (uint32_t oso_idx)
{
if (oso_idx < m_compile_unit_infos.size())
return GetSymbolFileByCompUnitInfo (&m_compile_unit_infos[oso_idx]);
return NULL;
}
SymbolFileDWARF *
SymbolFileDWARFDebugMap::GetSymbolFileByCompUnitInfo (CompileUnitInfo *comp_unit_info)
{
if (comp_unit_info->oso_symbol_vendor == NULL)
{
ObjectFile *oso_objfile = GetObjectFileByCompUnitInfo (comp_unit_info);
if (oso_objfile)
{
comp_unit_info->oso_symbol_vendor = oso_objfile->GetModule()->GetSymbolVendor();
// SymbolFileDWARF *oso_dwarf = new SymbolFileDWARF(oso_objfile);
// comp_unit_info->oso_dwarf_sp.reset (oso_dwarf);
if (comp_unit_info->oso_symbol_vendor)
{
// Set a a pointer to this class to set our OSO DWARF file know
// that the DWARF is being used along with a debug map and that
// it will have the remapped sections that we do below.
((SymbolFileDWARF *)comp_unit_info->oso_symbol_vendor->GetSymbolFile())->SetDebugMapSymfile(this);
comp_unit_info->debug_map_sections_sp.reset(new SectionList);
Symtab *exe_symtab = m_obj_file->GetSymtab();
Module *oso_module = oso_objfile->GetModule();
Symtab *oso_symtab = oso_objfile->GetSymtab();
//#define DEBUG_OSO_DMAP // Do not check in with this defined...
#if defined(DEBUG_OSO_DMAP)
StreamFile s(stdout);
s << "OSO symtab:\n";
oso_symtab->Dump(&s, NULL);
s << "OSO sections before:\n";
oso_objfile->GetSectionList()->Dump(&s, NULL, true);
#endif
///const uint32_t fun_resolve_flags = SymbolContext::Module | eSymbolContextCompUnit | eSymbolContextFunction;
//SectionList *oso_sections = oso_objfile->Sections();
// Now we need to make sections that map from zero based object
// file addresses to where things eneded up in the main executable.
uint32_t oso_start_idx = exe_symtab->GetIndexForSymbol (comp_unit_info->oso_symbol);
assert (oso_start_idx != UINT32_MAX);
oso_start_idx += 1;
const uint32_t oso_end_idx = comp_unit_info->so_symbol->GetSiblingIndex();
uint32_t sect_id = 0x10000;
for (uint32_t idx = oso_start_idx; idx < oso_end_idx; ++idx)
{
Symbol *exe_symbol = exe_symtab->SymbolAtIndex(idx);
if (exe_symbol)
{
if (exe_symbol->IsDebug() == false)
continue;
switch (exe_symbol->GetType())
{
case eSymbolTypeCode:
{
// For each N_FUN, or function that we run into in the debug map
// we make a new section that we add to the sections found in the
// .o file. This new section has the file address set to what the
// addresses are in the .o file, and the load address is adjusted
// to match where it ended up in the final executable! We do this
// before we parse any dwarf info so that when it goes get parsed
// all section/offset addresses that get registered will resolve
// correctly to the new addresses in the main executable.
// First we find the original symbol in the .o file's symbol table
Symbol *oso_fun_symbol = oso_symtab->FindFirstSymbolWithNameAndType(exe_symbol->GetMangled().GetName(Mangled::ePreferMangled), eSymbolTypeCode, Symtab::eDebugNo, Symtab::eVisibilityAny);
if (oso_fun_symbol)
{
// If we found the symbol, then we
Section* exe_fun_section = const_cast<Section *>(exe_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection());
Section* oso_fun_section = const_cast<Section *>(oso_fun_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection());
if (oso_fun_section)
{
// Now we create a section that we will add as a child of the
// section in which the .o symbol (the N_FUN) exists.
// We use the exe_symbol size because the one in the .o file
// will just be a symbol with no size, and the exe_symbol
// size will reflect any size changes (ppc has been known to
// shrink function sizes when it gets rid of jump islands that
// aren't needed anymore).
