2009-07-17 02:04:31 +08:00
|
|
|
//===--------------- LLVMContextImpl.cpp - Implementation ------*- C++ -*--===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements LLVMContextImpl, the opaque implementation
|
|
|
|
// of LLVMContext.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "LLVMContextImpl.h"
|
|
|
|
#include "llvm/Constants.h"
|
|
|
|
#include "llvm/DerivedTypes.h"
|
|
|
|
#include "llvm/LLVMContext.h"
|
2009-07-17 07:44:30 +08:00
|
|
|
#include "llvm/MDNode.h"
|
2009-07-17 02:04:31 +08:00
|
|
|
using namespace llvm;
|
|
|
|
|
2009-07-22 04:13:12 +08:00
|
|
|
static char getValType(ConstantAggregateZero *CPZ) { return 0; }
|
|
|
|
|
2009-07-22 04:55:28 +08:00
|
|
|
static std::vector<Constant*> getValType(ConstantArray *CA) {
|
|
|
|
std::vector<Constant*> Elements;
|
|
|
|
Elements.reserve(CA->getNumOperands());
|
|
|
|
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
|
|
|
|
Elements.push_back(cast<Constant>(CA->getOperand(i)));
|
|
|
|
return Elements;
|
|
|
|
}
|
|
|
|
|
2009-07-22 04:13:12 +08:00
|
|
|
namespace llvm {
|
|
|
|
template<typename T, typename Alloc>
|
|
|
|
struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
|
|
|
|
static unsigned uses(const std::vector<T, Alloc>& v) {
|
|
|
|
return v.size();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<class ConstantClass, class TypeClass, class ValType>
|
|
|
|
struct VISIBILITY_HIDDEN ConstantCreator {
|
|
|
|
static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
|
|
|
|
return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<class ConstantClass, class TypeClass>
|
|
|
|
struct VISIBILITY_HIDDEN ConvertConstantType {
|
|
|
|
static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
|
|
|
|
llvm_unreachable("This type cannot be converted!");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// ConstantAggregateZero does not take extra "value" argument...
|
|
|
|
template<class ValType>
|
|
|
|
struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
|
|
|
|
static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
|
|
|
|
return new ConstantAggregateZero(Ty);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<>
|
|
|
|
struct ConvertConstantType<ConstantAggregateZero, Type> {
|
|
|
|
static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
|
|
|
|
// Make everyone now use a constant of the new type...
|
|
|
|
Constant *New = NewTy->getContext().getConstantAggregateZero(NewTy);
|
|
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
|
|
}
|
|
|
|
};
|
2009-07-22 04:55:28 +08:00
|
|
|
|
|
|
|
template<>
|
|
|
|
struct ConvertConstantType<ConstantArray, ArrayType> {
|
|
|
|
static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
|
|
|
|
// Make everyone now use a constant of the new type...
|
|
|
|
std::vector<Constant*> C;
|
|
|
|
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
|
|
|
|
C.push_back(cast<Constant>(OldC->getOperand(i)));
|
|
|
|
Constant *New = NewTy->getContext().getConstantArray(NewTy, C);
|
|
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
|
|
}
|
|
|
|
};
|
2009-07-22 04:13:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
template<class ValType, class TypeClass, class ConstantClass,
|
|
|
|
bool HasLargeKey /*true for arrays and structs*/ >
|
2009-07-22 04:55:28 +08:00
|
|
|
class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
|
2009-07-22 04:13:12 +08:00
|
|
|
public:
|
|
|
|
typedef std::pair<const Type*, ValType> MapKey;
|
|
|
|
typedef std::map<MapKey, Constant *> MapTy;
|
|
|
|
typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
|
|
|
|
typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
|
|
|
|
private:
|
|
|
|
/// Map - This is the main map from the element descriptor to the Constants.
|
|
|
|
/// This is the primary way we avoid creating two of the same shape
|
|
|
|
/// constant.
|
|
|
|
MapTy Map;
|
|
|
|
|
|
|
|
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
|
|
|
|
/// from the constants to their element in Map. This is important for
|
|
|
|
/// removal of constants from the array, which would otherwise have to scan
|
|
|
|
/// through the map with very large keys.
|
|
|
|
InverseMapTy InverseMap;
|
|
|
|
|
|
|
|
/// AbstractTypeMap - Map for abstract type constants.
