ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
//===- unittests/ADT/SimpleIListTest.cpp - simple_ilist unit tests --------===//
|
|
|
|
//
|
2019-01-19 16:50:56 +08:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/ADT/simple_ilist.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
struct Node : ilist_node<Node> {};
|
|
|
|
bool operator<(const Node &L, const Node &R) { return &L < &R; }
|
|
|
|
bool makeFalse(const Node &, const Node &) { return false; }
|
|
|
|
|
|
|
|
struct deleteNode : std::default_delete<Node> {};
|
|
|
|
void doNothing(Node *) {}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, DefaultConstructor) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
EXPECT_EQ(L.begin(), L.end());
|
|
|
|
EXPECT_TRUE(L.empty());
|
|
|
|
EXPECT_EQ(0u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, pushPopFront) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B;
|
|
|
|
L.push_front(B);
|
|
|
|
L.push_front(A);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&B, &L.back());
|
|
|
|
EXPECT_FALSE(L.empty());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
|
|
|
|
// Pop front and check the new front.
|
|
|
|
L.pop_front();
|
|
|
|
EXPECT_EQ(&B, &L.front());
|
|
|
|
|
|
|
|
// Pop to empty.
|
|
|
|
L.pop_front();
|
|
|
|
EXPECT_TRUE(L.empty());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, pushPopBack) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(B);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&B, &L.back());
|
|
|
|
EXPECT_FALSE(L.empty());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
|
|
|
|
// Pop back and check the new front.
|
|
|
|
L.pop_back();
|
|
|
|
EXPECT_EQ(&A, &L.back());
|
|
|
|
|
|
|
|
// Pop to empty.
|
|
|
|
L.pop_back();
|
|
|
|
EXPECT_TRUE(L.empty());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, swap) {
|
|
|
|
simple_ilist<Node> L1, L2;
|
|
|
|
Node A, B;
|
|
|
|
L1.push_back(A);
|
|
|
|
L1.push_back(B);
|
|
|
|
L1.swap(L2);
|
|
|
|
EXPECT_TRUE(L1.empty());
|
|
|
|
EXPECT_EQ(0u, L1.size());
|
|
|
|
EXPECT_EQ(&A, &L2.front());
|
|
|
|
EXPECT_EQ(&B, &L2.back());
|
|
|
|
EXPECT_FALSE(L2.empty());
|
|
|
|
EXPECT_EQ(2u, L2.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, insertEraseAtEnd) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B;
|
|
|
|
L.insert(L.end(), A);
|
|
|
|
L.insert(L.end(), B);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&B, &L.back());
|
|
|
|
EXPECT_FALSE(L.empty());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, insertAtBegin) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B;
|
|
|
|
L.insert(L.begin(), B);
|
|
|
|
L.insert(L.begin(), A);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&B, &L.back());
|
|
|
|
EXPECT_FALSE(L.empty());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, remove) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B, C;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(B);
|
|
|
|
L.push_back(C);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&B, &*++L.begin());
|
|
|
|
EXPECT_EQ(&C, &L.back());
|
|
|
|
EXPECT_EQ(3u, L.size());
|
|
|
|
|
|
|
|
L.remove(B);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&C, &L.back());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
|
|
|
|
L.remove(A);
|
|
|
|
EXPECT_EQ(&C, &L.front());
|
|
|
|
EXPECT_EQ(1u, L.size());
|
|
|
|
|
|
|
|
L.remove(C);
|
|
|
|
EXPECT_TRUE(L.empty());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, removeAndDispose) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, C;
|
|
|
|
Node *B = new Node;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(*B);
|
|
|
|
L.push_back(C);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(B, &*++L.begin());
|
|
|
|
EXPECT_EQ(&C, &L.back());
|
|
|
|
EXPECT_EQ(3u, L.size());
|
|
|
|
|
|
|
|
L.removeAndDispose(*B, deleteNode());