SectionSP oso_fun_section_sp (new Section (const_cast<Section *>(oso_fun_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection()),
oso_module, // Module (the .o file)
sect_id++, // Section ID starts at 0x10000 and increments so the section IDs don't overlap with the standard mach IDs
exe_symbol->GetMangled().GetName(Mangled::ePreferMangled), // Name the section the same as the symbol for which is was generated!
eSectionTypeDebug,
oso_fun_symbol->GetAddressRangePtr()->GetBaseAddress().GetOffset(), // File VM address offset in the current section
exe_symbol->GetByteSize(), // File size (we need the size from the executable)
0, 0, 0));
oso_fun_section_sp->SetLinkedLocation (exe_fun_section,
exe_symbol->GetValue().GetFileAddress() - exe_fun_section->GetFileAddress());
oso_fun_section->GetChildren().AddSection(oso_fun_section_sp);
comp_unit_info->debug_map_sections_sp->AddSection(oso_fun_section_sp);
}
}
}
break;
case eSymbolTypeData:
{
// For each N_GSYM we remap the address for the global by making
// a new section that we add to the sections found in the .o file.
// This new section has the file address set to what the
// addresses are in the .o file, and the load address is adjusted
// to match where it ended up in the final executable! We do this
// before we parse any dwarf info so that when it goes get parsed
// all section/offset addresses that get registered will resolve
// correctly to the new addresses in the main executable. We
// initially set the section size to be 1 byte, but will need to
// fix up these addresses further after all globals have been
// parsed to span the gaps, or we can find the global variable
// sizes from the DWARF info as we are parsing.
#if 0
// First we find the non-stab entry that corresponds to the N_GSYM in the executable
Symbol *exe_gsym_symbol = exe_symtab->FindFirstSymbolWithNameAndType(exe_symbol->GetMangled().GetName(Mangled::ePreferMangled), eSymbolTypeData, Symtab::eDebugNo, Symtab::eVisibilityAny);
#else
// The mach-o object file parser already matches up the N_GSYM with with the non-stab
// entry, so we shouldn't have to do that. If this ever changes, enable the code above
// in the "#if 0" block. STSYM's always match the symbol as found below.
Symbol *exe_gsym_symbol = exe_symbol;
#endif
// Next we find the non-stab entry that corresponds to the N_GSYM in the .o file
Symbol *oso_gsym_symbol = oso_symtab->FindFirstSymbolWithNameAndType(exe_symbol->GetMangled().GetName(), eSymbolTypeData, Symtab::eDebugNo, Symtab::eVisibilityAny);
if (exe_gsym_symbol && oso_gsym_symbol)
{
// If we found the symbol, then we
Section* exe_gsym_section = const_cast<Section *>(exe_gsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection());
Section* oso_gsym_section = const_cast<Section *>(oso_gsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection());
if (oso_gsym_section)
{
SectionSP oso_gsym_section_sp (new Section (const_cast<Section *>(oso_gsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection()),
oso_module, // Module (the .o file)
sect_id++, // Section ID starts at 0x10000 and increments so the section IDs don't overlap with the standard mach IDs
exe_symbol->GetMangled().GetName(Mangled::ePreferMangled), // Name the section the same as the symbol for which is was generated!
eSectionTypeDebug,
oso_gsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetOffset(), // File VM address offset in the current section
1, // We don't know the size of the global, just do the main address for now.
0, 0, 0));
oso_gsym_section_sp->SetLinkedLocation (exe_gsym_section,
exe_gsym_symbol->GetValue().GetFileAddress() - exe_gsym_section->GetFileAddress());
oso_gsym_section->GetChildren().AddSection(oso_gsym_section_sp);
comp_unit_info->debug_map_sections_sp->AddSection(oso_gsym_section_sp);
}
}
}
break;
// case eSymbolTypeStatic:
// {
// // For each N_STSYM we remap the address for the global by making
// // a new section that we add to the sections found in the .o file.
// // This new section has the file address set to what the
// // addresses are in the .o file, and the load address is adjusted
// // to match where it ended up in the final executable! We do this
// // before we parse any dwarf info so that when it goes get parsed
// // all section/offset addresses that get registered will resolve
// // correctly to the new addresses in the main executable. We
// // initially set the section size to be 1 byte, but will need to
// // fix up these addresses further after all globals have been
// // parsed to span the gaps, or we can find the global variable
// // sizes from the DWARF info as we are parsing.
