llvm-project/llvm/lib/Target/X86/X86InstrVecCompiler.td

620 lines
33 KiB
TableGen
Raw Normal View History

//===- X86InstrVecCompiler.td - Vector Compiler Patterns ---*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the various vector pseudo instructions used by the
// compiler, as well as Pat patterns used during instruction selection.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// No op bitconverts
//===----------------------------------------------------------------------===//
// Bitcasts between 128-bit vector types. Return the original type since
// no instruction is needed for the conversion
def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(f128 (bitconvert (i128 FR128:$src))), (f128 FR128:$src)>;
def : Pat<(i128 (bitconvert (f128 FR128:$src))), (i128 FR128:$src)>;
// Bitcasts between 256-bit vector types. Return the original type since
// no instruction is needed for the conversion
def : Pat<(v4i64 (bitconvert (v8i32 VR256:$src))), (v4i64 VR256:$src)>;
def : Pat<(v4i64 (bitconvert (v16i16 VR256:$src))), (v4i64 VR256:$src)>;
def : Pat<(v4i64 (bitconvert (v32i8 VR256:$src))), (v4i64 VR256:$src)>;
def : Pat<(v4i64 (bitconvert (v8f32 VR256:$src))), (v4i64 VR256:$src)>;
def : Pat<(v4i64 (bitconvert (v4f64 VR256:$src))), (v4i64 VR256:$src)>;
def : Pat<(v8i32 (bitconvert (v4i64 VR256:$src))), (v8i32 VR256:$src)>;
def : Pat<(v8i32 (bitconvert (v16i16 VR256:$src))), (v8i32 VR256:$src)>;
def : Pat<(v8i32 (bitconvert (v32i8 VR256:$src))), (v8i32 VR256:$src)>;
def : Pat<(v8i32 (bitconvert (v4f64 VR256:$src))), (v8i32 VR256:$src)>;
def : Pat<(v8i32 (bitconvert (v8f32 VR256:$src))), (v8i32 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v4i64 VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v8i32 VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v32i8 VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v4f64 VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v8f32 VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v32i8 (bitconvert (v4i64 VR256:$src))), (v32i8 VR256:$src)>;
def : Pat<(v32i8 (bitconvert (v8i32 VR256:$src))), (v32i8 VR256:$src)>;
def : Pat<(v32i8 (bitconvert (v16i16 VR256:$src))), (v32i8 VR256:$src)>;
def : Pat<(v32i8 (bitconvert (v4f64 VR256:$src))), (v32i8 VR256:$src)>;
def : Pat<(v32i8 (bitconvert (v8f32 VR256:$src))), (v32i8 VR256:$src)>;
def : Pat<(v8f32 (bitconvert (v4i64 VR256:$src))), (v8f32 VR256:$src)>;
def : Pat<(v8f32 (bitconvert (v8i32 VR256:$src))), (v8f32 VR256:$src)>;
def : Pat<(v8f32 (bitconvert (v16i16 VR256:$src))), (v8f32 VR256:$src)>;
def : Pat<(v8f32 (bitconvert (v32i8 VR256:$src))), (v8f32 VR256:$src)>;
def : Pat<(v8f32 (bitconvert (v4f64 VR256:$src))), (v8f32 VR256:$src)>;
def : Pat<(v4f64 (bitconvert (v4i64 VR256:$src))), (v4f64 VR256:$src)>;
def : Pat<(v4f64 (bitconvert (v8i32 VR256:$src))), (v4f64 VR256:$src)>;
def : Pat<(v4f64 (bitconvert (v16i16 VR256:$src))), (v4f64 VR256:$src)>;
def : Pat<(v4f64 (bitconvert (v32i8 VR256:$src))), (v4f64 VR256:$src)>;
def : Pat<(v4f64 (bitconvert (v8f32 VR256:$src))), (v4f64 VR256:$src)>;
// Bitcasts between 512-bit vector types. Return the original type since
// no instruction is needed for the conversion.