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&C, &L.back());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, removeAndDisposeNullDeleter) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B, C;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(B);
|
|
|
|
L.push_back(C);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&B, &*++L.begin());
|
|
|
|
EXPECT_EQ(&C, &L.back());
|
|
|
|
EXPECT_EQ(3u, L.size());
|
|
|
|
|
|
|
|
L.removeAndDispose(B, doNothing);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&C, &L.back());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, erase) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B, C;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(B);
|
|
|
|
L.push_back(C);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&B, &*++L.begin());
|
|
|
|
EXPECT_EQ(&C, &L.back());
|
|
|
|
EXPECT_EQ(3u, L.size());
|
|
|
|
|
|
|
|
EXPECT_EQ(C.getIterator(), L.erase(B.getIterator()));
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&C, &L.back());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
}
|
|
|
|
|
2016-11-02 08:59:58 +08:00
|
|
|
TEST(SimpleIListTest, reverse_iterator) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B, C;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(B);
|
|
|
|
L.push_back(C);
|
|
|
|
|
|
|
|
auto ReverseIter = L.rbegin();
|
|
|
|
EXPECT_EQ(C.getReverseIterator(), ReverseIter);
|
|
|
|
++ReverseIter;
|
|
|
|
EXPECT_EQ(B.getReverseIterator(), ReverseIter);
|
|
|
|
++ReverseIter;
|
|
|
|
EXPECT_EQ(A.getReverseIterator(), ReverseIter);
|
|
|
|
++ReverseIter;
|
|
|
|
EXPECT_EQ(L.rend(), ReverseIter);
|
|
|
|
}
|
|
|
|
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
TEST(SimpleIListTest, eraseAndDispose) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, C;
|
|
|
|
Node *B = new Node;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(*B);
|
|
|
|
L.push_back(C);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(B, &*++L.begin());
|
|
|
|
EXPECT_EQ(&C, &L.back());
|
|
|
|
EXPECT_EQ(3u, L.size());
|
|
|
|
|
|
|
|
L.eraseAndDispose(B->getIterator(), deleteNode());
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&C, &L.back());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, eraseAndDisposeNullDeleter) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B, C;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(B);
|
|
|
|
L.push_back(C);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&B, &*++L.begin());
|
|
|
|
EXPECT_EQ(&C, &L.back());
|
|
|
|
EXPECT_EQ(3u, L.size());
|
|
|
|
|
|
|
|
L.eraseAndDispose(B.getIterator(), doNothing);
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&C, &L.back());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, eraseRange) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B, C, D, E;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(B);
|
|
|
|
L.push_back(C);
|
|
|
|
L.push_back(D);
|
|
|
|
L.push_back(E);
|
|
|
|
auto I = L.begin();
|
|
|
|
EXPECT_EQ(&A, &*I++);
|
|
|
|
EXPECT_EQ(&B, &*I++);
|
|
|
|
EXPECT_EQ(&C, &*I++);
|
|
|
|
EXPECT_EQ(&D, &*I++);
|
|
|
|
EXPECT_EQ(&E, &*I++);
|
|
|
|
EXPECT_EQ(L.end(), I);
|
|
|
|
EXPECT_EQ(5u, L.size());
|
|
|
|
|
|
|
|
// Erase a range.
|
|
|
|
EXPECT_EQ(E.getIterator(), L.erase(B.getIterator(), E.getIterator()));
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&E, &L.back());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, eraseAndDisposeRange) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, *B = new Node, *C = new Node, *D = new Node, E;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(*B);
|
|
|
|
L.push_back(*C);
|
|
|
|
L.push_back(*D);
|
|
|
|
L.push_back(E);
|
|
|
|
auto I = L.begin();
|
|
|
|
EXPECT_EQ(&A, &*I++);
|
|
|
|
EXPECT_EQ(B, &*I++);
|
|
|
|
EXPECT_EQ(C, &*I++);
|
|
|
|
EXPECT_EQ(D, &*I++);
|
|
|
|
EXPECT_EQ(&E, &*I++);
|
|
|
|
EXPECT_EQ(L.end(), I);
|
|
|
|
EXPECT_EQ(5u, L.size());
|
|
|
|
|
|
|
|
// Erase a range.