//
//
// Symbol *exe_stsym_symbol = exe_symbol;
// // First we find the non-stab entry that corresponds to the N_STSYM in the .o file
// Symbol *oso_stsym_symbol = oso_symtab->FindFirstSymbolWithNameAndType(exe_symbol->GetMangled().GetName(), eSymbolTypeData);
// if (exe_stsym_symbol && oso_stsym_symbol)
// {
// // If we found the symbol, then we
// Section* exe_stsym_section = const_cast<Section *>(exe_stsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection());
// Section* oso_stsym_section = const_cast<Section *>(oso_stsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection());
// if (oso_stsym_section)
// {
// // The load address of the symbol will use the section in the
// // executable that contains the debug map that corresponds to
// // the N_FUN symbol. We set the offset to reflect the offset
// // into that section since we are creating a new section.
// AddressRange stsym_load_range(exe_stsym_section, exe_stsym_symbol->GetValue().GetFileAddress() - exe_stsym_section->GetFileAddress(), 1);
// // We need the symbol's section offset address from the .o file, but
// // we need a non-zero size.
// AddressRange stsym_file_range(exe_stsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetSection(), exe_stsym_symbol->GetAddressRangePtr()->GetBaseAddress().GetOffset(), 1);
//
// // Now we create a section that we will add as a child of the
// // section in which the .o symbol (the N_FUN) exists.
//
//// TODO: mimic what I did for N_FUN if that works...
//// // We use the 1 byte for the size because we don't know the
//// // size of the global symbol without seeing the DWARF.
//// SectionSP oso_fun_section_sp (new Section ( NULL, oso_module, // Module (the .o file)
//// sect_id++, // Section ID starts at 0x10000 and increments so the section IDs don't overlap with the standard mach IDs
//// exe_symbol->GetMangled().GetName(),// Name the section the same as the symbol for which is was generated!
//// // &stsym_load_range, // Load offset is the offset into the executable section for the N_FUN from the debug map
//// &stsym_file_range, // File section/offset is just the same os the symbol on the .o file
//// 0, 0, 0));
////
//// // Now we add the new section to the .o file's sections as a child
//// // of the section in which the N_SECT symbol exists.
//// oso_stsym_section->GetChildren().AddSection(oso_fun_section_sp);
//// comp_unit_info->debug_map_sections_sp->AddSection(oso_fun_section_sp);
// }
// }
// }
// break;
}
}
}
#if defined(DEBUG_OSO_DMAP)
s << "OSO sections after:\n";
oso_objfile->GetSectionList()->Dump(&s, NULL, true);
#endif
}
}
}
if (comp_unit_info->oso_symbol_vendor)
return (SymbolFileDWARF *)comp_unit_info->oso_symbol_vendor->GetSymbolFile();
return NULL;
}
uint32_t
SymbolFileDWARFDebugMap::GetAbilities ()
{
// In order to get the abilities of this plug-in, we look at the list of
// N_OSO entries (object files) from the symbol table and make sure that
// these files exist and also contain valid DWARF. If we get any of that
// then we return the abilities of the first N_OSO's DWARF.
const uint32_t oso_index_count = GetNumCompileUnits();
if (oso_index_count > 0)
{
const uint32_t dwarf_abilities = SymbolFile::CompileUnits |
SymbolFile::Functions |
SymbolFile::Blocks |
SymbolFile::GlobalVariables |
SymbolFile::LocalVariables |
SymbolFile::VariableTypes |
SymbolFile::LineTables;
for (uint32_t oso_idx=0; oso_idx<oso_index_count; ++oso_idx)
{
SymbolFileDWARF *oso_dwarf = GetSymbolFileByOSOIndex (oso_idx);
if (oso_dwarf)
{
uint32_t oso_abilities = oso_dwarf->GetAbilities();
if ((oso_abilities & dwarf_abilities) == dwarf_abilities)
return oso_abilities;
}
}
}
return 0;
}
uint32_t
SymbolFileDWARFDebugMap::GetNumCompileUnits()
{
InitOSO ();
return m_compile_unit_infos.size();
}
CompUnitSP
SymbolFileDWARFDebugMap::ParseCompileUnitAtIndex(uint32_t cu_idx)
{
CompUnitSP comp_unit_sp;
const uint32_t cu_count = GetNumCompileUnits();
if (cu_idx < cu_count)
{
if (m_compile_unit_infos[cu_idx].oso_compile_unit_sp.get() == NULL)
{
SymbolFileDWARF *oso_dwarf = GetSymbolFileByOSOIndex (cu_idx);
if (oso_dwarf)
{
// There is only one compile unit for N_OSO entry right now, so
// it will always exist at index zero.
