llvm-project/llvm/lib/CodeGen/LiveInterval.cpp

1322 lines
43 KiB
C++
Raw Normal View History

//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes. Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live range for register v if there is no instruction with number j' >= j
2010-01-13 06:18:56 +08:00
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation ranges can have holes,
// i.e. a range might look like [1,20), [50,65), [1000,1001). Each
// individual segment is represented as an instance of LiveRange::Segment,
// and the whole range is represented as an instance of LiveRange.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveInterval.h"
#include "LiveRangeUtils.h"
#include "RegisterCoalescer.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
using namespace llvm;
namespace {
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
//===----------------------------------------------------------------------===//
// Implementation of various methods necessary for calculation of live ranges.
// The implementation of the methods abstracts from the concrete type of the
// segment collection.
//
// Implementation of the class follows the Template design pattern. The base
// class contains generic algorithms that call collection-specific methods,
// which are provided in concrete subclasses. In order to avoid virtual calls
// these methods are provided by means of C++ template instantiation.
// The base class calls the methods of the subclass through method impl(),
// which casts 'this' pointer to the type of the subclass.
//
//===----------------------------------------------------------------------===//
template <typename ImplT, typename IteratorT, typename CollectionT>
class CalcLiveRangeUtilBase {
protected:
LiveRange *LR;
protected:
CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
public:
typedef LiveRange::Segment Segment;
typedef IteratorT iterator;
/// A counterpart of LiveRange::createDeadDef: Make sure the range has a
/// value defined at @p Def.
/// If @p ForVNI is null, and there is no value defined at @p Def, a new
/// value will be allocated using @p VNInfoAllocator.
/// If @p ForVNI is null, the return value is the value defined at @p Def,
/// either a pre-existing one, or the one newly created.
/// If @p ForVNI is not null, then @p Def should be the location where
/// @p ForVNI is defined. If the range does not have a value defined at
/// @p Def, the value @p ForVNI will be used instead of allocating a new
/// one. If the range already has a value defined at @p Def, it must be
/// same as @p ForVNI. In either case, @p ForVNI will be the return value.
VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator,
VNInfo *ForVNI) {
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
assert(!Def.isDead() && "Cannot define a value at the dead slot");
assert((!ForVNI || ForVNI->def == Def) &&
"If ForVNI is specified, it must match Def");
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
iterator I = impl().find(Def);
if (I == segments().end()) {
VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
return VNI;
}
Segment *S = segmentAt(I);
if (SlotIndex::isSameInstr(Def, S->start)) {
assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
assert(S->valno->def == S->start && "Inconsistent existing value def");
// It is possible to have both normal and early-clobber defs of the same
// register on an instruction. It doesn't make a lot of sense, but it is
// possible to specify in inline assembly.
//
// Just convert everything to early-clobber.
Def = std::min(Def, S->start);
if (Def != S->start)
S->start = S->valno->def = Def;
return S->valno;
}
assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
return VNI;
}
VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
if (segments().empty())
return nullptr;
iterator I =
impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
if (I == segments().begin())
return nullptr;
--I;
if (I->end <= StartIdx)
return nullptr;
if (I->end < Use)
extendSegmentEndTo(I, Use);
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
return I->valno;
}
std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
SlotIndex StartIdx, SlotIndex Use) {
if (segments().empty())
return std::make_pair(nullptr, false);
SlotIndex BeforeUse = Use.getPrevSlot();
iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
if (I == segments().begin())
return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
--I;
if (I->end <= StartIdx)
return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
if (I->end < Use) {
if (LR->isUndefIn(Undefs, I->end, BeforeUse))
return std::make_pair(nullptr, true);
extendSegmentEndTo(I, Use);
}
return std::make_pair(I->valno, false);
}
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
/// This method is used when we want to extend the segment specified
/// by I to end at the specified endpoint. To do this, we should
/// merge and eliminate all segments that this will overlap
/// with. The iterator is not invalidated.
void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
assert(I != segments().end() && "Not a valid segment!");
Segment *S = segmentAt(I);
VNInfo *ValNo = I->valno;
// Search for the first segment that we can't merge with.
iterator MergeTo = std::next(I);
for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
// If NewEnd was in the middle of a segment, make sure to get its endpoint.
S->end = std::max(NewEnd, std::prev(MergeTo)->end);
// If the newly formed segment now touches the segment after it and if they
// have the same value number, merge the two segments into one segment.
if (MergeTo != segments().end() && MergeTo->start <= I->end &&
MergeTo->valno == ValNo) {
S->end = MergeTo->end;
++MergeTo;
}
// Erase any dead segments.
segments().erase(std::next(I), MergeTo);
}
/// This method is used when we want to extend the segment specified
/// by I to start at the specified endpoint. To do this, we should
/// merge and eliminate all segments that this will overlap with.
iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
assert(I != segments().end() && "Not a valid segment!");
Segment *S = segmentAt(I);
VNInfo *ValNo = I->valno;
// Search for the first segment that we can't merge with.
iterator MergeTo = I;
do {
if (MergeTo == segments().begin()) {
S->start = NewStart;
segments().erase(MergeTo, I);
return I;
}
assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
--MergeTo;
} while (NewStart <= MergeTo->start);
// If we start in the middle of another segment, just delete a range and
// extend that segment.
if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
segmentAt(MergeTo)->end = S->end;
} else {
// Otherwise, extend the segment right after.
