llvm-project/llvm/lib/Target/Hexagon/RDFGraph.h

952 lines
33 KiB
C
Raw Normal View History

//===--- RDFGraph.h -------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Target-independent, SSA-based data flow graph for register data flow (RDF)
// for a non-SSA program representation (e.g. post-RA machine code).
//
//
// *** Introduction
//
// The RDF graph is a collection of nodes, each of which denotes some element
// of the program. There are two main types of such elements: code and refe-
// rences. Conceptually, "code" is something that represents the structure
// of the program, e.g. basic block or a statement, while "reference" is an
// instance of accessing a register, e.g. a definition or a use. Nodes are
// connected with each other based on the structure of the program (such as
// blocks, instructions, etc.), and based on the data flow (e.g. reaching
// definitions, reached uses, etc.). The single-reaching-definition principle
// of SSA is generally observed, although, due to the non-SSA representation
// of the program, there are some differences between the graph and a "pure"
// SSA representation.
//
//
// *** Implementation remarks
//
// Since the graph can contain a large number of nodes, memory consumption
// was one of the major design considerations. As a result, there is a single
// base class NodeBase which defines all members used by all possible derived
// classes. The members are arranged in a union, and a derived class cannot
// add any data members of its own. Each derived class only defines the
// functional interface, i.e. member functions. NodeBase must be a POD,
// which implies that all of its members must also be PODs.
// Since nodes need to be connected with other nodes, pointers have been
// replaced with 32-bit identifiers: each node has an id of type NodeId.
// There are mapping functions in the graph that translate between actual
// memory addresses and the corresponding identifiers.
// A node id of 0 is equivalent to nullptr.
//
//
// *** Structure of the graph
//
// A code node is always a collection of other nodes. For example, a code
// node corresponding to a basic block will contain code nodes corresponding
// to instructions. In turn, a code node corresponding to an instruction will
// contain a list of reference nodes that correspond to the definitions and
// uses of registers in that instruction. The members are arranged into a
// circular list, which is yet another consequence of the effort to save
// memory: for each member node it should be possible to obtain its owner,
// and it should be possible to access all other members. There are other
// ways to accomplish that, but the circular list seemed the most natural.
//
// +- CodeNode -+
// | | <---------------------------------------------------+
// +-+--------+-+ |
// |FirstM |LastM |
// | +-------------------------------------+ |
// | | |
// V V |
// +----------+ Next +----------+ Next Next +----------+ Next |
// | |----->| |-----> ... ----->| |----->-+
// +- Member -+ +- Member -+ +- Member -+
//
// The order of members is such that related reference nodes (see below)
// should be contiguous on the member list.
//
// A reference node is a node that encapsulates an access to a register,
// in other words, data flowing into or out of a register. There are two
// major kinds of reference nodes: defs and uses. A def node will contain
// the id of the first reached use, and the id of the first reached def.
// Each def and use will contain the id of the reaching def, and also the
// id of the next reached def (for def nodes) or use (for use nodes).
// The "next node sharing the same reaching def" is denoted as "sibling".
// In summary:
// - Def node contains: reaching def, sibling, first reached def, and first
// reached use.
// - Use node contains: reaching def and sibling.
//
// +-- DefNode --+
// | R2 = ... | <---+--------------------+
// ++---------+--+ | |
// |Reached |Reached | |
// |Def |Use | |
// | | |Reaching |Reaching
// | V |Def |Def
// | +-- UseNode --+ Sib +-- UseNode --+ Sib Sib
// | | ... = R2 |----->| ... = R2 |----> ... ----> 0
// | +-------------+ +-------------+
// V
// +-- DefNode --+ Sib
// | R2 = ... |----> ...
// ++---------+--+
// | |
// | |
// ... ...
//
// To get a full picture, the circular lists connecting blocks within a
// function, instructions within a block, etc. should be superimposed with
// the def-def, def-use links shown above.