m_compile_unit_infos[cu_idx].oso_compile_unit_sp = m_compile_unit_infos[cu_idx].oso_symbol_vendor->GetCompileUnitAtIndex (0);
}
if (m_compile_unit_infos[cu_idx].oso_compile_unit_sp.get() == NULL)
{
// We weren't able to get the DWARF for this N_OSO entry (the
// .o file may be missing or not at the specified path), make
// one up as best we can from the debug map. We set the uid
// of the compile unit to the symbol index with the MSBit set
// so that it doesn't collide with any uid values from the DWARF
Symbol *so_symbol = m_compile_unit_infos[cu_idx].so_symbol;
if (so_symbol)
{
m_compile_unit_infos[cu_idx].oso_compile_unit_sp.reset(new CompileUnit (m_obj_file->GetModule(),
NULL,
so_symbol->GetMangled().GetName().AsCString(),
cu_idx,
eLanguageTypeUnknown));
// Let our symbol vendor know about this compile unit
m_obj_file->GetModule()->GetSymbolVendor()->SetCompileUnitAtIndex (m_compile_unit_infos[cu_idx].oso_compile_unit_sp,
cu_idx);
}
}
}
comp_unit_sp = m_compile_unit_infos[cu_idx].oso_compile_unit_sp;
}
return comp_unit_sp;
}
SymbolFileDWARFDebugMap::CompileUnitInfo *
SymbolFileDWARFDebugMap::GetCompUnitInfo (const SymbolContext& sc)
{
const uint32_t cu_count = GetNumCompileUnits();
for (uint32_t i=0; i<cu_count; ++i)
{
if (sc.comp_unit == m_compile_unit_infos[i].oso_compile_unit_sp.get())
return &m_compile_unit_infos[i];
}
return NULL;
}
size_t
SymbolFileDWARFDebugMap::ParseCompileUnitFunctions (const SymbolContext& sc)
{
SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc);
if (oso_dwarf)
return oso_dwarf->ParseCompileUnitFunctions (sc);
return 0;
}
bool
SymbolFileDWARFDebugMap::ParseCompileUnitLineTable (const SymbolContext& sc)
{
SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc);
if (oso_dwarf)
return oso_dwarf->ParseCompileUnitLineTable (sc);
return false;
}
bool
SymbolFileDWARFDebugMap::ParseCompileUnitSupportFiles (const SymbolContext& sc, FileSpecList &support_files)
{
SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc);
if (oso_dwarf)
return oso_dwarf->ParseCompileUnitSupportFiles (sc, support_files);
return false;
}
size_t
SymbolFileDWARFDebugMap::ParseFunctionBlocks (const SymbolContext& sc)
{
SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc);
if (oso_dwarf)
return oso_dwarf->ParseFunctionBlocks (sc);
return 0;
}
size_t
SymbolFileDWARFDebugMap::ParseTypes (const SymbolContext& sc)
{
SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc);
if (oso_dwarf)
return oso_dwarf->ParseTypes (sc);
return 0;
}
size_t
SymbolFileDWARFDebugMap::ParseVariablesForContext (const SymbolContext& sc)
{
SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc);
if (oso_dwarf)
return oso_dwarf->ParseTypes (sc);
return 0;
}
Type*
SymbolFileDWARFDebugMap::ResolveTypeUID(lldb::user_id_t type_uid)
{
return NULL;
}
lldb::clang_type_t
SymbolFileDWARFDebugMap::ResolveClangOpaqueTypeDefinition (lldb::clang_type_t clang_Type)
{
// We have a struct/union/class/enum that needs to be fully resolved.