|
|
|
|
///
|
|
|
|
AbstractTypeMapTy AbstractTypeMap;
|
|
|
|
|
|
|
|
/// ValueMapLock - Mutex for this map.
|
|
|
|
sys::SmartMutex<true> ValueMapLock;
|
|
|
|
|
|
|
|
public:
|
|
|
|
// NOTE: This function is not locked. It is the caller's responsibility
|
|
|
|
// to enforce proper synchronization.
|
|
|
|
typename MapTy::iterator map_end() { return Map.end(); }
|
|
|
|
|
|
|
|
/// InsertOrGetItem - Return an iterator for the specified element.
|
|
|
|
/// If the element exists in the map, the returned iterator points to the
|
|
|
|
/// entry and Exists=true. If not, the iterator points to the newly
|
|
|
|
/// inserted entry and returns Exists=false. Newly inserted entries have
|
|
|
|
/// I->second == 0, and should be filled in.
|
|
|
|
/// NOTE: This function is not locked. It is the caller's responsibility
|
|
|
|
// to enforce proper synchronization.
|
|
|
|
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
|
|
|
|
&InsertVal,
|
|
|
|
bool &Exists) {
|
|
|
|
std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
|
|
|
|
Exists = !IP.second;
|
|
|
|
return IP.first;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
|
|
|
|
if (HasLargeKey) {
|
|
|
|
typename InverseMapTy::iterator IMI = InverseMap.find(CP);
|
|
|
|
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
|
|
|
|
IMI->second->second == CP &&
|
|
|
|
"InverseMap corrupt!");
|
|
|
|
return IMI->second;
|
|
|
|
}
|
|
|
|
|
|
|
|
typename MapTy::iterator I =
|
|
|
|
Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
|
|
|
|
getValType(CP)));
|
|
|
|
if (I == Map.end() || I->second != CP) {
|
|
|
|
// FIXME: This should not use a linear scan. If this gets to be a
|
|
|
|
// performance problem, someone should look at this.
|
|
|
|
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
|
|
|
|
/* empty */;
|
|
|
|
}
|
|
|
|
return I;
|
|
|
|
}
|
|
|
|
|
|
|
|
ConstantClass* Create(const TypeClass *Ty, const ValType &V,
|
|
|
|
typename MapTy::iterator I) {
|
|
|
|
ConstantClass* Result =
|
|
|
|
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
|
|
|
|
|
|
|
|
assert(Result->getType() == Ty && "Type specified is not correct!");
|
|
|
|
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
|
|
|
|
|
|
|
|
if (HasLargeKey) // Remember the reverse mapping if needed.
|
|
|
|
InverseMap.insert(std::make_pair(Result, I));
|
|
|
|
|
|
|
|
// If the type of the constant is abstract, make sure that an entry
|
|
|
|
// exists for it in the AbstractTypeMap.
|
|
|
|
if (Ty->isAbstract()) {
|
|
|
|
typename AbstractTypeMapTy::iterator TI =
|
|
|
|
AbstractTypeMap.find(Ty);
|
|
|
|
|
|
|
|
if (TI == AbstractTypeMap.end()) {
|
|
|
|
// Add ourselves to the ATU list of the type.
|
|
|
|
cast<DerivedType>(Ty)->addAbstractTypeUser(this);
|
|
|
|
|
|
|
|
AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
public:
|
|
|
|
|
|
|
|
/// getOrCreate - Return the specified constant from the map, creating it if
|
|
|
|
/// necessary.
|
|
|
|
ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
|
|
|
|
sys::SmartScopedLock<true> Lock(ValueMapLock);
|
|
|
|
MapKey Lookup(Ty, V);
|
|
|
|
ConstantClass* Result = 0;
|
|
|
|
|
|
|
|
typename MapTy::iterator I = Map.find(Lookup);
|
|
|
|
// Is it in the map?
|
|
|
|
if (I != Map.end())
|
|
|
|
Result = static_cast<ConstantClass *>(I->second);
|
|
|
|
|
|
|
|
if (!Result) {
|
|
|
|
// If no preexisting value, create one now...
|
|
|
|
Result = Create(Ty, V, I);
|
|
|
|
}
|
|
|
|
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
void remove(ConstantClass *CP) {
|
|
|
|
sys::SmartScopedLock<true> Lock(ValueMapLock);
|
|
|
|
typename MapTy::iterator I = FindExistingElement(CP);
|
|
|
|
assert(I != Map.end() && "Constant not found in constant table!");
|
|
|
|
assert(I->second == CP && "Didn't find correct element?");
|
|
|
|
|
|
|
|
if (HasLargeKey) // Remember the reverse mapping if needed.