def : Pat<(v8f64 (bitconvert (v8i64 VR512:$src))), (v8f64 VR512:$src)>;
def : Pat<(v8f64 (bitconvert (v16i32 VR512:$src))), (v8f64 VR512:$src)>;
def : Pat<(v8f64 (bitconvert (v32i16 VR512:$src))), (v8f64 VR512:$src)>;
def : Pat<(v8f64 (bitconvert (v64i8 VR512:$src))), (v8f64 VR512:$src)>;
def : Pat<(v8f64 (bitconvert (v16f32 VR512:$src))), (v8f64 VR512:$src)>;
def : Pat<(v16f32 (bitconvert (v8i64 VR512:$src))), (v16f32 VR512:$src)>;
def : Pat<(v16f32 (bitconvert (v16i32 VR512:$src))), (v16f32 VR512:$src)>;
def : Pat<(v16f32 (bitconvert (v32i16 VR512:$src))), (v16f32 VR512:$src)>;
def : Pat<(v16f32 (bitconvert (v64i8 VR512:$src))), (v16f32 VR512:$src)>;
def : Pat<(v16f32 (bitconvert (v8f64 VR512:$src))), (v16f32 VR512:$src)>;
def : Pat<(v8i64 (bitconvert (v16i32 VR512:$src))), (v8i64 VR512:$src)>;
def : Pat<(v8i64 (bitconvert (v32i16 VR512:$src))), (v8i64 VR512:$src)>;
def : Pat<(v8i64 (bitconvert (v64i8 VR512:$src))), (v8i64 VR512:$src)>;
def : Pat<(v8i64 (bitconvert (v8f64 VR512:$src))), (v8i64 VR512:$src)>;
def : Pat<(v8i64 (bitconvert (v16f32 VR512:$src))), (v8i64 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v8i64 VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v16f32 VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v32i16 VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v64i8 VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v8f64 VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v32i16 (bitconvert (v8i64 VR512:$src))), (v32i16 VR512:$src)>;
def : Pat<(v32i16 (bitconvert (v16i32 VR512:$src))), (v32i16 VR512:$src)>;
def : Pat<(v32i16 (bitconvert (v64i8 VR512:$src))), (v32i16 VR512:$src)>;
def : Pat<(v32i16 (bitconvert (v8f64 VR512:$src))), (v32i16 VR512:$src)>;
def : Pat<(v32i16 (bitconvert (v16f32 VR512:$src))), (v32i16 VR512:$src)>;
def : Pat<(v32i16 (bitconvert (v16f32 VR512:$src))), (v32i16 VR512:$src)>;
def : Pat<(v64i8 (bitconvert (v8i64 VR512:$src))), (v64i8 VR512:$src)>;
def : Pat<(v64i8 (bitconvert (v16i32 VR512:$src))), (v64i8 VR512:$src)>;
def : Pat<(v64i8 (bitconvert (v32i16 VR512:$src))), (v64i8 VR512:$src)>;
def : Pat<(v64i8 (bitconvert (v8f64 VR512:$src))), (v64i8 VR512:$src)>;
def : Pat<(v64i8 (bitconvert (v16f32 VR512:$src))), (v64i8 VR512:$src)>;
//===----------------------------------------------------------------------===//
// Non-instruction patterns
//===----------------------------------------------------------------------===//
// A vector extract of the first f32/f64 position is a subregister copy
def : Pat<(f32 (extractelt (v4f32 VR128:$src), (iPTR 0))),
(COPY_TO_REGCLASS (v4f32 VR128:$src), FR32)>;
def : Pat<(f64 (extractelt (v2f64 VR128:$src), (iPTR 0))),
(COPY_TO_REGCLASS (v2f64 VR128:$src), FR64)>;
// Implicitly promote a 32-bit scalar to a vector.
def : Pat<(v4f32 (scalar_to_vector FR32:$src)),
(COPY_TO_REGCLASS FR32:$src, VR128)>;
// Implicitly promote a 64-bit scalar to a vector.
def : Pat<(v2f64 (scalar_to_vector FR64:$src)),
(COPY_TO_REGCLASS FR64:$src, VR128)>;
//===----------------------------------------------------------------------===//
// Subvector tricks
//===----------------------------------------------------------------------===//
// Patterns for insert_subvector/extract_subvector to/from index=0
multiclass subvector_subreg_lowering<RegisterClass subRC, ValueType subVT,
RegisterClass RC, ValueType VT,
SubRegIndex subIdx> {
def : Pat<(subVT (extract_subvector (VT RC:$src), (iPTR 0))),
(subVT (EXTRACT_SUBREG RC:$src, subIdx))>;
let AddedComplexity = 25 in // to give priority over vinsertf128rm
def : Pat<(VT (insert_subvector undef, subRC:$src, (iPTR 0))),
(VT (INSERT_SUBREG (IMPLICIT_DEF), subRC:$src, subIdx))>;
}
// A 128-bit subvector extract from the first 256-bit vector position is a
// subregister copy that needs no instruction. Likewise, a 128-bit subvector
// insert to the first 256-bit vector position is a subregister copy that needs
// no instruction.