|
|
|
|
EXPECT_EQ(E.getIterator(),
|
|
|
|
L.eraseAndDispose(B->getIterator(), E.getIterator(), deleteNode()));
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&E, &L.back());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, eraseAndDisposeRangeNullDeleter) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B, C, D, E;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(B);
|
|
|
|
L.push_back(C);
|
|
|
|
L.push_back(D);
|
|
|
|
L.push_back(E);
|
|
|
|
auto I = L.begin();
|
|
|
|
EXPECT_EQ(&A, &*I++);
|
|
|
|
EXPECT_EQ(&B, &*I++);
|
|
|
|
EXPECT_EQ(&C, &*I++);
|
|
|
|
EXPECT_EQ(&D, &*I++);
|
|
|
|
EXPECT_EQ(&E, &*I++);
|
|
|
|
EXPECT_EQ(L.end(), I);
|
|
|
|
EXPECT_EQ(5u, L.size());
|
|
|
|
|
|
|
|
// Erase a range.
|
|
|
|
EXPECT_EQ(E.getIterator(),
|
|
|
|
L.eraseAndDispose(B.getIterator(), E.getIterator(), doNothing));
|
|
|
|
EXPECT_EQ(&A, &L.front());
|
|
|
|
EXPECT_EQ(&E, &L.back());
|
|
|
|
EXPECT_EQ(2u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, clear) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(B);
|
|
|
|
L.clear();
|
|
|
|
EXPECT_TRUE(L.empty());
|
|
|
|
EXPECT_EQ(0u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, clearAndDispose) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node *A = new Node;
|
|
|
|
Node *B = new Node;
|
|
|
|
L.push_back(*A);
|
|
|
|
L.push_back(*B);
|
|
|
|
L.clearAndDispose(deleteNode());
|
|
|
|
EXPECT_TRUE(L.empty());
|
|
|
|
EXPECT_EQ(0u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, clearAndDisposeNullDeleter) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node A, B;
|
|
|
|
L.push_back(A);
|
|
|
|
L.push_back(B);
|
|
|
|
L.clearAndDispose(doNothing);
|
|
|
|
EXPECT_TRUE(L.empty());
|
|
|
|
EXPECT_EQ(0u, L.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, spliceList) {
|
|
|
|
simple_ilist<Node> L1, L2;
|
|
|
|
Node A, B, C, D;
|
|
|
|
|
|
|
|
// [A, D].
|
|
|
|
L1.push_back(A);
|
|
|
|
L1.push_back(D);
|
|
|
|
|
|
|
|
// [B, C].
|
|
|
|
L2.push_back(B);
|
|
|
|
L2.push_back(C);
|
|
|
|
|
|
|
|
// Splice in L2, giving [A, B, C, D].
|
|
|
|
L1.splice(--L1.end(), L2);
|
|
|
|
EXPECT_TRUE(L2.empty());
|
|
|
|
EXPECT_EQ(4u, L1.size());
|
|
|
|
auto I = L1.begin();
|
|
|
|
EXPECT_EQ(&A, &*I++);
|
|
|
|
EXPECT_EQ(&B, &*I++);
|
|
|
|
EXPECT_EQ(&C, &*I++);
|
|
|
|
EXPECT_EQ(&D, &*I++);
|
|
|
|
EXPECT_EQ(L1.end(), I);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, spliceSingle) {
|
|
|
|
simple_ilist<Node> L1, L2;
|
|
|
|
Node A, B, C, D, E;
|
|
|
|
|
|
|
|
// [A, C].
|
|
|
|
L1.push_back(A);
|
|
|
|
L1.push_back(C);
|
|
|
|
|
|
|
|
// [D, B, E].
|
|
|
|
L2.push_back(D);
|
|
|
|
L2.push_back(B);
|
|
|
|
L2.push_back(E);
|
|
|
|
|
|
|
|
// Splice B from L2 to L1, giving [A, B, C] and [D, E].