|
|
|
|
InverseMap.erase(CP);
|
|
|
|
|
|
|
|
// Now that we found the entry, make sure this isn't the entry that
|
|
|
|
// the AbstractTypeMap points to.
|
|
|
|
const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
|
|
|
|
if (Ty->isAbstract()) {
|
|
|
|
assert(AbstractTypeMap.count(Ty) &&
|
|
|
|
"Abstract type not in AbstractTypeMap?");
|
|
|
|
typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
|
|
|
|
if (ATMEntryIt == I) {
|
|
|
|
// Yes, we are removing the representative entry for this type.
|
|
|
|
// See if there are any other entries of the same type.
|
|
|
|
typename MapTy::iterator TmpIt = ATMEntryIt;
|
|
|
|
|
|
|
|
// First check the entry before this one...
|
|
|
|
if (TmpIt != Map.begin()) {
|
|
|
|
--TmpIt;
|
|
|
|
if (TmpIt->first.first != Ty) // Not the same type, move back...
|
|
|
|
++TmpIt;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we didn't find the same type, try to move forward...
|
|
|
|
if (TmpIt == ATMEntryIt) {
|
|
|
|
++TmpIt;
|
|
|
|
if (TmpIt == Map.end() || TmpIt->first.first != Ty)
|
|
|
|
--TmpIt; // No entry afterwards with the same type
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there is another entry in the map of the same abstract type,
|
|
|
|
// update the AbstractTypeMap entry now.
|
|
|
|
if (TmpIt != ATMEntryIt) {
|
|
|
|
ATMEntryIt = TmpIt;
|
|
|
|
} else {
|
|
|
|
// Otherwise, we are removing the last instance of this type
|
|
|
|
// from the table. Remove from the ATM, and from user list.
|
|
|
|
cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
|
|
|
|
AbstractTypeMap.erase(Ty);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Map.erase(I);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// MoveConstantToNewSlot - If we are about to change C to be the element
|
|
|
|
/// specified by I, update our internal data structures to reflect this
|
|
|
|
/// fact.
|
|
|
|
/// NOTE: This function is not locked. It is the responsibility of the
|
|
|
|
/// caller to enforce proper synchronization if using this method.
|
|
|
|
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
|
|
|
|
// First, remove the old location of the specified constant in the map.
|
|
|
|
typename MapTy::iterator OldI = FindExistingElement(C);
|
|
|
|
assert(OldI != Map.end() && "Constant not found in constant table!");
|
|
|
|
assert(OldI->second == C && "Didn't find correct element?");
|
|
|
|
|
|
|
|
// If this constant is the representative element for its abstract type,
|
|
|
|
// update the AbstractTypeMap so that the representative element is I.
|
|
|
|
if (C->getType()->isAbstract()) {
|
|
|
|
typename AbstractTypeMapTy::iterator ATI =
|
|
|
|
AbstractTypeMap.find(C->getType());
|
|
|
|
assert(ATI != AbstractTypeMap.end() &&
|
|
|
|
"Abstract type not in AbstractTypeMap?");
|
|
|
|
if (ATI->second == OldI)
|
|
|
|
ATI->second = I;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Remove the old entry from the map.
|
|
|
|
Map.erase(OldI);
|
|
|
|
|
|
|
|
// Update the inverse map so that we know that this constant is now
|
|
|
|
// located at descriptor I.
|
|
|
|
if (HasLargeKey) {
|
|
|
|
assert(I->second == C && "Bad inversemap entry!");
|
|
|
|
InverseMap[C] = I;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
|
|
|
|
sys::SmartScopedLock<true> Lock(ValueMapLock);
|
|
|
|
typename AbstractTypeMapTy::iterator I =
|
|
|
|
AbstractTypeMap.find(cast<Type>(OldTy));
|
|
|
|
|
|
|
|
assert(I != AbstractTypeMap.end() &&
|
|
|
|
"Abstract type not in AbstractTypeMap?");
|
|
|
|
|
|
|
|
// Convert a constant at a time until the last one is gone. The last one
|
|
|
|
// leaving will remove() itself, causing the AbstractTypeMapEntry to be
|
|
|
|
// eliminated eventually.