defm : subvector_subreg_lowering<VR128, v4i32, VR256, v8i32, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v4f32, VR256, v8f32, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v2i64, VR256, v4i64, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v2f64, VR256, v4f64, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v8i16, VR256, v16i16, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v16i8, VR256, v32i8, sub_xmm>;
// A 128-bit subvector extract from the first 512-bit vector position is a
// subregister copy that needs no instruction. Likewise, a 128-bit subvector
// insert to the first 512-bit vector position is a subregister copy that needs
// no instruction.
defm : subvector_subreg_lowering<VR128, v4i32, VR512, v16i32, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v4f32, VR512, v16f32, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v2i64, VR512, v8i64, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v2f64, VR512, v8f64, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v8i16, VR512, v32i16, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v16i8, VR512, v64i8, sub_xmm>;
// A 128-bit subvector extract from the first 512-bit vector position is a
// subregister copy that needs no instruction. Likewise, a 128-bit subvector
// insert to the first 512-bit vector position is a subregister copy that needs
// no instruction.
defm : subvector_subreg_lowering<VR256, v8i32, VR512, v16i32, sub_ymm>;
defm : subvector_subreg_lowering<VR256, v8f32, VR512, v16f32, sub_ymm>;
defm : subvector_subreg_lowering<VR256, v4i64, VR512, v8i64, sub_ymm>;
defm : subvector_subreg_lowering<VR256, v4f64, VR512, v8f64, sub_ymm>;
defm : subvector_subreg_lowering<VR256, v16i16, VR512, v32i16, sub_ymm>;
defm : subvector_subreg_lowering<VR256, v32i8, VR512, v64i8, sub_ymm>;
multiclass subvector_store_lowering<string AlignedStr, string UnalignedStr,
RegisterClass RC, ValueType DstTy,
ValueType SrcTy, SubRegIndex SubIdx> {
def : Pat<(alignedstore (DstTy (extract_subvector
(SrcTy RC:$src), (iPTR 0))), addr:$dst),
(!cast<Instruction>("VMOV"#AlignedStr#"mr") addr:$dst,
(DstTy (EXTRACT_SUBREG RC:$src, SubIdx)))>;
def : Pat<(store (DstTy (extract_subvector
(SrcTy RC:$src), (iPTR 0))), addr:$dst),
(!cast<Instruction>("VMOV"#UnalignedStr#"mr") addr:$dst,
(DstTy (EXTRACT_SUBREG RC:$src, SubIdx)))>;
}
let Predicates = [HasAVX, NoVLX] in {
defm : subvector_store_lowering<"APD", "UPD", VR256X, v2f64, v4f64, sub_xmm>;
defm : subvector_store_lowering<"APS", "UPS", VR256X, v4f32, v8f32, sub_xmm>;
defm : subvector_store_lowering<"DQA", "DQU", VR256X, v2i64, v4i64, sub_xmm>;
defm : subvector_store_lowering<"DQA", "DQU", VR256X, v4i32, v8i32, sub_xmm>;
defm : subvector_store_lowering<"DQA", "DQU", VR256X, v8i16, v16i16, sub_xmm>;
defm : subvector_store_lowering<"DQA", "DQU", VR256X, v16i8, v32i8, sub_xmm>;
}
let Predicates = [HasVLX] in {
// Special patterns for storing subvector extracts of lower 128-bits
// Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr
defm : subvector_store_lowering<"APDZ128", "UPDZ128", VR256X, v2f64, v4f64,
sub_xmm>;
defm : subvector_store_lowering<"APSZ128", "UPSZ128", VR256X, v4f32, v8f32,
sub_xmm>;
defm : subvector_store_lowering<"DQA64Z128", "DQU64Z128", VR256X, v2i64,
v4i64, sub_xmm>;
defm : subvector_store_lowering<"DQA64Z128", "DQU64Z128", VR256X, v4i32,
v8i32, sub_xmm>;
defm : subvector_store_lowering<"DQA64Z128", "DQU64Z128", VR256X, v8i16,
v16i16, sub_xmm>;
defm : subvector_store_lowering<"DQA64Z128", "DQU64Z128", VR256X, v16i8,
v32i8, sub_xmm>;
// Special patterns for storing subvector extracts of lower 128-bits of 512.
// Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr
defm : subvector_store_lowering<"APDZ128", "UPDZ128", VR512, v2f64, v8f64,
sub_xmm>;
defm : subvector_store_lowering<"APSZ128", "UPSZ128", VR512, v4f32, v16f32,
sub_xmm>;
defm : subvector_store_lowering<"DQA64Z128", "DQU64Z128", VR512, v2i64,
v8i64, sub_xmm>;
defm : subvector_store_lowering<"DQA64Z128", "DQU64Z128", VR512, v4i32,
v16i32, sub_xmm>;
defm : subvector_store_lowering<"DQA64Z128", "DQU64Z128", VR512, v8i16,
v32i16, sub_xmm>;
defm : subvector_store_lowering<"DQA64Z128", "DQU64Z128", VR512, v16i8,
v64i8, sub_xmm>;
// Special patterns for storing subvector extracts of lower 256-bits of 512.
// Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr
defm : subvector_store_lowering<"APDZ256", "UPDZ256", VR512, v4f64, v8f64,
sub_ymm>;
defm : subvector_store_lowering<"APSZ256", "UPSZ256", VR512, v8f32, v16f32,
sub_ymm>;
defm : subvector_store_lowering<"DQA64Z256", "DQU64Z256", VR512, v4i64,
v8i64, sub_ymm>;
defm : subvector_store_lowering<"DQA64Z256", "DQU64Z256", VR512, v8i32,
v16i32, sub_ymm>;
defm : subvector_store_lowering<"DQA64Z256", "DQU64Z256", VR512, v16i16,
v32i16, sub_ymm>;
defm : subvector_store_lowering<"DQA64Z256", "DQU64Z256", VR512, v32i8,
v64i8, sub_ymm>;
}
// If we're inserting into an all zeros vector, just use a plain move which
// will zero the upper bits.
// TODO: Is there a safe way to detect whether the producing instruction
// already zeroed the upper bits?
multiclass subvector_zero_lowering<string MoveStr, RegisterClass RC,
ValueType DstTy, ValueType SrcTy,
ValueType ZeroTy, PatFrag memop,
SubRegIndex SubIdx> {
def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)),
(SrcTy RC:$src), (iPTR 0))),
(SUBREG_TO_REG (i64 0),
(!cast<Instruction>("VMOV"#MoveStr#"rr") RC:$src), SubIdx)>;
def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)),
(SrcTy (bitconvert (memop addr:$src))),
(iPTR 0))),
(SUBREG_TO_REG (i64 0),
(!cast<Instruction>("VMOV"#MoveStr#"rm") addr:$src), SubIdx)>;
}
let Predicates = [HasAVX, NoVLX] in {
defm : subvector_zero_lowering<"APD", VR128, v4f64, v2f64, v8i32, loadv2f64,
sub_xmm>;
defm : subvector_zero_lowering<"APS", VR128, v8f32, v4f32, v8i32, loadv4f32,
sub_xmm>;
defm : subvector_zero_lowering<"DQA", VR128, v4i64, v2i64, v8i32, loadv2i64,
sub_xmm>;
defm : subvector_zero_lowering<"DQA", VR128, v8i32, v4i32, v8i32, loadv2i64,
sub_xmm>;
defm : subvector_zero_lowering<"DQA", VR128, v16i16, v8i16, v8i32, loadv2i64,
sub_xmm>;
defm : subvector_zero_lowering<"DQA", VR128, v32i8, v16i8, v8i32, loadv2i64,
sub_xmm>;
}
let Predicates = [HasVLX] in {
defm : subvector_zero_lowering<"APDZ128", VR128X, v4f64, v2f64, v8i32,
loadv2f64, sub_xmm>;
defm : subvector_zero_lowering<"APSZ128", VR128X, v8f32, v4f32, v8i32,
loadv4f32, sub_xmm>;
defm : subvector_zero_lowering<"DQA64Z128", VR128X, v4i64, v2i64, v8i32,
loadv2i64, sub_xmm>;
defm : subvector_zero_lowering<"DQA64Z128", VR128X, v8i32, v4i32, v8i32,
loadv2i64, sub_xmm>;
defm : subvector_zero_lowering<"DQA64Z128", VR128X, v16i16, v8i16, v8i32,
loadv2i64, sub_xmm>;
defm : subvector_zero_lowering<"DQA64Z128", VR128X, v32i8, v16i8, v8i32,
loadv2i64, sub_xmm>;
defm : subvector_zero_lowering<"APDZ128", VR128X, v8f64, v2f64, v16i32,
loadv2f64, sub_xmm>;
defm : subvector_zero_lowering<"APSZ128", VR128X, v16f32, v4f32, v16i32,