++MergeTo;
Segment *MergeToSeg = segmentAt(MergeTo);
MergeToSeg->start = NewStart;
MergeToSeg->end = S->end;
}
segments().erase(std::next(MergeTo), std::next(I));
return MergeTo;
}
iterator addSegment(Segment S) {
SlotIndex Start = S.start, End = S.end;
iterator I = impl().findInsertPos(S);
// If the inserted segment starts in the middle or right at the end of
// another segment, just extend that segment to contain the segment of S.
if (I != segments().begin()) {
iterator B = std::prev(I);
if (S.valno == B->valno) {
if (B->start <= Start && B->end >= Start) {
extendSegmentEndTo(B, End);
return B;
}
} else {
// Check to make sure that we are not overlapping two live segments with
// different valno's.
assert(B->end <= Start &&
"Cannot overlap two segments with differing ValID's"
" (did you def the same reg twice in a MachineInstr?)");
}
}
// Otherwise, if this segment ends in the middle of, or right next
// to, another segment, merge it into that segment.
if (I != segments().end()) {
if (S.valno == I->valno) {
if (I->start <= End) {
I = extendSegmentStartTo(I, Start);
// If S is a complete superset of a segment, we may need to grow its
// endpoint as well.
if (End > I->end)
extendSegmentEndTo(I, End);
return I;
}
} else {
// Check to make sure that we are not overlapping two live segments with
// different valno's.
assert(I->start >= End &&
"Cannot overlap two segments with differing ValID's");
}
}
// Otherwise, this is just a new segment that doesn't interact with
// anything.
// Insert it.
return segments().insert(I, S);
}
private:
ImplT &impl() { return *static_cast<ImplT *>(this); }
CollectionT &segments() { return impl().segmentsColl(); }
Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
};
//===----------------------------------------------------------------------===//
// Instantiation of the methods for calculation of live ranges
// based on a segment vector.
//===----------------------------------------------------------------------===//
class CalcLiveRangeUtilVector;
typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
LiveRange::Segments> CalcLiveRangeUtilVectorBase;
class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
public:
CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
private:
friend CalcLiveRangeUtilVectorBase;
LiveRange::Segments &segmentsColl() { return LR->segments; }
void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
iterator find(SlotIndex Pos) { return LR->find(Pos); }
iterator findInsertPos(Segment S) {
return std::upper_bound(LR->begin(), LR->end(), S.start);
}
};
//===----------------------------------------------------------------------===//
// Instantiation of the methods for calculation of live ranges
// based on a segment set.
//===----------------------------------------------------------------------===//
class CalcLiveRangeUtilSet;
typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet,
LiveRange::SegmentSet::iterator,
LiveRange::SegmentSet> CalcLiveRangeUtilSetBase;
class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
public:
CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
private:
friend CalcLiveRangeUtilSetBase;
LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
void insertAtEnd(const Segment &S) {
LR->segmentSet->insert(LR->segmentSet->end(), S);
}
iterator find(SlotIndex Pos) {
iterator I =
LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
if (I == LR->segmentSet->begin())
return I;
iterator PrevI = std::prev(I);
if (Pos < (*PrevI).end)
return PrevI;
return I;
}
iterator findInsertPos(Segment S) {
iterator I = LR->segmentSet->upper_bound(S);
if (I != LR->segmentSet->end() && !(S.start < *I))
++I;
return I;
}
};
} // namespace
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
//===----------------------------------------------------------------------===//
// LiveRange methods
//===----------------------------------------------------------------------===//
LiveRange::iterator LiveRange::find(SlotIndex Pos) {
// This algorithm is basically std::upper_bound.
// Unfortunately, std::upper_bound cannot be used with mixed types until we
// adopt C++0x. Many libraries can do it, but not all.
if (empty() || Pos >= endIndex())
return end();
iterator I = begin();
size_t Len = size();
do {
size_t Mid = Len >> 1;
if (Pos < I[Mid].end) {
Len = Mid;
} else {
I += Mid + 1;
Len -= Mid + 1;
}
} while (Len);
return I;
}
VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) {
// Use the segment set, if it is available.
if (segmentSet != nullptr)
return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
// Otherwise use the segment vector.
return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
}
VNInfo *LiveRange::createDeadDef(VNInfo *VNI) {
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
// Use the segment set, if it is available.
if (segmentSet != nullptr)
return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
// Otherwise use the segment vector.
return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
}
// overlaps - Return true if the intersection of the two live ranges is
// not empty.
//
// An example for overlaps():
//
// 0: A = ...
// 4: B = ...
// 8: C = A + B ;; last use of A
//
// The live ranges should look like:
//
// A = [3, 11)
// B = [7, x)
// C = [11, y)
//
// A->overlaps(C) should return false since we want to be able to join
// A and C.