|
|
|
|
L1.splice(--L1.end(), L2, ++L2.begin());
|
|
|
|
auto I = L1.begin();
|
|
|
|
EXPECT_EQ(&A, &*I++);
|
|
|
|
EXPECT_EQ(&B, &*I++);
|
|
|
|
EXPECT_EQ(&C, &*I++);
|
|
|
|
EXPECT_EQ(L1.end(), I);
|
|
|
|
|
|
|
|
I = L2.begin();
|
|
|
|
EXPECT_EQ(&D, &*I++);
|
|
|
|
EXPECT_EQ(&E, &*I++);
|
|
|
|
EXPECT_EQ(L2.end(), I);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, spliceRange) {
|
|
|
|
simple_ilist<Node> L1, L2;
|
|
|
|
Node A, B, C, D, E, F;
|
|
|
|
|
|
|
|
// [A, D].
|
|
|
|
L1.push_back(A);
|
|
|
|
L1.push_back(D);
|
|
|
|
|
|
|
|
// [E, B, C, F].
|
|
|
|
L2.push_back(E);
|
|
|
|
L2.push_back(B);
|
|
|
|
L2.push_back(C);
|
|
|
|
L2.push_back(F);
|
|
|
|
|
|
|
|
// Splice B from L2 to L1, giving [A, B, C, D] and [E, F].
|
|
|
|
L1.splice(--L1.end(), L2, ++L2.begin(), --L2.end());
|
|
|
|
auto I = L1.begin();
|
|
|
|
EXPECT_EQ(&A, &*I++);
|
|
|
|
EXPECT_EQ(&B, &*I++);
|
|
|
|
EXPECT_EQ(&C, &*I++);
|
|
|
|
EXPECT_EQ(&D, &*I++);
|
|
|
|
EXPECT_EQ(L1.end(), I);
|
|
|
|
|
|
|
|
I = L2.begin();
|
|
|
|
EXPECT_EQ(&E, &*I++);
|
|
|
|
EXPECT_EQ(&F, &*I++);
|
|
|
|
EXPECT_EQ(L2.end(), I);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, merge) {
|
|
|
|
for (bool IsL1LHS : {false, true}) {
|
|
|
|
simple_ilist<Node> L1, L2;
|
|
|
|
Node Ns[10];
|
|
|
|
|
|
|
|
// Fill L1.
|
|
|
|
L1.push_back(Ns[0]);
|
|
|
|
L1.push_back(Ns[3]);
|
|
|
|
L1.push_back(Ns[4]);
|
|
|
|
L1.push_back(Ns[8]);
|
|
|
|
|
|
|
|
// Fill L2.
|
|
|
|
L2.push_back(Ns[1]);
|
|
|
|
L2.push_back(Ns[2]);
|
|
|
|
L2.push_back(Ns[5]);
|
|
|
|
L2.push_back(Ns[6]);
|
|
|
|
L2.push_back(Ns[7]);
|
|
|
|
L2.push_back(Ns[9]);
|
|
|
|
|
|
|
|
// Check setup.
|
|
|
|
EXPECT_EQ(4u, L1.size());
|
|
|
|
EXPECT_EQ(6u, L2.size());
|
2020-04-13 19:46:41 +08:00
|
|
|
EXPECT_TRUE(llvm::is_sorted(L1));
|
|
|
|
EXPECT_TRUE(llvm::is_sorted(L2));
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
|
|
|
|
// Merge.
|
|
|
|
auto &LHS = IsL1LHS ? L1 : L2;
|
|
|
|
auto &RHS = IsL1LHS ? L2 : L1;
|
|
|
|
LHS.merge(RHS);
|
|
|
|
EXPECT_TRUE(RHS.empty());
|
|
|
|
EXPECT_FALSE(LHS.empty());
|
2020-04-13 19:46:41 +08:00
|
|
|
EXPECT_TRUE(llvm::is_sorted(LHS));
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
auto I = LHS.begin();
|
|
|
|
for (Node &N : Ns)
|
|
|
|
EXPECT_EQ(&N, &*I++);
|
|
|
|
EXPECT_EQ(LHS.end(), I);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, mergeIsStable) {
|
|
|
|
simple_ilist<Node> L1, L2;
|
|
|
|
Node Ns[5];
|
|
|
|
|
|
|
|
auto setup = [&]() {
|
|
|
|
EXPECT_TRUE(L1.empty());
|
|
|
|
EXPECT_TRUE(L2.empty());
|
|
|
|
|
|
|
|
// Fill L1.