loadv4f32, sub_xmm>;
defm : subvector_zero_lowering<"DQA64Z128", VR128X, v8i64, v2i64, v16i32,
loadv2i64, sub_xmm>;
defm : subvector_zero_lowering<"DQA64Z128", VR128X, v16i32, v4i32, v16i32,
loadv2i64, sub_xmm>;
defm : subvector_zero_lowering<"DQA64Z128", VR128X, v32i16, v8i16, v16i32,
loadv2i64, sub_xmm>;
defm : subvector_zero_lowering<"DQA64Z128", VR128X, v64i8, v16i8, v16i32,
loadv2i64, sub_xmm>;
defm : subvector_zero_lowering<"APDZ256", VR256X, v8f64, v4f64, v16i32,
loadv4f64, sub_ymm>;
defm : subvector_zero_lowering<"APSZ256", VR256X, v16f32, v8f32, v16i32,
loadv8f32, sub_ymm>;
defm : subvector_zero_lowering<"DQA64Z256", VR256X, v8i64, v4i64, v16i32,
loadv4i64, sub_ymm>;
defm : subvector_zero_lowering<"DQA64Z256", VR256X, v16i32, v8i32, v16i32,
loadv4i64, sub_ymm>;
defm : subvector_zero_lowering<"DQA64Z256", VR256X, v32i16, v16i16, v16i32,
loadv4i64, sub_ymm>;
defm : subvector_zero_lowering<"DQA64Z256", VR256X, v64i8, v32i8, v16i32,
loadv4i64, sub_ymm>;
}
let Predicates = [HasAVX512, NoVLX] in {
defm : subvector_zero_lowering<"APD", VR128, v8f64, v2f64, v16i32, loadv2f64,
sub_xmm>;
defm : subvector_zero_lowering<"APS", VR128, v16f32, v4f32, v16i32, loadv4f32,
sub_xmm>;
defm : subvector_zero_lowering<"DQA", VR128, v8i64, v2i64, v16i32, loadv2i64,
sub_xmm>;
defm : subvector_zero_lowering<"DQA", VR128, v16i32, v4i32, v16i32, loadv2i64,
sub_xmm>;
defm : subvector_zero_lowering<"DQA", VR128, v32i16, v8i16, v16i32, loadv2i64,
sub_xmm>;
defm : subvector_zero_lowering<"DQA", VR128, v64i8, v16i8, v16i32, loadv2i64,
sub_xmm>;
defm : subvector_zero_lowering<"APDY", VR256, v8f64, v4f64, v16i32,
loadv4f64, sub_ymm>;
defm : subvector_zero_lowering<"APSY", VR256, v16f32, v8f32, v16i32,
loadv8f32, sub_ymm>;
defm : subvector_zero_lowering<"DQAY", VR256, v8i64, v4i64, v16i32,
loadv4i64, sub_ymm>;
defm : subvector_zero_lowering<"DQAY", VR256, v16i32, v8i32, v16i32,
loadv4i64, sub_ymm>;
defm : subvector_zero_lowering<"DQAY", VR256, v32i16, v16i16, v16i32,
loadv4i64, sub_ymm>;
defm : subvector_zero_lowering<"DQAY", VR256, v64i8, v32i8, v16i32,
loadv4i64, sub_ymm>;
}
// List of opcodes that guaranteed to zero the upper elements of vector regs.
// TODO: Ideally this would be a blacklist instead of a whitelist. But SHA
// intrinsics and some MMX->XMM move instructions that aren't VEX encoded make
// this difficult. So starting with a couple opcodes used by reduction loops
// where we explicitly insert zeros.
class veczeroupper<ValueType vt, RegisterClass RC> :
PatLeaf<(vt RC:$src), [{
return N->getOpcode() == X86ISD::VPMADDWD ||
N->getOpcode() == X86ISD::PSADBW;
}]>;
def zeroupperv2f64 : veczeroupper<v2f64, VR128>;
def zeroupperv4f32 : veczeroupper<v4f32, VR128>;
def zeroupperv2i64 : veczeroupper<v2i64, VR128>;
def zeroupperv4i32 : veczeroupper<v4i32, VR128>;
def zeroupperv8i16 : veczeroupper<v8i16, VR128>;
def zeroupperv16i8 : veczeroupper<v16i8, VR128>;
def zeroupperv4f64 : veczeroupper<v4f64, VR256>;
def zeroupperv8f32 : veczeroupper<v8f32, VR256>;
def zeroupperv4i64 : veczeroupper<v4i64, VR256>;
def zeroupperv8i32 : veczeroupper<v8i32, VR256>;
def zeroupperv16i16 : veczeroupper<v16i16, VR256>;
def zeroupperv32i8 : veczeroupper<v32i8, VR256>;
// If we can guarantee the upper elements have already been zeroed we can elide
// an explicit zeroing.