// To illustrate this, consider a small example in a pseudo-assembly:
// foo:
// add r2, r0, r1 ; r2 = r0+r1
// addi r0, r2, 1 ; r0 = r2+1
// ret r0 ; return value in r0
//
// The graph (in a format used by the debugging functions) would look like:
//
// DFG dump:[
// f1: Function foo
// b2: === BB#0 === preds(0), succs(0):
// p3: phi [d4<r0>(,d12,u9):]
// p5: phi [d6<r1>(,,u10):]
// s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
// s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
// s14: ret [u15<r0>(d12):]
// ]
//
// The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
// kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
// ment, d - def, u - use).
// The format of a def node is:
// dN<R>(rd,d,u):sib,
// where
// N - numeric node id,
// R - register being defined
// rd - reaching def,
// d - reached def,
// u - reached use,
// sib - sibling.
// The format of a use node is:
// uN<R>[!](rd):sib,
// where
// N - numeric node id,
// R - register being used,
// rd - reaching def,
// sib - sibling.
// Possible annotations (usually preceding the node id):
// + - preserving def,
// ~ - clobbering def,
// " - shadow ref (follows the node id),
// ! - fixed register (appears after register name).
//
// The circular lists are not explicit in the dump.
//
//
// *** Node attributes
//
// NodeBase has a member "Attrs", which is the primary way of determining
// the node's characteristics. The fields in this member decide whether
// the node is a code node or a reference node (i.e. node's "type"), then
// within each type, the "kind" determines what specifically this node
// represents. The remaining bits, "flags", contain additional information
// that is even more detailed than the "kind".
// CodeNode's kinds are:
// - Phi: Phi node, members are reference nodes.
// - Stmt: Statement, members are reference nodes.
// - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
// - Func: The whole function. The members are basic block nodes.
// RefNode's kinds are:
// - Use.
// - Def.
//
// Meaning of flags:
// - Preserving: applies only to defs. A preserving def is one that can
// preserve some of the original bits among those that are included in
// the register associated with that def. For example, if R0 is a 32-bit
// register, but a def can only change the lower 16 bits, then it will
// be marked as preserving.
// - Shadow: a reference that has duplicates holding additional reaching
// defs (see more below).
// - Clobbering: applied only to defs, indicates that the value generated
// by this def is unspecified. A typical example would be volatile registers
// after function calls.
// - Fixed: the register in this def/use cannot be replaced with any other
// register. A typical case would be a parameter register to a call, or
// the register with the return value from a function.
// - Undef: the register in this reference the register is assumed to have
// no pre-existing value, even if it appears to be reached by some def.
// This is typically used to prevent keeping registers artificially live
// in cases when they are defined via predicated instructions. For example:
// r0 = add-if-true cond, r10, r11 (1)
// r0 = add-if-false cond, r12, r13, r0<imp-use> (2)
// ... = r0 (3)
// Before (1), r0 is not intended to be live, and the use of r0 in (3) is
// not meant to be reached by any def preceding (1). However, since the
// defs in (1) and (2) are both preserving, these properties alone would
// imply that the use in (3) may indeed be reached by some prior def.
// Adding Undef flag to the def in (1) prevents that. The Undef flag
// may be applied to both defs and uses.
//
// *** Shadow references
//
// It may happen that a super-register can have two (or more) non-overlapping
// sub-registers. When both of these sub-registers are defined and followed
// by a use of the super-register, the use of the super-register will not
// have a unique reaching def: both defs of the sub-registers need to be
// accounted for. In such cases, a duplicate use of the super-register is
// added and it points to the extra reaching def. Both uses are marked with
// a flag "shadow". Example:
// Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
// set r0, 1 ; r0 = 1
// set r1, 1 ; r1 = 1
// addi t1, t0, 1 ; t1 = t0+1
//
// The DFG:
// s1: set [d2<r0>(,,u9):]
// s3: set [d4<r1>(,,u10):]
// s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
//
// The statement s5 has two use nodes for t0: u7" and u9". The quotation
// mark " indicates that the node is a shadow.