|
|
|
|
do {
|
|
|
|
ConvertConstantType<ConstantClass,
|
|
|
|
TypeClass>::convert(
|
|
|
|
static_cast<ConstantClass *>(I->second->second),
|
|
|
|
cast<TypeClass>(NewTy));
|
|
|
|
|
|
|
|
I = AbstractTypeMap.find(cast<Type>(OldTy));
|
|
|
|
} while (I != AbstractTypeMap.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the type became concrete without being refined to any other existing
|
|
|
|
// type, we just remove ourselves from the ATU list.
|
|
|
|
void typeBecameConcrete(const DerivedType *AbsTy) {
|
|
|
|
AbsTy->removeAbstractTypeUser(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
void dump() const {
|
|
|
|
DOUT << "Constant.cpp: ValueMap\n";
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
LLVMContextImpl::LLVMContextImpl(LLVMContext &C) :
|
|
|
|
Context(C), TheTrueVal(0), TheFalseVal(0) {
|
2009-07-22 04:55:28 +08:00
|
|
|
AggZeroConstants = new ValueMap<char, Type, ConstantAggregateZero>();
|
|
|
|
ArrayConstants = new ArrayConstantsTy();
|
2009-07-22 04:13:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
LLVMContextImpl::~LLVMContextImpl() {
|
|
|
|
delete AggZeroConstants;
|
2009-07-22 04:55:28 +08:00
|
|
|
delete ArrayConstants;
|
2009-07-22 04:13:12 +08:00
|
|
|
}
|
|
|
|
|
2009-07-17 02:04:31 +08:00
|
|
|
// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
|
|
|
|
// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
|
|
|
|
// operator== and operator!= to ensure that the DenseMap doesn't attempt to
|
|
|
|
// compare APInt's of different widths, which would violate an APInt class
|
|
|
|
// invariant which generates an assertion.
|
|
|
|
ConstantInt *LLVMContextImpl::getConstantInt(const APInt& V) {
|
|
|
|
// Get the corresponding integer type for the bit width of the value.
|
|
|
|
const IntegerType *ITy = Context.getIntegerType(V.getBitWidth());
|
|
|
|
// get an existing value or the insertion position
|
|
|
|
DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
|
|
|
|
|
|
|
|
ConstantsLock.reader_acquire();
|
|
|
|
ConstantInt *&Slot = IntConstants[Key];
|
|
|
|
ConstantsLock.reader_release();
|
|
|
|
|
|
|
|
if (!Slot) {
|
|
|
|
sys::SmartScopedWriter<true> Writer(ConstantsLock);
|
|
|
|
ConstantInt *&NewSlot = IntConstants[Key];
|
|
|
|
if (!Slot) {
|
|
|
|
NewSlot = new ConstantInt(ITy, V);
|
|
|
|
}
|
|
|
|
|
|
|
|
return NewSlot;
|
|
|
|
} else {
|
|
|
|
return Slot;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-07-17 03:05:41 +08:00
|
|
|
ConstantFP *LLVMContextImpl::getConstantFP(const APFloat &V) {
|
|
|
|
DenseMapAPFloatKeyInfo::KeyTy Key(V);
|
|
|
|
|
|
|
|
ConstantsLock.reader_acquire();
|
|
|
|
ConstantFP *&Slot = FPConstants[Key];
|
|
|
|
ConstantsLock.reader_release();
|
|
|
|
|
|
|
|
if (!Slot) {
|
|
|
|
sys::SmartScopedWriter<true> Writer(ConstantsLock);
|
|
|
|
ConstantFP *&NewSlot = FPConstants[Key];
|
|
|
|
if (!NewSlot) {
|
|
|
|
const Type *Ty;
|
|
|
|
if (&V.getSemantics() == &APFloat::IEEEsingle)
|
|
|
|
Ty = Type::FloatTy;
|
|
|
|