multiclass subvector_zero_ellision<RegisterClass RC, ValueType DstTy,
ValueType SrcTy, ValueType ZeroTy,
SubRegIndex SubIdx, PatLeaf Zeroupper> {
def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)),
Zeroupper:$src, (iPTR 0))),
(SUBREG_TO_REG (i64 0), RC:$src, SubIdx)>;
}
// 128->256
defm: subvector_zero_ellision<VR128, v4f64, v2f64, v8i32, sub_xmm, zeroupperv2f64>;
defm: subvector_zero_ellision<VR128, v8f32, v4f32, v8i32, sub_xmm, zeroupperv4f32>;
defm: subvector_zero_ellision<VR128, v4i64, v2i64, v8i32, sub_xmm, zeroupperv2i64>;
defm: subvector_zero_ellision<VR128, v8i32, v4i32, v8i32, sub_xmm, zeroupperv4i32>;
defm: subvector_zero_ellision<VR128, v16i16, v8i16, v8i32, sub_xmm, zeroupperv8i16>;
defm: subvector_zero_ellision<VR128, v32i8, v16i8, v8i32, sub_xmm, zeroupperv16i8>;
// 128->512
defm: subvector_zero_ellision<VR128, v8f64, v2f64, v16i32, sub_xmm, zeroupperv2f64>;
defm: subvector_zero_ellision<VR128, v16f32, v4f32, v16i32, sub_xmm, zeroupperv4f32>;
defm: subvector_zero_ellision<VR128, v8i64, v2i64, v16i32, sub_xmm, zeroupperv2i64>;
defm: subvector_zero_ellision<VR128, v16i32, v4i32, v16i32, sub_xmm, zeroupperv4i32>;
defm: subvector_zero_ellision<VR128, v32i16, v8i16, v16i32, sub_xmm, zeroupperv8i16>;
defm: subvector_zero_ellision<VR128, v64i8, v16i8, v16i32, sub_xmm, zeroupperv16i8>;
// 256->512
defm: subvector_zero_ellision<VR256, v8f64, v4f64, v16i32, sub_ymm, zeroupperv4f64>;
defm: subvector_zero_ellision<VR256, v16f32, v8f32, v16i32, sub_ymm, zeroupperv8f32>;
defm: subvector_zero_ellision<VR256, v8i64, v4i64, v16i32, sub_ymm, zeroupperv4i64>;
defm: subvector_zero_ellision<VR256, v16i32, v8i32, v16i32, sub_ymm, zeroupperv8i32>;
defm: subvector_zero_ellision<VR256, v32i16, v16i16, v16i32, sub_ymm, zeroupperv16i16>;
defm: subvector_zero_ellision<VR256, v64i8, v32i8, v16i32, sub_ymm, zeroupperv32i8>;
class maskzeroupper<ValueType vt, RegisterClass RC> :
PatLeaf<(vt RC:$src), [{
return isMaskZeroExtended(N);
}]>;
def maskzeroupperv1i1 : maskzeroupper<v1i1, VK1>;
def maskzeroupperv2i1 : maskzeroupper<v2i1, VK2>;
def maskzeroupperv4i1 : maskzeroupper<v4i1, VK4>;
def maskzeroupperv8i1 : maskzeroupper<v8i1, VK8>;
def maskzeroupperv16i1 : maskzeroupper<v16i1, VK16>;
def maskzeroupperv32i1 : maskzeroupper<v32i1, VK32>;
// The patterns determine if we can depend on the upper bits of a mask register
// being zeroed by the previous operation so that we can skip explicit
// zeroing.