//
#ifndef RDF_GRAPH_H
#define RDF_GRAPH_H
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <functional>
#include <map>
#include <set>
#include <unordered_map>
#include <vector>
namespace llvm {
class MachineBasicBlock;
class MachineFunction;
class MachineInstr;
class MachineOperand;
class MachineDominanceFrontier;
class MachineDominatorTree;
class TargetInstrInfo;
namespace rdf {
typedef uint32_t NodeId;
struct DataFlowGraph;
struct NodeAttrs {
enum : uint16_t {
None = 0x0000, // Nothing
// Types: 2 bits
TypeMask = 0x0003,
Code = 0x0001, // 01, Container
Ref = 0x0002, // 10, Reference
// Kind: 3 bits
KindMask = 0x0007 << 2,
Def = 0x0001 << 2, // 001
Use = 0x0002 << 2, // 010
Phi = 0x0003 << 2, // 011
Stmt = 0x0004 << 2, // 100
Block = 0x0005 << 2, // 101
Func = 0x0006 << 2, // 110
// Flags: 6 bits for now
FlagMask = 0x003F << 5,
Shadow = 0x0001 << 5, // 000001, Has extra reaching defs.
Clobbering = 0x0002 << 5, // 000010, Produces unspecified values.
PhiRef = 0x0004 << 5, // 000100, Member of PhiNode.
Preserving = 0x0008 << 5, // 001000, Def can keep original bits.
Fixed = 0x0010 << 5, // 010000, Fixed register.
Undef = 0x0020 << 5, // 100000, Has no pre-existing value.
};
static uint16_t type(uint16_t T) { return T & TypeMask; }
static uint16_t kind(uint16_t T) { return T & KindMask; }
static uint16_t flags(uint16_t T) { return T & FlagMask; }
static uint16_t set_type(uint16_t A, uint16_t T) {
return (A & ~TypeMask) | T;
}
static uint16_t set_kind(uint16_t A, uint16_t K) {
return (A & ~KindMask) | K;
}
static uint16_t set_flags(uint16_t A, uint16_t F) {
return (A & ~FlagMask) | F;
}
// Test if A contains B.
static bool contains(uint16_t A, uint16_t B) {
if (type(A) != Code)
return false;
uint16_t KB = kind(B);
switch (kind(A)) {
case Func:
return KB == Block;
case Block:
return KB == Phi || KB == Stmt;
case Phi:
case Stmt:
return type(B) == Ref;
}
return false;
}
};
struct BuildOptions {
enum : unsigned {
None = 0x00,
KeepDeadPhis = 0x01, // Do not remove dead phis during build.
};
};
template <typename T> struct NodeAddr {
NodeAddr() : Addr(nullptr), Id(0) {}
NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
NodeAddr(const NodeAddr&) = default;
NodeAddr &operator= (const NodeAddr&) = default;
bool operator== (const NodeAddr<T> &NA) const {
assert((Addr == NA.Addr) == (Id == NA.Id));
return Addr == NA.Addr;
}
bool operator!= (const NodeAddr<T> &NA) const {
return !operator==(NA);
}
// Type cast (casting constructor). The reason for having this class
// instead of std::pair.
template <typename S> NodeAddr(const NodeAddr<S> &NA)
: Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
T Addr;
NodeId Id;
};
struct NodeBase;
// Fast memory allocation and translation between node id and node address.
// This is really the same idea as the one underlying the "bump pointer
// allocator", the difference being in the translation. A node id is
// composed of two components: the index of the block in which it was
// allocated, and the index within the block. With the default settings,
// where the number of nodes per block is 4096, the node id (minus 1) is:
//
// bit position: 11 0
// +----------------------------+--------------+
// | Index of the block |Index in block|
// +----------------------------+--------------+
//
// The actual node id is the above plus 1, to avoid creating a node id of 0.