else if (&V.getSemantics() == &APFloat::IEEEdouble)
|
|
|
|
Ty = Type::DoubleTy;
|
|
|
|
else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
|
|
|
|
Ty = Type::X86_FP80Ty;
|
|
|
|
else if (&V.getSemantics() == &APFloat::IEEEquad)
|
|
|
|
Ty = Type::FP128Ty;
|
|
|
|
else {
|
|
|
|
assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
|
|
|
|
"Unknown FP format");
|
|
|
|
Ty = Type::PPC_FP128Ty;
|
|
|
|
}
|
|
|
|
NewSlot = new ConstantFP(Ty, V);
|
|
|
|
}
|
|
|
|
|
|
|
|
return NewSlot;
|
|
|
|
}
|
|
|
|
|
|
|
|
return Slot;
|
2009-07-17 06:11:26 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
MDString *LLVMContextImpl::getMDString(const char *StrBegin,
|
2009-07-23 10:00:51 +08:00
|
|
|
unsigned StrLength) {
|
2009-07-17 06:11:26 +08:00
|
|
|
sys::SmartScopedWriter<true> Writer(ConstantsLock);
|
2009-07-23 10:00:51 +08:00
|
|
|
StringMapEntry<MDString *> &Entry =
|
|
|
|
MDStringCache.GetOrCreateValue(StrBegin, StrBegin + StrLength);
|
2009-07-17 06:11:26 +08:00
|
|
|
MDString *&S = Entry.getValue();
|
|
|
|
if (!S) S = new MDString(Entry.getKeyData(),
|
2009-07-23 10:00:51 +08:00
|
|
|
Entry.getKeyLength());
|
2009-07-17 06:11:26 +08:00
|
|
|
|
|
|
|
return S;
|
|
|
|
}
|
|
|
|
|
2009-07-17 07:44:30 +08:00
|
|
|
MDNode *LLVMContextImpl::getMDNode(Value*const* Vals, unsigned NumVals) {
|
|
|
|
FoldingSetNodeID ID;
|
|
|
|
for (unsigned i = 0; i != NumVals; ++i)
|
|
|
|
ID.AddPointer(Vals[i]);
|
|
|
|
|
|
|
|
ConstantsLock.reader_acquire();
|
|
|
|
void *InsertPoint;
|
|
|
|
MDNode *N = MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
ConstantsLock.reader_release();
|
|
|
|
|
|
|
|
if (!N) {
|
|
|
|
sys::SmartScopedWriter<true> Writer(ConstantsLock);
|
|
|
|
N = MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
if (!N) {
|
|
|
|
// InsertPoint will have been set by the FindNodeOrInsertPos call.
|
2009-07-23 09:07:34 +08:00
|
|
|
N = new MDNode(Vals, NumVals);
|
2009-07-17 07:44:30 +08:00
|
|
|
MDNodeSet.InsertNode(N, InsertPoint);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return N;
|
|
|
|
}
|
|
|
|
|
2009-07-22 04:13:12 +08:00
|
|
|
ConstantAggregateZero*
|
|
|
|
LLVMContextImpl::getConstantAggregateZero(const Type *Ty) {
|
|
|
|
assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
|
|
|
|
"Cannot create an aggregate zero of non-aggregate type!");
|
|
|
|
|
|
|
|
// Implicitly locked.
|
|
|
|
return AggZeroConstants->getOrCreate(Ty, 0);
|
|
|
|
}
|
2009-07-17 07:44:30 +08:00
|
|
|
|
2009-07-22 04:55:28 +08:00
|
|
|
Constant *LLVMContextImpl::getConstantArray(const ArrayType *Ty,
|
|
|
|
const std::vector<Constant*> &V) {
|
|
|
|
// If this is an all-zero array, return a ConstantAggregateZero object
|
|
|
|
if (!V.empty()) {
|
|
|
|
Constant *C = V[0];
|
|
|
|
if (!C->isNullValue()) {
|
|
|
|
// Implicitly locked.
|
|
|
|
return ArrayConstants->getOrCreate(Ty, V);
|
|
|
|
}
|
|
|
|
for (unsigned i = 1, e = V.size(); i != e; ++i)
|
|
|
|
if (V[i] != C) {
|
|
|
|
// Implicitly locked.