//
bool LiveRange::overlapsFrom(const LiveRange& other,
const_iterator StartPos) const {
assert(!empty() && "empty range");
const_iterator i = begin();
const_iterator ie = end();
const_iterator j = StartPos;
const_iterator je = other.end();
assert((StartPos->start <= i->start || StartPos == other.begin()) &&
StartPos != other.end() && "Bogus start position hint!");
This patch makes use of the infrastructure implemented before to safely and aggressively coallesce live ranges even if they overlap. Consider this LLVM code for example: int %test(int %X) { %Y = mul int %X, 1 ;; Codegens to Y = X %Z = add int %X, %Y ret int %Z } The mul is just there to get a copy into the code stream. This produces this machine code: (0x869e5a8, LLVM BB @0x869b9a0): %reg1024 = mov <fi#-2>, 1, %NOREG, 0 ;; "X" %reg1025 = mov %reg1024 ;; "Y" (subsumed by X) %reg1026 = add %reg1024, %reg1025 %EAX = mov %reg1026 ret Note that the life times of reg1024 and reg1025 overlap, even though they contain the same value. This results in this machine code: test: mov %EAX, DWORD PTR [%ESP + 4] mov %ECX, %EAX add %EAX, %ECX ret Another, worse case involves loops and PHI nodes. Consider this trivial loop: testcase: int %test2(int %X) { entry: br label %Loop Loop: %Y = phi int [%X, %entry], [%Z, %Loop] %Z = add int %Y, 1 %cond = seteq int %Z, 100 br bool %cond, label %Out, label %Loop Out: ret int %Z } Because of interactions between the PHI elimination pass and the register allocator, this got compiled to this code: test2: mov %ECX, DWORD PTR [%ESP + 4] .LBBtest2_1: *** mov %EAX, %ECX inc %EAX cmp %EAX, 100 *** mov %ECX, %EAX jne .LBBtest2_1 ret Or on powerpc, this code: _test2: mflr r0 stw r0, 8(r1) stwu r1, -60(r1) .LBB_test2_1: addi r2, r3, 1 cmpwi cr0, r2, 100 *** or r3, r2, r2 bne cr0, .LBB_test2_1 *** or r3, r2, r2 lwz r0, 68(r1) mtlr r0 addi r1, r1, 60 blr 0 With this improvement in place, we now generate this code for these two testcases, which is what we want: test: mov %EAX, DWORD PTR [%ESP + 4] add %EAX, %EAX ret test2: mov %EAX, DWORD PTR [%ESP + 4] .LBBtest2_1: inc %EAX cmp %EAX, 100 jne .LBBtest2_1 # Loop ret Or on PPC: _test2: mflr r0 stw r0, 8(r1) stwu r1, -60(r1) .LBB_test2_1: addi r3, r3, 1 cmpwi cr0, r3, 100 bne cr0, .LBB_test2_1 lwz r0, 68(r1) mtlr r0 addi r1, r1, 60 blr 0 Static numbers for spill code loads/stores/reg-reg copies (smaller is better): em3d: before: 47/25/26 after: 44/22/24 164.gzip: before: 433/245/310 after: 403/231/278 175.vpr: before: 3721/2189/1581 after: 4144/2081/1423 176.gcc: before: 26195/8866/9235 after: 25942/8082/8275 186.crafty: before: 4295/2587/3079 after: 4119/2519/2916 252.eon: before: 12754/7585/5803 after: 12508/7425/5643 256.bzip2: before: 463/226/315 after: 482:241/309 Runtime perf number samples on X86: gzip: before: 41.09 after: 39.86 bzip2: runtime: before: 56.71s after: 57.07s gcc: before: 6.16 after: 6.12 eon: before: 2.03s after: 2.00s llvm-svn: 15194
2004-07-25 15:11:19 +08:00
if (i->start < j->start) {
i = std::upper_bound(i, ie, j->start);
if (i != begin()) --i;
} else if (j->start < i->start) {
++StartPos;
if (StartPos != other.end() && StartPos->start <= i->start) {
assert(StartPos < other.end() && i < end());
j = std::upper_bound(j, je, i->start);
if (j != other.begin()) --j;
}
} else {
return true;
}
if (j == je) return false;
while (i != ie) {
if (i->start > j->start) {
std::swap(i, j);
std::swap(ie, je);
}
if (i->end > j->start)
return true;
++i;
}
return false;
}
bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
const SlotIndexes &Indexes) const {
assert(!empty() && "empty range");
if (Other.empty())
return false;
// Use binary searches to find initial positions.
const_iterator I = find(Other.beginIndex());
const_iterator IE = end();
if (I == IE)
return false;
const_iterator J = Other.find(I->start);
const_iterator JE = Other.end();
if (J == JE)
return false;
for (;;) {
// J has just been advanced to satisfy:
assert(J->end >= I->start);
// Check for an overlap.
if (J->start < I->end) {
// I and J are overlapping. Find the later start.