//
// This method significantly improved the build time, compared to using maps
// (std::unordered_map or DenseMap) to translate between pointers and ids.
struct NodeAllocator {
// Amount of storage for a single node.
enum { NodeMemSize = 32 };
NodeAllocator(uint32_t NPB = 4096)
: NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
IndexMask((1 << BitsPerIndex)-1), ActiveEnd(nullptr) {
assert(isPowerOf2_32(NPB));
}
NodeBase *ptr(NodeId N) const {
uint32_t N1 = N-1;
uint32_t BlockN = N1 >> BitsPerIndex;
uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
}
NodeId id(const NodeBase *P) const;
NodeAddr<NodeBase*> New();
void clear();
private:
void startNewBlock();
bool needNewBlock();
uint32_t makeId(uint32_t Block, uint32_t Index) const {
// Add 1 to the id, to avoid the id of 0, which is treated as "null".
return ((Block << BitsPerIndex) | Index) + 1;
}
const uint32_t NodesPerBlock;
const uint32_t BitsPerIndex;
const uint32_t IndexMask;
char *ActiveEnd;
std::vector<char*> Blocks;
typedef BumpPtrAllocatorImpl<MallocAllocator, 65536> AllocatorTy;
AllocatorTy MemPool;
};
struct RegisterRef {
// For virtual registers, Reg and Sub have the usual meanings.
//
// Physical registers are assumed not to have any subregisters, and for
// them, Sub is the key of the LaneBitmask in the lane mask map in DFG.
// The case of Sub = 0 is treated as 'all lanes', i.e. lane mask of ~0.
// Use an key/map to access lane masks, since we only have uint32_t
// for it, and the LaneBitmask type can grow in the future.
//
// The case when Reg = 0 and Sub = 0 is reserved to mean "no register".
uint32_t Reg, Sub;
// No non-trivial constructors, since this will be a member of a union.
RegisterRef() = default;
RegisterRef(const RegisterRef &RR) = default;
RegisterRef &operator= (const RegisterRef &RR) = default;
bool operator== (const RegisterRef &RR) const {
return Reg == RR.Reg && Sub == RR.Sub;
}
bool operator!= (const RegisterRef &RR) const {
return !operator==(RR);
}
bool operator< (const RegisterRef &RR) const {
return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
}
};
typedef std::set<RegisterRef> RegisterSet;
struct RegisterAliasInfo {
RegisterAliasInfo(const TargetRegisterInfo &tri) : TRI(tri) {}
virtual ~RegisterAliasInfo() {}
virtual std::vector<RegisterRef> getAliasSet(RegisterRef RR) const;
virtual bool alias(RegisterRef RA, RegisterRef RB,
const DataFlowGraph &DFG) const;
virtual bool covers(RegisterRef RA, RegisterRef RB,
const DataFlowGraph &DFG) const;
virtual bool covers(const RegisterSet &RRs, RegisterRef RR,
const DataFlowGraph &DFG) const;
const TargetRegisterInfo &TRI;
protected:
LaneBitmask getLaneMask(RegisterRef RR, const DataFlowGraph &DFG) const;
struct CommonRegister {
CommonRegister(unsigned RegA, LaneBitmask LA,
unsigned RegB, LaneBitmask LB,
const TargetRegisterInfo &TRI);
unsigned SuperReg;
LaneBitmask MaskA, MaskB;
};
};
struct TargetOperandInfo {
TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
virtual ~TargetOperandInfo() {}
virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
const TargetInstrInfo &TII;
};
// Template class for a map translating uint32_t into arbitrary types.
// The map will act like an indexed set: upon insertion of a new object,
// it will automatically assign a new index to it. Index of 0 is treated
// as invalid and is never allocated.
template <typename T, unsigned N = 32>
struct IndexedSet {
IndexedSet() : Map(N) {}
const T get(uint32_t Idx) const {
// Index Idx corresponds to Map[Idx-1].
assert(Idx != 0 && !Map.empty() && Idx-1 < Map.size());
return Map[Idx-1];
}
uint32_t insert(T Val) {
// Linear search.
auto F = find(Map, Val);
if (F != Map.end())
return *F;
Map.push_back(Val);
return Map.size(); // Return actual_index + 1.
}
private:
std::vector<T> Map;
};
struct NodeBase {
public:
// Make sure this is a POD.