|
|
|
|
L1.push_back(Ns[0]);
|
|
|
|
L1.push_back(Ns[3]);
|
|
|
|
L1.push_back(Ns[4]);
|
|
|
|
|
|
|
|
// Fill L2.
|
|
|
|
L2.push_back(Ns[1]);
|
|
|
|
L2.push_back(Ns[2]);
|
|
|
|
|
|
|
|
// Check setup.
|
|
|
|
EXPECT_EQ(3u, L1.size());
|
|
|
|
EXPECT_EQ(2u, L2.size());
|
2020-04-13 19:46:41 +08:00
|
|
|
EXPECT_TRUE(llvm::is_sorted(L1, makeFalse));
|
|
|
|
EXPECT_TRUE(llvm::is_sorted(L2, makeFalse));
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
// Merge. Should be stable.
|
|
|
|
setup();
|
|
|
|
L1.merge(L2, makeFalse);
|
|
|
|
EXPECT_TRUE(L2.empty());
|
|
|
|
EXPECT_FALSE(L1.empty());
|
2020-04-13 19:46:41 +08:00
|
|
|
EXPECT_TRUE(llvm::is_sorted(L1, makeFalse));
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
auto I = L1.begin();
|
|
|
|
EXPECT_EQ(&Ns[0], &*I++);
|
|
|
|
EXPECT_EQ(&Ns[3], &*I++);
|
|
|
|
EXPECT_EQ(&Ns[4], &*I++);
|
|
|
|
EXPECT_EQ(&Ns[1], &*I++);
|
|
|
|
EXPECT_EQ(&Ns[2], &*I++);
|
|
|
|
EXPECT_EQ(L1.end(), I);
|
|
|
|
|
|
|
|
// Merge the other way. Should be stable.
|
|
|
|
L1.clear();
|
|
|
|
setup();
|
|
|
|
L2.merge(L1, makeFalse);
|
|
|
|
EXPECT_TRUE(L1.empty());
|
|
|
|
EXPECT_FALSE(L2.empty());
|
2020-04-13 19:46:41 +08:00
|
|
|
EXPECT_TRUE(llvm::is_sorted(L2, makeFalse));
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
I = L2.begin();
|
|
|
|
EXPECT_EQ(&Ns[1], &*I++);
|
|
|
|
EXPECT_EQ(&Ns[2], &*I++);
|
|
|
|
EXPECT_EQ(&Ns[0], &*I++);
|
|
|
|
EXPECT_EQ(&Ns[3], &*I++);
|
|
|
|
EXPECT_EQ(&Ns[4], &*I++);
|
|
|
|
EXPECT_EQ(L2.end(), I);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, mergeEmpty) {
|
|
|
|
for (bool IsL1LHS : {false, true}) {
|
|
|
|
simple_ilist<Node> L1, L2;
|
|
|
|
Node Ns[4];
|
|
|
|
|
|
|
|
// Fill L1.
|
|
|
|
L1.push_back(Ns[0]);
|
|
|
|
L1.push_back(Ns[1]);
|
|
|
|
L1.push_back(Ns[2]);
|
|
|
|
L1.push_back(Ns[3]);
|
|
|
|
|
|
|
|
// Check setup.
|
|
|
|
EXPECT_EQ(4u, L1.size());
|
|
|
|
EXPECT_TRUE(L2.empty());
|
2020-04-13 19:46:41 +08:00
|
|
|
EXPECT_TRUE(llvm::is_sorted(L1));
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
|
|
|
|
// Merge.