SlotIndex Def = std::max(I->start, J->start);
// Allow the overlap if Def is a coalescable copy.
if (Def.isBlock() ||
!CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
return true;
}
// Advance the iterator that ends first to check for more overlaps.
if (J->end > I->end) {
std::swap(I, J);
std::swap(IE, JE);
}
// Advance J until J->end >= I->start.
do
if (++J == JE)
return false;
while (J->end < I->start);
}
}
/// overlaps - Return true if the live range overlaps an interval specified
/// by [Start, End).
bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
assert(Start < End && "Invalid range");
const_iterator I = std::lower_bound(begin(), end(), End);
return I != begin() && (--I)->end > Start;
}
bool LiveRange::covers(const LiveRange &Other) const {
if (empty())
return Other.empty();
const_iterator I = begin();
for (const Segment &O : Other.segments) {
I = advanceTo(I, O.start);
if (I == end() || I->start > O.start)
return false;
// Check adjacent live segments and see if we can get behind O.end.
while (I->end < O.end) {
const_iterator Last = I;
// Get next segment and abort if it was not adjacent.
++I;
if (I == end() || Last->end != I->start)
return false;
}
}
return true;
}
/// ValNo is dead, remove it. If it is the largest value number, just nuke it
/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
/// it can be nuked later.
void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
if (ValNo->id == getNumValNums()-1) {
do {
valnos.pop_back();
} while (!valnos.empty() && valnos.back()->isUnused());
} else {
ValNo->markUnused();
}
}
/// RenumberValues - Renumber all values in order of appearance and delete the
/// remaining unused values.
void LiveRange::RenumberValues() {
SmallPtrSet<VNInfo*, 8> Seen;
valnos.clear();
for (const Segment &S : segments) {
VNInfo *VNI = S.valno;
if (!Seen.insert(VNI).second)
continue;
assert(!VNI->isUnused() && "Unused valno used by live segment");
VNI->id = (unsigned)valnos.size();
valnos.push_back(VNI);
}
}
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
void LiveRange::addSegmentToSet(Segment S) {
CalcLiveRangeUtilSet(this).addSegment(S);
}
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
LiveRange::iterator LiveRange::addSegment(Segment S) {
// Use the segment set, if it is available.
if (segmentSet != nullptr) {
addSegmentToSet(S);
return end();
}
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
// Otherwise use the segment vector.
return CalcLiveRangeUtilVector(this).addSegment(S);
}
void LiveRange::append(const Segment S) {
// Check that the segment belongs to the back of the list.
assert(segments.empty() || segments.back().end <= S.start);
segments.push_back(S);
}
std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
SlotIndex StartIdx, SlotIndex Kill) {
// Use the segment set, if it is available.
if (segmentSet != nullptr)
return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
// Otherwise use the segment vector.
return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
}
VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
// Use the segment set, if it is available.
if (segmentSet != nullptr)
return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
// Otherwise use the segment vector.
return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
}
/// Remove the specified segment from this range. Note that the segment must
/// be in a single Segment in its entirety.
void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
bool RemoveDeadValNo) {
// Find the Segment containing this span.
iterator I = find(Start);
assert(I != end() && "Segment is not in range!");
assert(I->containsInterval(Start, End)
&& "Segment is not entirely in range!");
// If the span we are removing is at the start of the Segment, adjust it.
VNInfo *ValNo = I->valno;
if (I->start == Start) {
if (I->end == End) {
if (RemoveDeadValNo) {
// Check if val# is dead.
bool isDead = true;
for (const_iterator II = begin(), EE = end(); II != EE; ++II)
if (II != I && II->valno == ValNo) {
isDead = false;
break;
}
if (isDead) {
// Now that ValNo is dead, remove it.
markValNoForDeletion(ValNo);
}
}
segments.erase(I); // Removed the whole Segment.
} else
I->start = End;
return;
}
// Otherwise if the span we are removing is at the end of the Segment,
// adjust the other way.
if (I->end == End) {
I->end = Start;
return;
}
// Otherwise, we are splitting the Segment into two pieces.
SlotIndex OldEnd = I->end;
I->end = Start; // Trim the old segment.
// Insert the new one.
segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
}
/// removeValNo - Remove all the segments defined by the specified value#.
/// Also remove the value# from value# list.
void LiveRange::removeValNo(VNInfo *ValNo) {
if (empty()) return;
segments.erase(remove_if(*this, [ValNo](const Segment &S) {
return S.valno == ValNo;
}), end());
// Now that ValNo is dead, remove it.
markValNoForDeletion(ValNo);
}
void LiveRange::join(LiveRange &Other,
const int *LHSValNoAssignments,
const int *RHSValNoAssignments,
SmallVectorImpl<VNInfo *> &NewVNInfo) {
verify();
// Determine if any of our values are mapped. This is uncommon, so we want
// to avoid the range scan if not.
bool MustMapCurValNos = false;
unsigned NumVals = getNumValNums();
unsigned NumNewVals = NewVNInfo.size();
for (unsigned i = 0; i != NumVals; ++i) {
unsigned LHSValID = LHSValNoAssignments[i];
if (i != LHSValID ||
(NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
MustMapCurValNos = true;
break;
}
}
// If we have to apply a mapping to our base range assignment, rewrite it now.
if (MustMapCurValNos && !empty()) {
// Map the first live range.
iterator OutIt = begin();
OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
assert(nextValNo && "Huh?");
// If this live range has the same value # as its immediate predecessor,
// and if they are neighbors, remove one Segment. This happens when we
// have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
if (OutIt->valno == nextValNo && OutIt->end == I->start) {
OutIt->end = I->end;
} else {
// Didn't merge. Move OutIt to the next segment,
++OutIt;
OutIt->valno = nextValNo;
if (OutIt != I) {
OutIt->start = I->start;
OutIt->end = I->end;
}
}
}
// If we merge some segments, chop off the end.