return NULL;
}
uint32_t
SymbolFileDWARFDebugMap::ResolveSymbolContext (const Address& exe_so_addr, uint32_t resolve_scope, SymbolContext& sc)
{
uint32_t resolved_flags = 0;
Symtab* symtab = m_obj_file->GetSymtab();
if (symtab)
{
const addr_t exe_file_addr = exe_so_addr.GetFileAddress();
sc.symbol = symtab->FindSymbolContainingFileAddress (exe_file_addr, &m_func_indexes[0], m_func_indexes.size());
if (sc.symbol != NULL)
{
resolved_flags |= eSymbolContextSymbol;
uint32_t oso_idx = 0;
CompileUnitInfo* comp_unit_info = GetCompileUnitInfoForSymbolWithID (sc.symbol->GetID(), &oso_idx);
if (comp_unit_info)
{
SymbolFileDWARF *oso_dwarf = GetSymbolFileByOSOIndex (oso_idx);
ObjectFile *oso_objfile = GetObjectFileByOSOIndex (oso_idx);
if (oso_dwarf && oso_objfile)
{
SectionList *oso_section_list = oso_objfile->GetSectionList();
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
SectionSP oso_symbol_section_sp (oso_section_list->FindSectionContainingLinkedFileAddress (exe_file_addr, UINT32_MAX));
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
if (oso_symbol_section_sp)
{
Looking at some of the test suite failures in DWARF in .o files with the debug map showed that the location lists in the .o files needed some refactoring in order to work. The case that was failing was where a function that was in the "__TEXT.__textcoal_nt" in the .o file, and in the "__TEXT.__text" section in the main executable. This made symbol lookup fail due to the way we were finding a real address in the debug map which was by finding the section that the function was in in the .o file and trying to find this in the main executable. Now the section list supports finding a linked address in a section or any child sections. After fixing this, we ran into issue that were due to DWARF and how it represents locations lists. DWARF makes a list of address ranges and expressions that go along with those address ranges. The location addresses are expressed in terms of a compile unit address + offset. This works fine as long as nothing moves around. When stuff moves around and offsets change between the remapped compile unit base address and the new function address, then we can run into trouble. To deal with this, we now store supply a location list slide amount to any location list expressions that will allow us to make the location list addresses into zero based offsets from the object that owns the location list (always a function in our case). With these fixes we can now re-link random address ranges inside the debugger for use with our DWARF + debug map, incremental linking, and more. Another issue that arose when doing the DWARF in the .o files was that GCC 4.2 emits a ".debug_aranges" that only mentions functions that are externally visible. This makes .debug_aranges useless to us and we now generate a real address range lookup table in the DWARF parser at the same time as we index the name tables (that are needed because .debug_pubnames is just as useless). llvm-gcc doesn't generate a .debug_aranges section, though this could be fixed, we aren't going to rely upon it. Renamed a bunch of "UINT_MAX" to "UINT32_MAX". llvm-svn: 113829
2010-09-14 10:20:48 +08:00
const addr_t linked_file_addr = oso_symbol_section_sp->GetLinkedFileAddress();
Address oso_so_addr (oso_symbol_section_sp.get(), exe_file_addr - linked_file_addr);
if (oso_so_addr.IsSectionOffset())
resolved_flags |= oso_dwarf->ResolveSymbolContext (oso_so_addr, resolve_scope, sc);
}
}
}
}
}
return resolved_flags;
}
uint32_t
SymbolFileDWARFDebugMap::ResolveSymbolContext (const FileSpec& file_spec, uint32_t line, bool check_inlines, uint32_t resolve_scope, SymbolContextList& sc_list)
{
uint32_t initial = sc_list.GetSize();
const uint32_t cu_count = GetNumCompileUnits();
FileSpec so_file_spec;
for (uint32_t i=0; i<cu_count; ++i)
{
if (GetFileSpecForSO (i, so_file_spec))
{
// By passing false to the comparison we will be able to match
// and files given a filename only. If both file_spec and
// so_file_spec have directories, we will still do a full match.
if (FileSpec::Compare (file_spec, so_file_spec, false) == 0)
{
SymbolFileDWARF *oso_dwarf = GetSymbolFileByOSOIndex (i);
oso_dwarf->ResolveSymbolContext(file_spec, line, check_inlines, resolve_scope, sc_list);
}
}
}
return sc_list.GetSize() - initial;
}
uint32_t
SymbolFileDWARFDebugMap::PrivateFindGlobalVariables
(
const ConstString &name,
const std::vector<uint32_t> &indexes, // Indexes into the symbol table that match "name"
uint32_t max_matches,
VariableList& variables
)
{
const uint32_t original_size = variables.GetSize();
const size_t match_count = indexes.size();
for (size_t i=0; i<match_count; ++i)
{
uint32_t oso_idx;
CompileUnitInfo* comp_unit_info = GetCompileUnitInfoForSymbolWithIndex (indexes[i], &oso_idx);
if (comp_unit_info)
{
SymbolFileDWARF *oso_dwarf = GetSymbolFileByOSOIndex (oso_idx);
if (oso_dwarf)
{
if (oso_dwarf->FindGlobalVariables(name, true, max_matches, variables))
if (variables.GetSize() > max_matches)
break;
}
}
}
return variables.GetSize() - original_size;
}
uint32_t
SymbolFileDWARFDebugMap::FindGlobalVariables (const ConstString &name, bool append, uint32_t max_matches, VariableList& variables)
{
// If we aren't appending the results to this list, then clear the list
if (!append)
variables.Clear();
// Remember how many variables are in the list before we search in case
// we are appending the results to a variable list.