|
|
|
|
auto &LHS = IsL1LHS ? L1 : L2;
|
|
|
|
auto &RHS = IsL1LHS ? L2 : L1;
|
|
|
|
LHS.merge(RHS);
|
|
|
|
EXPECT_TRUE(RHS.empty());
|
|
|
|
EXPECT_FALSE(LHS.empty());
|
2020-04-13 19:46:41 +08:00
|
|
|
EXPECT_TRUE(llvm::is_sorted(LHS));
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
auto I = LHS.begin();
|
|
|
|
for (Node &N : Ns)
|
|
|
|
EXPECT_EQ(&N, &*I++);
|
|
|
|
EXPECT_EQ(LHS.end(), I);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, mergeBothEmpty) {
|
|
|
|
simple_ilist<Node> L1, L2;
|
|
|
|
L1.merge(L2);
|
|
|
|
EXPECT_TRUE(L1.empty());
|
|
|
|
EXPECT_TRUE(L2.empty());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, sort) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node Ns[10];
|
|
|
|
|
|
|
|
// Fill L.
|
|
|
|
for (int I : {3, 4, 0, 8, 1, 2, 6, 7, 9, 5})
|
|
|
|
L.push_back(Ns[I]);
|
|
|
|
|
|
|
|
// Check setup.
|
|
|
|
EXPECT_EQ(10u, L.size());
|
2020-04-13 19:46:41 +08:00
|
|
|
EXPECT_FALSE(llvm::is_sorted(L));
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
|
|
|
|
// Sort.
|
|
|
|
L.sort();
|
2020-04-13 19:46:41 +08:00
|
|
|
EXPECT_TRUE(llvm::is_sorted(L));
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
auto I = L.begin();
|
|
|
|
for (Node &N : Ns)
|
|
|
|
EXPECT_EQ(&N, &*I++);
|
|
|
|
EXPECT_EQ(L.end(), I);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, sortIsStable) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
Node Ns[10];
|
|
|
|
|
|
|
|
// Compare such that nodes are partitioned but not fully sorted.
|
|
|
|
auto partition = [&](const Node &N) { return &N >= &Ns[5]; };
|
|
|
|
auto compare = [&](const Node &L, const Node &R) {
|
|
|
|
return partition(L) < partition(R);
|
|
|
|
};
|
|
|
|
|
|
|
|
// Fill L.
|
|
|
|
for (int I : {3, 4, 7, 8, 1, 2, 6, 0, 9, 5})
|
|
|
|
L.push_back(Ns[I]);
|
|
|
|
|
|
|
|
// Check setup.
|
|
|
|
EXPECT_EQ(10u, L.size());
|
2020-04-13 19:46:41 +08:00
|
|
|
EXPECT_FALSE(llvm::is_sorted(L, compare));
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
|
|
|
|
// Sort.
|
|
|
|
L.sort(compare);
|
2020-04-13 19:46:41 +08:00
|
|
|
EXPECT_TRUE(llvm::is_sorted(L, compare));
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
auto I = L.begin();
|
|
|
|
for (int O : {3, 4, 1, 2, 0})
|
|
|
|
EXPECT_EQ(&Ns[O], &*I++);
|
|
|
|
for (int O : {7, 8, 6, 9, 5})
|
|
|
|
EXPECT_EQ(&Ns[O], &*I++);
|
|
|
|
EXPECT_EQ(L.end(), I);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, sortEmpty) {
|
|
|
|
simple_ilist<Node> L;
|
|
|
|
L.sort();
|
|
|
|
}
|
|
|
|
|
2016-09-12 00:20:53 +08:00
|
|
|
struct Tag1 {};
|
|
|
|
struct Tag2 {};
|
|
|
|
|
|
|
|
struct DoubleNode : ilist_node<DoubleNode, ilist_tag<Tag1>>,
|
|
|
|
ilist_node<DoubleNode, ilist_tag<Tag2>> {
|
|
|
|
typedef ilist_node<DoubleNode, ilist_tag<Tag1>> Node1Type;
|
|
|
|
typedef ilist_node<DoubleNode, ilist_tag<Tag2>> Node2Type;
|
|
|
|
|
|
|
|
Node1Type::self_iterator getIterator1() { return Node1Type::getIterator(); }
|
|
|
|
Node2Type::self_iterator getIterator2() { return Node2Type::getIterator(); }
|
|
|
|
Node1Type::const_self_iterator getIterator1() const {
|
|
|
|
return Node1Type::getIterator();
|
|
|
|
}
|
|
|
|
Node2Type::const_self_iterator getIterator2() const {
|
|
|
|
return Node2Type::getIterator();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
typedef simple_ilist<DoubleNode, ilist_tag<Tag1>> TaggedList1Type;
|
|
|
|
typedef simple_ilist<DoubleNode, ilist_tag<Tag2>> TaggedList2Type;
|
|
|
|
|
|
|
|
TEST(SimpleIListTest, TaggedLists) {
|
|
|
|
TaggedList1Type L1;
|
|
|
|
TaggedList2Type L2;
|
|
|
|
|
|
|
|
// Build the two lists, sharing a couple of nodes.