++OutIt;
segments.erase(OutIt, end());
}
// Rewrite Other values before changing the VNInfo ids.
// This can leave Other in an invalid state because we're not coalescing
// touching segments that now have identical values. That's OK since Other is
// not supposed to be valid after calling join();
for (Segment &S : Other.segments)
S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
// Update val# info. Renumber them and make sure they all belong to this
// LiveRange now. Also remove dead val#'s.
unsigned NumValNos = 0;
for (unsigned i = 0; i < NumNewVals; ++i) {
VNInfo *VNI = NewVNInfo[i];
if (VNI) {
if (NumValNos >= NumVals)
valnos.push_back(VNI);
else
valnos[NumValNos] = VNI;
VNI->id = NumValNos++; // Renumber val#.
}
}
if (NumNewVals < NumVals)
valnos.resize(NumNewVals); // shrinkify
// Okay, now insert the RHS live segments into the LHS.
LiveRangeUpdater Updater(this);
for (Segment &S : Other.segments)
Updater.add(S);
}
/// Merge all of the segments in RHS into this live range as the specified
/// value number. The segments in RHS are allowed to overlap with segments in
/// the current range, but only if the overlapping segments have the
/// specified value number.
void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
VNInfo *LHSValNo) {
LiveRangeUpdater Updater(this);
for (const Segment &S : RHS.segments)
Updater.add(S.start, S.end, LHSValNo);
}
/// MergeValueInAsValue - Merge all of the live segments of a specific val#
/// in RHS into this live range as the specified value number.
/// The segments in RHS are allowed to overlap with segments in the
/// current range, it will replace the value numbers of the overlaped
/// segments with the specified value number.
void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
const VNInfo *RHSValNo,
VNInfo *LHSValNo) {
LiveRangeUpdater Updater(this);
for (const Segment &S : RHS.segments)
if (S.valno == RHSValNo)
Updater.add(S.start, S.end, LHSValNo);
}
/// MergeValueNumberInto - This method is called when two value nubmers
/// are found to be equivalent. This eliminates V1, replacing all
/// segments with the V1 value number with the V2 value number. This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
assert(V1 != V2 && "Identical value#'s are always equivalent!");
// This code actually merges the (numerically) larger value number into the
// smaller value number, which is likely to allow us to compactify the value
// space. The only thing we have to be careful of is to preserve the
// instruction that defines the result value.
// Make sure V2 is smaller than V1.
if (V1->id < V2->id) {
V1->copyFrom(*V2);
std::swap(V1, V2);
}
// Merge V1 segments into V2.
for (iterator I = begin(); I != end(); ) {
iterator S = I++;
if (S->valno != V1) continue; // Not a V1 Segment.
// Okay, we found a V1 live range. If it had a previous, touching, V2 live
// range, extend it.
if (S != begin()) {
iterator Prev = S-1;
if (Prev->valno == V2 && Prev->end == S->start) {
Prev->end = S->end;
// Erase this live-range.
segments.erase(S);
I = Prev+1;
S = Prev;
}
}
// Okay, now we have a V1 or V2 live range that is maximally merged forward.
// Ensure that it is a V2 live-range.
S->valno = V2;
// If we can merge it into later V2 segments, do so now. We ignore any
// following V1 segments, as they will be merged in subsequent iterations
// of the loop.
if (I != end()) {
if (I->start == S->end && I->valno == V2) {
S->end = I->end;
segments.erase(I);
I = S+1;
}
}
}
// Now that V1 is dead, remove it.
markValNoForDeletion(V1);
return V2;
}
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
void LiveRange::flushSegmentSet() {
assert(segmentSet != nullptr && "segment set must have been created");
assert(
segments.empty() &&
"segment set can be used only initially before switching to the array");
segments.append(segmentSet->begin(), segmentSet->end());
segmentSet = nullptr;
verify();
}
bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
// If there are no regmask slots, we have nothing to search.
if (SlotI == SlotE)
return false;
// Start our search at the first segment that ends after the first slot.
const_iterator SegmentI = find(*SlotI);
const_iterator SegmentE = end();
// If there are no segments that end after the first slot, we're done.
if (SegmentI == SegmentE)
return false;
// Look for each slot in the live range.
for ( ; SlotI != SlotE; ++SlotI) {
// Go to the next segment that ends after the current slot.
// The slot may be within a hole in the range.