NodeBase() = default;
uint16_t getType() const { return NodeAttrs::type(Attrs); }
uint16_t getKind() const { return NodeAttrs::kind(Attrs); }
uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
NodeId getNext() const { return Next; }
uint16_t getAttrs() const { return Attrs; }
void setAttrs(uint16_t A) { Attrs = A; }
void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
// Insert node NA after "this" in the circular chain.
void append(NodeAddr<NodeBase*> NA);
// Initialize all members to 0.
void init() { memset(this, 0, sizeof *this); }
void setNext(NodeId N) { Next = N; }
protected:
uint16_t Attrs;
uint16_t Reserved;
NodeId Next; // Id of the next node in the circular chain.
// Definitions of nested types. Using anonymous nested structs would make
// this class definition clearer, but unnamed structs are not a part of
// the standard.
struct Def_struct {
NodeId DD, DU; // Ids of the first reached def and use.
};
struct PhiU_struct {
NodeId PredB; // Id of the predecessor block for a phi use.
};
struct Code_struct {
void *CP; // Pointer to the actual code.
NodeId FirstM, LastM; // Id of the first member and last.
};
struct Ref_struct {
NodeId RD, Sib; // Ids of the reaching def and the sibling.
union {
Def_struct Def;
PhiU_struct PhiU;
};
union {
MachineOperand *Op; // Non-phi refs point to a machine operand.
RegisterRef RR; // Phi refs store register info directly.
};
};
// The actual payload.
union {
Ref_struct Ref;
Code_struct Code;
};
};
// The allocator allocates chunks of 32 bytes for each node. The fact that
// each node takes 32 bytes in memory is used for fast translation between
// the node id and the node address.
static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
"NodeBase must be at most NodeAllocator::NodeMemSize bytes");
typedef std::vector<NodeAddr<NodeBase*>> NodeList;
typedef std::set<NodeId> NodeSet;
struct RefNode : public NodeBase {
RefNode() = default;
RegisterRef getRegRef() const;
MachineOperand &getOp() {
assert(!(getFlags() & NodeAttrs::PhiRef));
return *Ref.Op;
}
void setRegRef(RegisterRef RR);
void setRegRef(MachineOperand *Op);
NodeId getReachingDef() const {
return Ref.RD;
}
void setReachingDef(NodeId RD) {
Ref.RD = RD;
}
NodeId getSibling() const {
return Ref.Sib;
}
void setSibling(NodeId Sib) {
Ref.Sib = Sib;
}
bool isUse() const {
assert(getType() == NodeAttrs::Ref);
return getKind() == NodeAttrs::Use;
}
bool isDef() const {
assert(getType() == NodeAttrs::Ref);
return getKind() == NodeAttrs::Def;
}
template <typename Predicate>
NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
const DataFlowGraph &G);
NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
};
struct DefNode : public RefNode {
NodeId getReachedDef() const {
return Ref.Def.DD;
}
void setReachedDef(NodeId D) {
Ref.Def.DD = D;
}
NodeId getReachedUse() const {
return Ref.Def.DU;
}
void setReachedUse(NodeId U) {
Ref.Def.DU = U;
}
void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
};
struct UseNode : public RefNode {
void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
};
struct PhiUseNode : public UseNode {
NodeId getPredecessor() const {
assert(getFlags() & NodeAttrs::PhiRef);
return Ref.PhiU.PredB;
}
void setPredecessor(NodeId B) {
assert(getFlags() & NodeAttrs::PhiRef);
Ref.PhiU.PredB = B;
}
};
struct CodeNode : public NodeBase {
template <typename T> T getCode() const {
return static_cast<T>(Code.CP);
}
void setCode(void *C) {
Code.CP = C;
}
NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
const DataFlowGraph &G);
void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
NodeList members(const DataFlowGraph &G) const;
template <typename Predicate>
NodeList members_if(Predicate P, const DataFlowGraph &G) const;
};
struct InstrNode : public CodeNode {
NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
};
struct PhiNode : public InstrNode {
MachineInstr *getCode() const {
return nullptr;
}
};
struct StmtNode : public InstrNode {
MachineInstr *getCode() const {
return CodeNode::getCode<MachineInstr*>();