|
|
|
|
DoubleNode Ns[10];
|
|
|
|
int Order1[] = {0, 1, 2, 3, 4, 7, 9};
|
|
|
|
int Order2[] = {2, 5, 6, 7, 8, 4, 9, 1};
|
|
|
|
for (int I : Order1)
|
|
|
|
L1.push_back(Ns[I]);
|
|
|
|
for (int I : Order2)
|
|
|
|
L2.push_back(Ns[I]);
|
|
|
|
|
|
|
|
// Check that each list is correct.
|
|
|
|
EXPECT_EQ(sizeof(Order1) / sizeof(int), L1.size());
|
|
|
|
auto I1 = L1.begin();
|
|
|
|
for (int I : Order1) {
|
|
|
|
EXPECT_EQ(Ns[I].getIterator1(), I1);
|
|
|
|
EXPECT_EQ(&Ns[I], &*I1++);
|
|
|
|
}
|
|
|
|
EXPECT_EQ(L1.end(), I1);
|
|
|
|
|
|
|
|
EXPECT_EQ(sizeof(Order2) / sizeof(int), L2.size());
|
|
|
|
auto I2 = L2.begin();
|
|
|
|
for (int I : Order2) {
|
|
|
|
EXPECT_EQ(Ns[I].getIterator2(), I2);
|
|
|
|
EXPECT_EQ(&Ns[I], &*I2++);
|
|
|
|
}
|
|
|
|
EXPECT_EQ(L2.end(), I2);
|
|
|
|
}
|
|
|
|
|
ADT: Split out simple_ilist, a simple intrusive list
Split out a new, low-level intrusive list type with clear semantics.
Unlike iplist (and ilist), all operations on simple_ilist are intrusive,
and simple_ilist never takes ownership of its nodes. This enables an
intuitive API that has the right defaults for intrusive lists.
- insert() takes references (not pointers!) to nodes (in iplist/ilist,
passing a reference will cause the node to be copied).
- erase() takes only iterators (like std::list), and does not destroy
the nodes.
- remove() takes only references and has the same behaviour as erase().
- clear() does not destroy the nodes.
- The destructor does not destroy the nodes.
- New API {erase,remove,clear}AndDispose() take an extra Disposer
functor for callsites that want to call some disposal routine (e.g.,
std::default_delete).
This list is not currently configurable, and has no callbacks.
The initial motivation was to fix iplist<>::sort to work correctly (even
with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort
directly. The new test in unittests/IR/ModuleTest.cpp crashes without
this commit.
Fixing sort() via a low-level layer provided a good opportunity to:
- Unit test the low-level functionality thoroughly.
- Modernize the API, largely inspired by other intrusive list
implementations.
Here's a sketch of a longer-term plan:
- Create BumpPtrList<>, a non-intrusive list implemented using
simple_ilist<>, and use it for the Token list in
lib/Support/YAMLParser.cpp. This will factor out the only real use of
createNode().
- Evolve the iplist<> and ilist<> APIs in the direction of
simple_ilist<>, making allocation/deallocation explicit at call sites
(similar to simple_ilist<>::eraseAndDispose()).
- Factor out remaining calls to createNode() and deleteNode() and remove
the customization from ilist_traits<>.
- Transition uses of iplist<>/ilist<> that don't need callbacks over to
simple_ilist<>.
llvm-svn: 280107
2016-08-31 00:23:55 +08:00
|
|
|
} // end namespace
|