let Predicates = [HasBWI] in {
def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
maskzeroupperv1i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK1:$src, VK32)>;
def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
maskzeroupperv8i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK8:$src, VK32)>;
def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
maskzeroupperv16i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK16:$src, VK32)>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
maskzeroupperv1i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK1:$src, VK64)>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
maskzeroupperv8i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK8:$src, VK64)>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
maskzeroupperv16i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK16:$src, VK64)>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
maskzeroupperv32i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK32:$src, VK64)>;
}
let Predicates = [HasAVX512] in {
def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
maskzeroupperv1i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK1:$src, VK16)>;
def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
maskzeroupperv8i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK8:$src, VK16)>;
}
let Predicates = [HasDQI] in {
def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV),
maskzeroupperv1i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK1:$src, VK8)>;
}
let Predicates = [HasVLX, HasDQI] in {
def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV),
maskzeroupperv2i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK2:$src, VK8)>;
def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV),
maskzeroupperv4i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK4:$src, VK8)>;
}
let Predicates = [HasVLX] in {
def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
maskzeroupperv2i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK2:$src, VK16)>;
def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
maskzeroupperv4i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK4:$src, VK16)>;
}
let Predicates = [HasBWI, HasVLX] in {
def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
maskzeroupperv2i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK2:$src, VK32)>;
def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
maskzeroupperv4i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK4:$src, VK32)>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
maskzeroupperv2i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK2:$src, VK64)>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
maskzeroupperv4i1:$src, (iPTR 0))),
(COPY_TO_REGCLASS VK4:$src, VK64)>;
}
// If the bits are not zero we have to fall back to explicitly zeroing by
// using shifts.
[X86] Make v2i1 and v4i1 legal types without VLX Summary: There are few oddities that occur due to v1i1, v8i1, v16i1 being legal without v2i1 and v4i1 being legal when we don't have VLX. Particularly during legalization of v2i32/v4i32/v2i64/v4i64 masked gather/scatter/load/store. We end up promoting the mask argument to these during type legalization and then have to widen the promoted type to v8iX/v16iX and truncate it to get the element size back down to v8i1/v16i1 to use a 512-bit operation. Since need to fill the upper bits of the mask we have to fill with 0s at the promoted type. It would be better if we could just have the v2i1/v4i1 types as legal so they don't undergo any promotion. Then we can just widen with 0s directly in a k register. There are no real v4i1/v2i1 instructions anyway. Everything is done on a larger register anyway. This also fixes an issue that we couldn't implement a masked vextractf32x4 from zmm to xmm properly. We now have to support widening more compares to 512-bit to get a mask result out so new tablegen patterns got added. I had to hack the legalizer for widening the operand of a setcc a bit so it didn't try create a setcc returning v4i32, extract from it, then try to promote it using a sign extend to v2i1. Now we create the setcc with v4i1 if the original setcc's result type is v2i1. Then extract that and don't sign extend it at all. There's definitely room for improvement with some follow up patches. Reviewers: RKSimon, zvi, guyblank Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D41560 llvm-svn: 321967
2018-01-08 02:20:37 +08:00
let Predicates = [HasAVX512] in {
def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
(v1i1 VK1:$mask), (iPTR 0))),
(KSHIFTRWri (KSHIFTLWri (COPY_TO_REGCLASS VK1:$mask, VK16),
(i8 15)), (i8 15))>;