}
};
struct BlockNode : public CodeNode {
MachineBasicBlock *getCode() const {
return CodeNode::getCode<MachineBasicBlock*>();
}
void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
};
struct FuncNode : public CodeNode {
MachineFunction *getCode() const {
return CodeNode::getCode<MachineFunction*>();
}
NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
const DataFlowGraph &G) const;
NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
};
struct DataFlowGraph {
DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
const MachineDominanceFrontier &mdf, const RegisterAliasInfo &rai,
const TargetOperandInfo &toi);
NodeBase *ptr(NodeId N) const;
template <typename T> T ptr(NodeId N) const {
return static_cast<T>(ptr(N));
}
NodeId id(const NodeBase *P) const;
template <typename T> NodeAddr<T> addr(NodeId N) const {
return { ptr<T>(N), N };
}
NodeAddr<FuncNode*> getFunc() const {
return Func;
}
MachineFunction &getMF() const {
return MF;
}
const TargetInstrInfo &getTII() const {
return TII;
}
const TargetRegisterInfo &getTRI() const {
return TRI;
}
const MachineDominatorTree &getDT() const {
return MDT;
}
const MachineDominanceFrontier &getDF() const {
return MDF;
}
const RegisterAliasInfo &getRAI() const {
return RAI;
}
LaneBitmask getLaneMaskForIndex(uint32_t K) const {
return LMMap.get(K);
}
uint32_t getIndexForLaneMask(LaneBitmask LM) {
return LMMap.insert(LM);
}
struct DefStack {
DefStack() = default;
bool empty() const { return Stack.empty() || top() == bottom(); }
private:
typedef NodeAddr<DefNode*> value_type;
struct Iterator {
typedef DefStack::value_type value_type;
Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
value_type operator*() const {
assert(Pos >= 1);
return DS.Stack[Pos-1];
}
const value_type *operator->() const {
assert(Pos >= 1);
return &DS.Stack[Pos-1];
}
bool operator==(const Iterator &It) const { return Pos == It.Pos; }
bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
private:
Iterator(const DefStack &S, bool Top);
// Pos-1 is the index in the StorageType object that corresponds to
// the top of the DefStack.
const DefStack &DS;
unsigned Pos;
friend struct DefStack;
};
public:
typedef Iterator iterator;
iterator top() const { return Iterator(*this, true); }
iterator bottom() const { return Iterator(*this, false); }
unsigned size() const;
void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
void pop();
void start_block(NodeId N);
void clear_block(NodeId N);
private:
friend struct Iterator;
typedef std::vector<value_type> StorageType;
bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
return (P.Addr == nullptr) && (N == 0 || P.Id == N);
}
unsigned nextUp(unsigned P) const;
unsigned nextDown(unsigned P) const;
StorageType Stack;
};
struct RegisterRefHasher {
unsigned operator() (RegisterRef RR) const {
return RR.Reg | (RR.Sub << 24);
}
};
// Make this std::unordered_map for speed of accessing elements.
typedef std::unordered_map<RegisterRef,DefStack,RegisterRefHasher>
DefStackMap;
void build(unsigned Options = BuildOptions::None);
void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
void markBlock(NodeId B, DefStackMap &DefM);
void releaseBlock(NodeId B, DefStackMap &DefM);
NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
NodeAddr<RefNode*> RA) const;
NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
NodeAddr<RefNode*> RA, bool Create);
NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
NodeAddr<RefNode*> RA) const;
NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
NodeAddr<RefNode*> RA, bool Create);
NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
NodeAddr<RefNode*> RA) const;
NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
NodeAddr<RefNode*> RA) const;
void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) {
unlinkUseDF(UA);
if (RemoveFromOwner)
removeFromOwner(UA);
}
void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) {
unlinkDefDF(DA);
if (RemoveFromOwner)
removeFromOwner(DA);
}
// Some useful filters.