SegmentI = advanceTo(SegmentI, *SlotI);
if (SegmentI == SegmentE)
return false;
// If this segment contains the slot, we're done.
if (SegmentI->contains(*SlotI))
return true;
// Otherwise, look for the next slot.
}
// We didn't find a segment containing any of the slots.
return false;
}
void LiveInterval::freeSubRange(SubRange *S) {
S->~SubRange();
// Memory was allocated with BumpPtr allocator and is not freed here.
}
void LiveInterval::removeEmptySubRanges() {
SubRange **NextPtr = &SubRanges;
SubRange *I = *NextPtr;
while (I != nullptr) {
if (!I->empty()) {
NextPtr = &I->Next;
I = *NextPtr;
continue;
}
// Skip empty subranges until we find the first nonempty one.
do {
SubRange *Next = I->Next;
freeSubRange(I);
I = Next;
} while (I != nullptr && I->empty());
*NextPtr = I;
}
}
void LiveInterval::clearSubRanges() {
for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
Next = I->Next;
freeSubRange(I);
}
SubRanges = nullptr;
}
unsigned LiveInterval::getSize() const {
unsigned Sum = 0;
for (const Segment &S : segments)
Sum += S.start.distance(S.end);
return Sum;
}
void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
LaneBitmask LaneMask,
const MachineRegisterInfo &MRI,
const SlotIndexes &Indexes) const {
assert(TargetRegisterInfo::isVirtualRegister(reg));
LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg);
assert(!(VRegMask & LaneMask).none());
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
for (const MachineOperand &MO : MRI.def_operands(reg)) {
if (!MO.isUndef())
continue;
unsigned SubReg = MO.getSubReg();
assert(SubReg != 0 && "Undef should only be set on subreg defs");
LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
LaneBitmask UndefMask = VRegMask & ~DefMask;
if (!(UndefMask & LaneMask).none()) {
const MachineInstr &MI = *MO.getParent();
bool EarlyClobber = MO.isEarlyClobber();
SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
Undefs.push_back(Pos);
}
}
}
raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
dbgs() << *this << '\n';
}
#endif
void LiveRange::print(raw_ostream &OS) const {
if (empty())
OS << "EMPTY";
else {
for (const Segment &S : segments) {
OS << S;
assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
}
}
// Print value number info.
if (getNumValNums()) {
OS << " ";
unsigned vnum = 0;
for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
++i, ++vnum) {
const VNInfo *vni = *i;
if (vnum) OS << ' ';
OS << vnum << '@';
2009-06-18 05:01:20 +08:00
if (vni->isUnused()) {
OS << 'x';
} else {
OS << vni->def;
if (vni->isPHIDef())
OS << "-phi";
}
}
}
}
void LiveInterval::SubRange::print(raw_ostream &OS) const {
OS << " L" << PrintLaneMask(LaneMask) << ' '
<< static_cast<const LiveRange&>(*this);
}
void LiveInterval::print(raw_ostream &OS) const {
OS << PrintReg(reg) << ' ';
super::print(OS);
// Print subranges
for (const SubRange &SR : subranges())
OS << SR;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LiveRange::dump() const {
dbgs() << *this << '\n';
}
LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
dbgs() << *this << '\n';
}
LLVM_DUMP_METHOD void LiveInterval::dump() const {
dbgs() << *this << '\n';
}
#endif
#ifndef NDEBUG
void LiveRange::verify() const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
assert(I->start.isValid());
assert(I->end.isValid());
assert(I->start < I->end);
assert(I->valno != nullptr);
assert(I->valno->id < valnos.size());
assert(I->valno == valnos[I->valno->id]);
if (std::next(I) != E) {
assert(I->end <= std::next(I)->start);
if (I->end == std::next(I)->start)
assert(I->valno != std::next(I)->valno);
}
}
}
void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
super::verify();
// Make sure SubRanges are fine and LaneMasks are disjunct.
LaneBitmask Mask;
LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg)
: LaneBitmask::getAll();
for (const SubRange &SR : subranges()) {
// Subrange lanemask should be disjunct to any previous subrange masks.
assert((Mask & SR.LaneMask).none());
Mask |= SR.LaneMask;
// subrange mask should not contained in maximum lane mask for the vreg.
assert((Mask & ~MaxMask).none());
// empty subranges must be removed.
assert(!SR.empty());
SR.verify();
// Main liverange should cover subrange.
assert(covers(SR));
}
}
#endif
//===----------------------------------------------------------------------===//
// LiveRangeUpdater class
//===----------------------------------------------------------------------===//
//
// The LiveRangeUpdater class always maintains these invariants:
//
// - When LastStart is invalid, Spills is empty and the iterators are invalid.
// This is the initial state, and the state created by flush().
// In this state, isDirty() returns false.
//
// Otherwise, segments are kept in three separate areas:
//
// 1. [begin; WriteI) at the front of LR.
// 2. [ReadI; end) at the back of LR.
// 3. Spills.
//
// - LR.begin() <= WriteI <= ReadI <= LR.end().
// - Segments in all three areas are fully ordered and coalesced.
// - Segments in area 1 precede and can't coalesce with segments in area 2.