const uint32_t original_size = variables.GetSize();
uint32_t total_matches = 0;
SymbolFileDWARF *oso_dwarf;
for (uint32_t oso_idx = 0; ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx)) != NULL); ++oso_idx)
{
const uint32_t oso_matches = oso_dwarf->FindGlobalVariables (name,
true,
max_matches,
variables);
if (oso_matches > 0)
{
total_matches += oso_matches;
// Are we getting all matches?
if (max_matches == UINT32_MAX)
continue; // Yep, continue getting everything
// If we have found enough matches, lets get out
if (max_matches >= total_matches)
break;
// Update the max matches for any subsequent calls to find globals
// in any other object files with DWARF
max_matches -= oso_matches;
}
}
// Return the number of variable that were appended to the list
return variables.GetSize() - original_size;
}
uint32_t
SymbolFileDWARFDebugMap::FindGlobalVariables (const RegularExpression& regex, bool append, uint32_t max_matches, VariableList& variables)
{
// If we aren't appending the results to this list, then clear the list
if (!append)
variables.Clear();
// Remember how many variables are in the list before we search in case
// we are appending the results to a variable list.
const uint32_t original_size = variables.GetSize();
uint32_t total_matches = 0;
SymbolFileDWARF *oso_dwarf;
for (uint32_t oso_idx = 0; ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx)) != NULL); ++oso_idx)
{
const uint32_t oso_matches = oso_dwarf->FindGlobalVariables (regex,
true,
max_matches,
variables);
if (oso_matches > 0)
{
total_matches += oso_matches;
// Are we getting all matches?
if (max_matches == UINT32_MAX)
continue; // Yep, continue getting everything
// If we have found enough matches, lets get out
if (max_matches >= total_matches)
break;
// Update the max matches for any subsequent calls to find globals
// in any other object files with DWARF
max_matches -= oso_matches;
}
}
// Return the number of variable that were appended to the list
return variables.GetSize() - original_size;
}
int
SymbolFileDWARFDebugMap::SymbolContainsSymbolWithIndex (uint32_t *symbol_idx_ptr, const CompileUnitInfo *comp_unit_info)
{
const uint32_t symbol_idx = *symbol_idx_ptr;
if (symbol_idx < comp_unit_info->first_symbol_index)
return -1;
if (symbol_idx <= comp_unit_info->last_symbol_index)
return 0;
return 1;
}
int
SymbolFileDWARFDebugMap::SymbolContainsSymbolWithID (user_id_t *symbol_idx_ptr, const CompileUnitInfo *comp_unit_info)
{
const user_id_t symbol_id = *symbol_idx_ptr;
if (symbol_id < comp_unit_info->so_symbol->GetID())
return -1;
if (symbol_id <= comp_unit_info->last_symbol->GetID())
return 0;
return 1;
}
SymbolFileDWARFDebugMap::CompileUnitInfo*
SymbolFileDWARFDebugMap::GetCompileUnitInfoForSymbolWithIndex (uint32_t symbol_idx, uint32_t *oso_idx_ptr)
{
const uint32_t oso_index_count = m_compile_unit_infos.size();
CompileUnitInfo *comp_unit_info = NULL;
if (oso_index_count)
{
comp_unit_info = (CompileUnitInfo*)bsearch(&symbol_idx, &m_compile_unit_infos[0], m_compile_unit_infos.size(), sizeof(CompileUnitInfo), (comparison_function)SymbolContainsSymbolWithIndex);
}
if (oso_idx_ptr)
{
if (comp_unit_info != NULL)
*oso_idx_ptr = comp_unit_info - &m_compile_unit_infos[0];
else
*oso_idx_ptr = UINT32_MAX;
}
return comp_unit_info;
}
SymbolFileDWARFDebugMap::CompileUnitInfo*
SymbolFileDWARFDebugMap::GetCompileUnitInfoForSymbolWithID (user_id_t symbol_id, uint32_t *oso_idx_ptr)
{
const uint32_t oso_index_count = m_compile_unit_infos.size();
CompileUnitInfo *comp_unit_info = NULL;
if (oso_index_count)
{
comp_unit_info = (CompileUnitInfo*)bsearch(&symbol_id, &m_compile_unit_infos[0], m_compile_unit_infos.size(), sizeof(CompileUnitInfo), (comparison_function)SymbolContainsSymbolWithID);
}
if (oso_idx_ptr)
{
if (comp_unit_info != NULL)
*oso_idx_ptr = comp_unit_info - &m_compile_unit_infos[0];
else
*oso_idx_ptr = UINT32_MAX;
}
return comp_unit_info;
}
static void
RemoveFunctionsWithModuleNotEqualTo (Module *module, SymbolContextList &sc_list, uint32_t start_idx)
{
// We found functions in .o files. Not all functions in the .o files
// will have made it into the final output file. The ones that did
// make it into the final output file will have a section whose module
// matches the module from the ObjectFile for this SymbolFile. When
// the modules don't match, then we have something that was in a
// .o file, but doesn't map to anything in the final executable.