|
|
|
|
return ArrayConstants->getOrCreate(Ty, V);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return Context.getConstantAggregateZero(Ty);
|
|
|
|
}
|
|
|
|
|
2009-07-17 06:11:26 +08:00
|
|
|
// *** erase methods ***
|
|
|
|
|
|
|
|
void LLVMContextImpl::erase(MDString *M) {
|
|
|
|
sys::SmartScopedWriter<true> Writer(ConstantsLock);
|
2009-07-23 10:00:51 +08:00
|
|
|
MDStringCache.erase(MDStringCache.find(M->StrBegin,
|
|
|
|
M->StrBegin + M->length()));
|
2009-07-17 06:11:26 +08:00
|
|
|
}
|
2009-07-17 07:44:30 +08:00
|
|
|
|
|
|
|
void LLVMContextImpl::erase(MDNode *M) {
|
|
|
|
sys::SmartScopedWriter<true> Writer(ConstantsLock);
|
|
|
|
MDNodeSet.RemoveNode(M);
|
|
|
|
}
|
2009-07-22 04:13:12 +08:00
|
|
|
|
|
|
|
void LLVMContextImpl::erase(ConstantAggregateZero *Z) {
|
|
|
|
AggZeroConstants->remove(Z);
|
|
|
|
}
|
2009-07-22 04:55:28 +08:00
|
|
|
|
|
|
|
void LLVMContextImpl::erase(ConstantArray *C) {
|
|
|
|
ArrayConstants->remove(C);
|
|
|
|
}
|
|
|
|
|
|
|
|
// *** RAUW helpers ***
|
|
|
|
Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantArray *CA,
|
|
|
|
Value *From, Value *To, Use *U) {
|
|
|
|
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
|
|
|
|
Constant *ToC = cast<Constant>(To);
|
|
|
|
|
|
|
|
std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
|
|
|
|
Lookup.first.first = CA->getType();
|
|
|
|
Lookup.second = CA;
|
|
|
|
|
|
|
|
std::vector<Constant*> &Values = Lookup.first.second;
|
|
|
|
Values.reserve(CA->getNumOperands()); // Build replacement array.
|
|
|
|
|
|
|
|
// Fill values with the modified operands of the constant array. Also,
|
|
|
|
// compute whether this turns into an all-zeros array.
|
|
|
|
bool isAllZeros = false;
|
|
|
|
unsigned NumUpdated = 0;
|
|
|
|
if (!ToC->isNullValue()) {
|
|
|
|
for (Use *O = CA->OperandList, *E = CA->OperandList + CA->getNumOperands();
|
|
|
|
O != E; ++O) {
|
|
|
|
Constant *Val = cast<Constant>(O->get());
|
|
|
|
if (Val == From) {
|
|
|
|
Val = ToC;
|
|
|
|
++NumUpdated;
|
|
|
|
}
|
|
|
|
Values.push_back(Val);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
isAllZeros = true;
|
|
|
|
for (Use *O = CA->OperandList, *E = CA->OperandList + CA->getNumOperands();
|
|
|
|
O != E; ++O) {
|
|
|
|
Constant *Val = cast<Constant>(O->get());
|
|
|
|
if (Val == From) {
|
|
|
|
Val = ToC;
|
|
|
|
++NumUpdated;
|
|
|
|
}
|
|
|
|
Values.push_back(Val);
|
|
|
|
if (isAllZeros) isAllZeros = Val->isNullValue();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Constant *Replacement = 0;
|
|
|
|
if (isAllZeros) {
|
|
|
|
Replacement = Context.getConstantAggregateZero(CA->getType());
|
|
|
|
} else {
|
|
|
|
// Check to see if we have this array type already.
|
|
|
|
sys::SmartScopedWriter<true> Writer(ConstantsLock);
|
|
|
|
bool Exists;
|
|
|
|
ArrayConstantsTy::MapTy::iterator I =
|
|
|
|
ArrayConstants->InsertOrGetItem(Lookup, Exists);
|
|
|
|
|
|
|
|
if (Exists) {
|
|
|
|
Replacement = I->second;
|
|
|
|
} else {
|
|
|
|
// Okay, the new shape doesn't exist in the system yet. Instead of
|
|
|
|
// creating a new constant array, inserting it, replaceallusesof'ing the
|
|
|
|
// old with the new, then deleting the old... just update the current one
|
|
|
|
// in place!
|
|
|
|
ArrayConstants->MoveConstantToNewSlot(CA, I);
|
|
|
|
|
|
|
|
// Update to the new value. Optimize for the case when we have a single
|
|
|
|
// operand that we're changing, but handle bulk updates efficiently.
|
|
|
|
if (NumUpdated == 1) {
|
|
|
|
unsigned OperandToUpdate = U - CA->OperandList;
|
|
|
|
assert(CA->getOperand(OperandToUpdate) == From &&
|
|
|
|
"ReplaceAllUsesWith broken!");
|
|
|
|
CA->setOperand(OperandToUpdate, ToC);
|
|
|
|
} else {
|
|
|
|
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
|
|
|
|
if (CA->getOperand(i) == From)
|
|
|
|
CA->setOperand(i, ToC);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return Replacement;
|
|
|
|
}
|
|
|
|
|