// - Segments in Spills precede and can't coalesce with segments in area 2.
// - No coalescing is possible between segments in Spills and segments in area
// 1, and there are no overlapping segments.
//
// The segments in Spills are not ordered with respect to the segments in area
// 1. They need to be merged.
//
// When they exist, Spills.back().start <= LastStart,
// and WriteI[-1].start <= LastStart.
void LiveRangeUpdater::print(raw_ostream &OS) const {
if (!isDirty()) {
if (LR)
OS << "Clean updater: " << *LR << '\n';
else
OS << "Null updater.\n";
return;
}
assert(LR && "Can't have null LR in dirty updater.");
OS << " updater with gap = " << (ReadI - WriteI)
<< ", last start = " << LastStart
<< ":\n Area 1:";
for (const auto &S : make_range(LR->begin(), WriteI))
OS << ' ' << S;
OS << "\n Spills:";
for (unsigned I = 0, E = Spills.size(); I != E; ++I)
OS << ' ' << Spills[I];
OS << "\n Area 2:";
for (const auto &S : make_range(ReadI, LR->end()))
OS << ' ' << S;
OS << '\n';
}
LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
print(errs());
}
// Determine if A and B should be coalesced.
static inline bool coalescable(const LiveRange::Segment &A,
const LiveRange::Segment &B) {
assert(A.start <= B.start && "Unordered live segments.");
if (A.end == B.start)
return A.valno == B.valno;
if (A.end < B.start)
return false;
assert(A.valno == B.valno && "Cannot overlap different values");
return true;
}
void LiveRangeUpdater::add(LiveRange::Segment Seg) {
assert(LR && "Cannot add to a null destination");
[LiveIntervalAnalysis] Speed up creation of live ranges for physical registers by using a segment set. The patch addresses a compile-time performance regression in the LiveIntervals analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression is especially critical when compiling long functions. Our analysis had shown that the most of time is taken for generation of live intervals for physical registers. Insertions in the middle of the array of live ranges cause quadratic algorithmic complexity, which is apparently the main reason for the slow-down. Overview of changes: - The patch introduces an additional std::set<Segment>* member in LiveRange for storing segments in the phase of initial creation. The set is used if this member is not NULL, otherwise everything works the old way. - The set of operations on LiveRange used during initial creation (i.e. used by createDeadDefs and extendToUses) have been reimplemented to use the segment set if it is available. - After a live range is created the contents of the set are flushed to the segment vector, because the set is not as efficient as the vector for the later uses of the live range. After the flushing, the set is deleted and cannot be used again. - The set is only for live ranges computed in LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in computeVirtRegs(), because I did not bring any performance benefits to computeVirtRegs() and for some examples even brought a slow down. Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com> Differential Revision: http://reviews.llvm.org/D6013 llvm-svn: 228421
2015-02-07 02:42:41 +08:00
// Fall back to the regular add method if the live range
// is using the segment set instead of the segment vector.
if (LR->segmentSet != nullptr) {
LR->addSegmentToSet(Seg);
return;
}
// Flush the state if Start moves backwards.
if (!LastStart.isValid() || LastStart > Seg.start) {
if (isDirty())
flush();
// This brings us to an uninitialized state. Reinitialize.
assert(Spills.empty() && "Leftover spilled segments");
WriteI = ReadI = LR->begin();
}
// Remember start for next time.
LastStart = Seg.start;
// Advance ReadI until it ends after Seg.start.
LiveRange::iterator E = LR->end();
if (ReadI != E && ReadI->end <= Seg.start) {
// First try to close the gap between WriteI and ReadI with spills.
if (ReadI != WriteI)
mergeSpills();
// Then advance ReadI.
if (ReadI == WriteI)
ReadI = WriteI = LR->find(Seg.start);
else
while (ReadI != E && ReadI->end <= Seg.start)
*WriteI++ = *ReadI++;
}
assert(ReadI == E || ReadI->end > Seg.start);
// Check if the ReadI segment begins early.
if (ReadI != E && ReadI->start <= Seg.start) {
assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
// Bail if Seg is completely contained in ReadI.
if (ReadI->end >= Seg.end)
return;
// Coalesce into Seg.
Seg.start = ReadI->start;
++ReadI;
}
// Coalesce as much as possible from ReadI into Seg.
while (ReadI != E && coalescable(Seg, *ReadI)) {
Seg.end = std::max(Seg.end, ReadI->end);
++ReadI;
}
// Try coalescing Spills.back() into Seg.
if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
Seg.start = Spills.back().start;
Seg.end = std::max(Spills.back().end, Seg.end);
Spills.pop_back();
}
// Try coalescing Seg into WriteI[-1].
if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
return;
}
// Seg doesn't coalesce with anything, and needs to be inserted somewhere.
if (WriteI != ReadI) {
*WriteI++ = Seg;
return;
}
// Finally, append to LR or Spills.
if (WriteI == E) {
LR->segments.push_back(Seg);
WriteI = ReadI = LR->end();
} else
Spills.push_back(Seg);
}
// Merge as many spilled segments as possible into the gap between WriteI
// and ReadI. Advance WriteI to reflect the inserted instructions.
void LiveRangeUpdater::mergeSpills() {
// Perform a backwards merge of Spills and [SpillI;WriteI).
size_t GapSize = ReadI - WriteI;
size_t NumMoved = std::min(Spills.size(), GapSize);
LiveRange::iterator Src = WriteI;
LiveRange::iterator Dst = Src + NumMoved;
LiveRange::iterator SpillSrc = Spills.end();
LiveRange::iterator B = LR->begin();
// This is the new WriteI position after merging spills.