template <uint16_t Kind>
static bool IsRef(const NodeAddr<NodeBase*> BA) {
return BA.Addr->getType() == NodeAttrs::Ref &&
BA.Addr->getKind() == Kind;
}
template <uint16_t Kind>
static bool IsCode(const NodeAddr<NodeBase*> BA) {
return BA.Addr->getType() == NodeAttrs::Code &&
BA.Addr->getKind() == Kind;
}
static bool IsDef(const NodeAddr<NodeBase*> BA) {
return BA.Addr->getType() == NodeAttrs::Ref &&
BA.Addr->getKind() == NodeAttrs::Def;
}
static bool IsUse(const NodeAddr<NodeBase*> BA) {
return BA.Addr->getType() == NodeAttrs::Ref &&
BA.Addr->getKind() == NodeAttrs::Use;
}
static bool IsPhi(const NodeAddr<NodeBase*> BA) {
return BA.Addr->getType() == NodeAttrs::Code &&
BA.Addr->getKind() == NodeAttrs::Phi;
}
static bool IsPreservingDef(const NodeAddr<DefNode*> DA) {
uint16_t Flags = DA.Addr->getFlags();
return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
}
private:
void reset();
NodeAddr<NodeBase*> newNode(uint16_t Attrs);
NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
RegisterRef RR, NodeAddr<BlockNode*> PredB,
uint16_t Flags = NodeAttrs::PhiRef);
NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
MachineInstr *MI);
NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
MachineBasicBlock *BB);
NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
template <typename Predicate>
std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
Predicate P) const;
typedef std::map<NodeId,RegisterSet> BlockRefsMap;
void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
void buildBlockRefs(NodeAddr<BlockNode*> BA, BlockRefsMap &RefM);
void recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM,
NodeAddr<BlockNode*> BA);
void buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM,
NodeAddr<BlockNode*> BA);
void removeUnusedPhis();
template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
NodeAddr<T> TA, DefStack &DS);
void linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA);
void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
void unlinkUseDF(NodeAddr<UseNode*> UA);
void unlinkDefDF(NodeAddr<DefNode*> DA);
void removeFromOwner(NodeAddr<RefNode*> RA) {
NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this);
IA.Addr->removeMember(RA, *this);
}
NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) {
return BlockNodes[BB];
}
TimerGroup TimeG;
NodeAddr<FuncNode*> Func;
NodeAllocator Memory;
// Local map: MachineBasicBlock -> NodeAddr<BlockNode*>
std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes;
// Lane mask map.
IndexedSet<LaneBitmask> LMMap;
MachineFunction &MF;
const TargetInstrInfo &TII;
const TargetRegisterInfo &TRI;
const MachineDominatorTree &MDT;
const MachineDominanceFrontier &MDF;
const RegisterAliasInfo &RAI;
const TargetOperandInfo &TOI;
}; // struct DataFlowGraph
template <typename Predicate>
NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
bool NextOnly, const DataFlowGraph &G) {
// Get the "Next" reference in the circular list that references RR and
// satisfies predicate "Pred".
auto NA = G.addr<NodeBase*>(getNext());
while (NA.Addr != this) {
if (NA.Addr->getType() == NodeAttrs::Ref) {
NodeAddr<RefNode*> RA = NA;
if (RA.Addr->getRegRef() == RR && P(NA))
return NA;
if (NextOnly)
break;
NA = G.addr<NodeBase*>(NA.Addr->getNext());
} else {
// We've hit the beginning of the chain.
assert(NA.Addr->getType() == NodeAttrs::Code);
NodeAddr<CodeNode*> CA = NA;
NA = CA.Addr->getFirstMember(G);
}
}
// Return the equivalent of "nullptr" if such a node was not found.
return NodeAddr<RefNode*>();
}
template <typename Predicate>
NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
NodeList MM;
auto M = getFirstMember(G);
if (M.Id == 0)
return MM;
while (M.Addr != this) {
if (P(M))
MM.push_back(M);
M = G.addr<NodeBase*>(M.Addr->getNext());
}
return MM;
}
template <typename T> struct Print;
template <typename T>
raw_ostream &operator<< (raw_ostream &OS, const Print<T> &P);
template <typename T>
struct Print {
Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
const T &Obj;
const DataFlowGraph &G;
};
template <typename T>
struct PrintNode : Print<NodeAddr<T>> {
PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
: Print<NodeAddr<T>>(x, g) {}
};
} // namespace rdf
} // namespace llvm
#endif // RDF_GRAPH_H