uint32_t i=start_idx;
while (i < sc_list.GetSize())
{
SymbolContext sc;
sc_list.GetContextAtIndex(i, sc);
if (sc.function)
{
const Section *section = sc.function->GetAddressRange().GetBaseAddress().GetSection();
if (section->GetModule() != module)
{
sc_list.RemoveContextAtIndex(i);
continue;
}
}
++i;
}
}
uint32_t
Added function name types to allow us to set breakpoints by name more intelligently. The four name types we currently have are: eFunctionNameTypeFull = (1 << 1), // The function name. // For C this is the same as just the name of the function // For C++ this is the demangled version of the mangled name. // For ObjC this is the full function signature with the + or // - and the square brackets and the class and selector eFunctionNameTypeBase = (1 << 2), // The function name only, no namespaces or arguments and no class // methods or selectors will be searched. eFunctionNameTypeMethod = (1 << 3), // Find function by method name (C++) with no namespace or arguments eFunctionNameTypeSelector = (1 << 4) // Find function by selector name (ObjC) names this allows much more flexibility when setting breakoints: (lldb) breakpoint set --name main --basename (lldb) breakpoint set --name main --fullname (lldb) breakpoint set --name main --method (lldb) breakpoint set --name main --selector The default: (lldb) breakpoint set --name main will inspect the name "main" and look for any parens, or if the name starts with "-[" or "+[" and if any are found then a full name search will happen. Else a basename search will be the default. Fixed some command option structures so not all options are required when they shouldn't be. Cleaned up the breakpoint output summary. Made the "image lookup --address <addr>" output much more verbose so it shows all the important symbol context results. Added a GetDescription method to many of the SymbolContext objects for the more verbose output. llvm-svn: 107075
2010-06-29 05:30:43 +08:00
SymbolFileDWARFDebugMap::FindFunctions(const ConstString &name, uint32_t name_type_mask, bool append, SymbolContextList& sc_list)
{
Timer scoped_timer (__PRETTY_FUNCTION__,
"SymbolFileDWARFDebugMap::FindFunctions (name = %s)",
name.GetCString());
uint32_t initial_size = 0;
if (append)
initial_size = sc_list.GetSize();
else
sc_list.Clear();
uint32_t oso_idx = 0;
SymbolFileDWARF *oso_dwarf;
while ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx++)) != NULL)
{
uint32_t sc_idx = sc_list.GetSize();
if (oso_dwarf->FindFunctions(name, name_type_mask, true, sc_list))
{
RemoveFunctionsWithModuleNotEqualTo (m_obj_file->GetModule(), sc_list, sc_idx);
}
}
return sc_list.GetSize() - initial_size;
}
uint32_t
SymbolFileDWARFDebugMap::FindFunctions (const RegularExpression& regex, bool append, SymbolContextList& sc_list)
{
Timer scoped_timer (__PRETTY_FUNCTION__,
"SymbolFileDWARFDebugMap::FindFunctions (regex = '%s')",
regex.GetText());
uint32_t initial_size = 0;
if (append)
initial_size = sc_list.GetSize();
else
sc_list.Clear();
uint32_t oso_idx = 0;
SymbolFileDWARF *oso_dwarf;
while ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx++)) != NULL)
{
uint32_t sc_idx = sc_list.GetSize();
if (oso_dwarf->FindFunctions(regex, true, sc_list))
{