WriteI = Dst;
// Now merge Src and Spills backwards.
while (Src != Dst) {
if (Src != B && Src[-1].start > SpillSrc[-1].start)
*--Dst = *--Src;
else
*--Dst = *--SpillSrc;
}
assert(NumMoved == size_t(Spills.end() - SpillSrc));
Spills.erase(SpillSrc, Spills.end());
}
void LiveRangeUpdater::flush() {
if (!isDirty())
return;
// Clear the dirty state.
LastStart = SlotIndex();
assert(LR && "Cannot add to a null destination");
// Nothing to merge?
if (Spills.empty()) {
LR->segments.erase(WriteI, ReadI);
LR->verify();
return;
}
// Resize the WriteI - ReadI gap to match Spills.
size_t GapSize = ReadI - WriteI;
if (GapSize < Spills.size()) {
// The gap is too small. Make some room.
size_t WritePos = WriteI - LR->begin();
LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
// This also invalidated ReadI, but it is recomputed below.
WriteI = LR->begin() + WritePos;
} else {
// Shrink the gap if necessary.
LR->segments.erase(WriteI + Spills.size(), ReadI);
}
ReadI = WriteI + Spills.size();
mergeSpills();
LR->verify();
}
unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
// Create initial equivalence classes.
EqClass.clear();
EqClass.grow(LR.getNumValNums());
const VNInfo *used = nullptr, *unused = nullptr;
// Determine connections.
for (const VNInfo *VNI : LR.valnos) {
// Group all unused values into one class.
if (VNI->isUnused()) {
if (unused)
EqClass.join(unused->id, VNI->id);
unused = VNI;
continue;
}
used = VNI;
if (VNI->isPHIDef()) {
const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
assert(MBB && "Phi-def has no defining MBB");
// Connect to values live out of predecessors.
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI)
if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
EqClass.join(VNI->id, PVNI->id);
} else {
// Normal value defined by an instruction. Check for two-addr redef.
// FIXME: This could be coincidental. Should we really check for a tied
// operand constraint?
// Note that VNI->def may be a use slot for an early clobber def.
if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
EqClass.join(VNI->id, UVNI->id);
}
}
// Lump all the unused values in with the last used value.
if (used && unused)
EqClass.join(used->id, unused->id);
EqClass.compress();
return EqClass.getNumClasses();
}
void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
MachineRegisterInfo &MRI) {
// Rewrite instructions.
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
RE = MRI.reg_end(); RI != RE;) {
MachineOperand &MO = *RI;
MachineInstr *MI = RI->getParent();
++RI;
// DBG_VALUE instructions don't have slot indexes, so get the index of the
// instruction before them.
// Normally, DBG_VALUE instructions are removed before this function is
// called, but it is not a requirement.
SlotIndex Idx;
if (MI->isDebugValue())
Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
else
Idx = LIS.getInstructionIndex(*MI);
LiveQueryResult LRQ = LI.Query(Idx);
const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
// In the case of an <undef> use that isn't tied to any def, VNI will be
// NULL. If the use is tied to a def, VNI will be the defined value.
if (!VNI)
continue;
if (unsigned EqClass = getEqClass(VNI))
MO.setReg(LIV[EqClass-1]->reg);
}
// Distribute subregister liveranges.
if (LI.hasSubRanges()) {
unsigned NumComponents = EqClass.getNumClasses();
SmallVector<unsigned, 8> VNIMapping;
SmallVector<LiveInterval::SubRange*, 8> SubRanges;
BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
for (LiveInterval::SubRange &SR : LI.subranges()) {
// Create new subranges in the split intervals and construct a mapping
// for the VNInfos in the subrange.
unsigned NumValNos = SR.valnos.size();
VNIMapping.clear();
VNIMapping.reserve(NumValNos);
SubRanges.clear();
SubRanges.resize(NumComponents-1, nullptr);
for (unsigned I = 0; I < NumValNos; ++I) {
const VNInfo &VNI = *SR.valnos[I];
unsigned ComponentNum;
if (VNI.isUnused()) {
ComponentNum = 0;
} else {
const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
assert(MainRangeVNI != nullptr
&& "SubRange def must have corresponding main range def");
ComponentNum = getEqClass(MainRangeVNI);
if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
SubRanges[ComponentNum-1]
= LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
}
}
VNIMapping.push_back(ComponentNum);
}
DistributeRange(SR, SubRanges.data(), VNIMapping);
}
LI.removeEmptySubRanges();
}
// Distribute main liverange.
DistributeRange(LI, LIV, EqClass);
}