[X86] Make v2i1 and v4i1 legal types without VLX Summary: There are few oddities that occur due to v1i1, v8i1, v16i1 being legal without v2i1 and v4i1 being legal when we don't have VLX. Particularly during legalization of v2i32/v4i32/v2i64/v4i64 masked gather/scatter/load/store. We end up promoting the mask argument to these during type legalization and then have to widen the promoted type to v8iX/v16iX and truncate it to get the element size back down to v8i1/v16i1 to use a 512-bit operation. Since need to fill the upper bits of the mask we have to fill with 0s at the promoted type. It would be better if we could just have the v2i1/v4i1 types as legal so they don't undergo any promotion. Then we can just widen with 0s directly in a k register. There are no real v4i1/v2i1 instructions anyway. Everything is done on a larger register anyway. This also fixes an issue that we couldn't implement a masked vextractf32x4 from zmm to xmm properly. We now have to support widening more compares to 512-bit to get a mask result out so new tablegen patterns got added. I had to hack the legalizer for widening the operand of a setcc a bit so it didn't try create a setcc returning v4i32, extract from it, then try to promote it using a sign extend to v2i1. Now we create the setcc with v4i1 if the original setcc's result type is v2i1. Then extract that and don't sign extend it at all. There's definitely room for improvement with some follow up patches. Reviewers: RKSimon, zvi, guyblank Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D41560 llvm-svn: 321967
2018-01-08 02:20:37 +08:00
def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
(v2i1 VK2:$mask), (iPTR 0))),
(KSHIFTRWri (KSHIFTLWri (COPY_TO_REGCLASS VK2:$mask, VK16),
(i8 14)), (i8 14))>;
def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
(v4i1 VK4:$mask), (iPTR 0))),
(KSHIFTRWri (KSHIFTLWri (COPY_TO_REGCLASS VK4:$mask, VK16),
(i8 12)), (i8 12))>;
}
let Predicates = [HasAVX512, NoDQI] in {
def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
(v8i1 VK8:$mask), (iPTR 0))),
(KSHIFTRWri (KSHIFTLWri (COPY_TO_REGCLASS VK8:$mask, VK16),
(i8 8)), (i8 8))>;
}
let Predicates = [HasDQI] in {
def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
(v8i1 VK8:$mask), (iPTR 0))),
(COPY_TO_REGCLASS (KMOVBkk VK8:$mask), VK16)>;
def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV),
(v1i1 VK1:$mask), (iPTR 0))),
(KSHIFTRBri (KSHIFTLBri (COPY_TO_REGCLASS VK1:$mask, VK8),
(i8 7)), (i8 7))>;
def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV),
(v2i1 VK2:$mask), (iPTR 0))),
(KSHIFTRBri (KSHIFTLBri (COPY_TO_REGCLASS VK2:$mask, VK8),
(i8 6)), (i8 6))>;
def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV),
(v4i1 VK4:$mask), (iPTR 0))),
(KSHIFTRBri (KSHIFTLBri (COPY_TO_REGCLASS VK4:$mask, VK8),
(i8 4)), (i8 4))>;
}
let Predicates = [HasBWI] in {
def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
(v16i1 VK16:$mask), (iPTR 0))),
(COPY_TO_REGCLASS (KMOVWkk VK16:$mask), VK32)>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
(v16i1 VK16:$mask), (iPTR 0))),
(COPY_TO_REGCLASS (KMOVWkk VK16:$mask), VK64)>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
(v32i1 VK32:$mask), (iPTR 0))),
(COPY_TO_REGCLASS (KMOVDkk VK32:$mask), VK64)>;
}
let Predicates = [HasBWI, NoDQI] in {
def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
(v8i1 VK8:$mask), (iPTR 0))),
(KSHIFTRDri (KSHIFTLDri (COPY_TO_REGCLASS VK8:$mask, VK32),
(i8 24)), (i8 24))>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
(v8i1 VK8:$mask), (iPTR 0))),
(KSHIFTRQri (KSHIFTLQri (COPY_TO_REGCLASS VK8:$mask, VK64),
(i8 56)), (i8 56))>;
}
let Predicates = [HasBWI, HasDQI] in {
def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
(v8i1 VK8:$mask), (iPTR 0))),
(COPY_TO_REGCLASS (KMOVBkk VK8:$mask), VK32)>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
(v8i1 VK8:$mask), (iPTR 0))),
(COPY_TO_REGCLASS (KMOVBkk VK8:$mask), VK64)>;
}
let Predicates = [HasBWI, HasVLX] in {
def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
(v1i1 VK1:$mask), (iPTR 0))),
(KSHIFTRDri (KSHIFTLDri (COPY_TO_REGCLASS VK1:$mask, VK32),
(i8 31)), (i8 31))>;
def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
(v2i1 VK2:$mask), (iPTR 0))),
(KSHIFTRDri (KSHIFTLDri (COPY_TO_REGCLASS VK2:$mask, VK32),
(i8 30)), (i8 30))>;
def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
(v4i1 VK4:$mask), (iPTR 0))),
(KSHIFTRDri (KSHIFTLDri (COPY_TO_REGCLASS VK4:$mask, VK32),
(i8 28)), (i8 28))>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
(v1i1 VK1:$mask), (iPTR 0))),
(KSHIFTRQri (KSHIFTLQri (COPY_TO_REGCLASS VK1:$mask, VK64),
(i8 63)), (i8 63))>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
(v2i1 VK2:$mask), (iPTR 0))),
(KSHIFTRQri (KSHIFTLQri (COPY_TO_REGCLASS VK2:$mask, VK64),
(i8 62)), (i8 62))>;
def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
(v4i1 VK4:$mask), (iPTR 0))),
(KSHIFTRQri (KSHIFTLQri (COPY_TO_REGCLASS VK4:$mask, VK64),
(i8 60)), (i8 60))>;
}