RemoveFunctionsWithModuleNotEqualTo (m_obj_file->GetModule(), sc_list, sc_idx);
}
}
return sc_list.GetSize() - initial_size;
}
TypeSP
SymbolFileDWARFDebugMap::FindDefinitionTypeForDIE (
DWARFCompileUnit* cu,
const DWARFDebugInfoEntry *die,
const ConstString &type_name
)
{
TypeSP type_sp;
SymbolFileDWARF *oso_dwarf;
for (uint32_t oso_idx = 0; ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx)) != NULL); ++oso_idx)
{
type_sp = oso_dwarf->FindDefinitionTypeForDIE (cu, die, type_name);
if (type_sp)
break;
}
return type_sp;
}
uint32_t
SymbolFileDWARFDebugMap::FindTypes
(
const SymbolContext& sc,
const ConstString &name,
bool append,
uint32_t max_matches,
TypeList& types
)
{
if (!append)
types.Clear();
const uint32_t initial_types_size = types.GetSize();
SymbolFileDWARF *oso_dwarf;
if (sc.comp_unit)
{
oso_dwarf = GetSymbolFile (sc);
if (oso_dwarf)
return oso_dwarf->FindTypes (sc, name, append, max_matches, types);
}
else
{
uint32_t oso_idx = 0;
while ((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx++)) != NULL)
oso_dwarf->FindTypes (sc, name, append, max_matches, types);
}
return types.GetSize() - initial_types_size;
}
//
//uint32_t
//SymbolFileDWARFDebugMap::FindTypes (const SymbolContext& sc, const RegularExpression& regex, bool append, uint32_t max_matches, Type::Encoding encoding, lldb::user_id_t udt_uid, TypeList& types)
//{
// SymbolFileDWARF *oso_dwarf = GetSymbolFile (sc);
// if (oso_dwarf)
// return oso_dwarf->FindTypes (sc, regex, append, max_matches, encoding, udt_uid, types);
// return 0;
//}
ClangNamespaceDecl
SymbolFileDWARFDebugMap::FindNamespace (const lldb_private::SymbolContext& sc,
const lldb_private::ConstString &name)
{
ClangNamespaceDecl matching_namespace;
SymbolFileDWARF *oso_dwarf;
if (sc.comp_unit)
{
oso_dwarf = GetSymbolFile (sc);
if (oso_dwarf)
matching_namespace = oso_dwarf->FindNamespace (sc, name);
}
else
{
for (uint32_t oso_idx = 0;
((oso_dwarf = GetSymbolFileByOSOIndex (oso_idx)) != NULL);
++oso_idx)
{
matching_namespace = oso_dwarf->FindNamespace (sc, name);
if (matching_namespace)
break;
}
}
return matching_namespace;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
const char *
SymbolFileDWARFDebugMap::GetPluginName()
{
return "SymbolFileDWARFDebugMap";
}
const char *
SymbolFileDWARFDebugMap::GetShortPluginName()
{
return GetPluginNameStatic();
}
uint32_t
SymbolFileDWARFDebugMap::GetPluginVersion()
{
return 1;
}
void
SymbolFileDWARFDebugMap::GetPluginCommandHelp (const char *command, Stream *strm)
{
}
Error
SymbolFileDWARFDebugMap::ExecutePluginCommand (Args &command, Stream *strm)
{
Error error;
error.SetErrorString("No plug-in command are currently supported.");
return error;
}
Log *
SymbolFileDWARFDebugMap::EnablePluginLogging (Stream *strm, Args &command)
{
return NULL;
}
void
SymbolFileDWARFDebugMap::SetCompileUnit (SymbolFileDWARF *oso_dwarf, const CompUnitSP &cu_sp)
{
const uint32_t cu_count = GetNumCompileUnits();
for (uint32_t i=0; i<cu_count; ++i)
{
if (m_compile_unit_infos[i].oso_symbol_vendor &&
m_compile_unit_infos[i].oso_symbol_vendor->GetSymbolFile() == oso_dwarf)
{
if (m_compile_unit_infos[i].oso_compile_unit_sp)
{
assert (m_compile_unit_infos[i].oso_compile_unit_sp.get() == cu_sp.get());
}
else
{
m_compile_unit_infos[i].oso_compile_unit_sp = cu_sp;
}
}
}
}