llvm-project/lldb/tools/debugserver/source/DNB.cpp

2371 lines
80 KiB
C++
Raw Normal View History

//===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 3/23/07.
//
//===----------------------------------------------------------------------===//
#include "DNB.h"
#include <inttypes.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <sys/sysctl.h>
#include <map>
#include <vector>
#include <libproc.h>
#if defined (__APPLE__)
#include <pthread.h>
#include <sched.h>
#endif
#define TRY_KQUEUE 1
#ifdef TRY_KQUEUE
#include <sys/event.h>
#include <sys/time.h>
#ifdef NOTE_EXIT_DETAIL
#define USE_KQUEUE
#endif
#endif
#include "MacOSX/MachProcess.h"
#include "MacOSX/MachTask.h"
Initial merge of some of the iOS 8 / Mac OS X Yosemite specific lldb support. I'll be doing more testing & cleanup but I wanted to get the initial checkin done. This adds a new SBExpressionOptions::SetLanguage API for selecting a language of an expression. I added adds a new SBThread::GetInfoItemByPathString for retriving information about a thread from that thread's StructuredData. I added a new StructuredData class for representing key-value/array/dictionary information (e.g. JSON formatted data). Helper functions to read JSON and create a StructuredData object, and to print a StructuredData object in JSON format are included. A few Cocoa / Cocoa Touch data formatters were updated by Enrico to track changes in iOS 8 / Yosemite. Before we query a thread's extended information, the system runtime may provide hints to the remote debug stub that it will use to retrieve values out of runtime structures. I added a new SystemRuntime method AddThreadExtendedInfoPacketHints which allows the SystemRuntime to add key-value type data to the initial request that we send to the remote stub. The thread-format formatter string can now retrieve values out of a thread's extended info structured data. The default thread-format string picks up two of these - thread.info.activity.name and thread.info.trace_messages. I added a new "jThreadExtendedInfo" packet in debugserver; I will add documentation to the lldb-gdb-remote.txt doc soon. It accepts JSON formatted arguments (most importantly, "thread":threadnum) and it returns a variety of information regarding the thread to lldb in JSON format. This JSON return is scanned into a StructuredData object that is associated with the thread; UI layers can query the thread's StructuredData to see if key-values are present, and if so, show them to the user. These key-values are likely to be specific to different targets with some commonality among many targets. For instance, many targets will be able to advertise the pthread_t value for a thread. I added an initial rough cut of "thread info" command which will print the information about a thread from the jThreadExtendedInfo result. I need to do more work to make this format reasonably. Han Ming added calls into the pmenergy and pmsample libraries if debugserver is run on Mac OS X Yosemite to get information about the inferior's power use. I added support to debugserver for gathering the Genealogy information about threads, if it exists, and returning it in the jThreadExtendedInfo JSON result. llvm-svn: 210874
2014-06-13 10:37:02 +08:00
#include "MacOSX/Genealogy.h"
#include "MacOSX/ThreadInfo.h"
#include "CFString.h"
#include "DNBLog.h"
#include "DNBDataRef.h"
#include "DNBThreadResumeActions.h"
#include "DNBTimer.h"
#include "CFBundle.h"
typedef std::shared_ptr<MachProcess> MachProcessSP;
typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
typedef ProcessMap::iterator ProcessMapIter;
typedef ProcessMap::const_iterator ProcessMapConstIter;
size_t GetAllInfos (std::vector<struct kinfo_proc>& proc_infos);
static size_t GetAllInfosMatchingName (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos);
//----------------------------------------------------------------------
// A Thread safe singleton to get a process map pointer.
//
// Returns a pointer to the existing process map, or a pointer to a
// newly created process map if CAN_CREATE is non-zero.
//----------------------------------------------------------------------
static ProcessMap*
GetProcessMap(bool can_create)
{
static ProcessMap* g_process_map_ptr = NULL;
if (can_create && g_process_map_ptr == NULL)
{
static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex);
if (g_process_map_ptr == NULL)
g_process_map_ptr = new ProcessMap;
}
return g_process_map_ptr;
}
//----------------------------------------------------------------------
// Add PID to the shared process pointer map.
//
// Return non-zero value if we succeed in adding the process to the map.
// The only time this should fail is if we run out of memory and can't
// allocate a ProcessMap.
//----------------------------------------------------------------------
static nub_bool_t
AddProcessToMap (nub_process_t pid, MachProcessSP& procSP)
{
ProcessMap* process_map = GetProcessMap(true);
if (process_map)
{
process_map->insert(std::make_pair(pid, procSP));
return true;
}
return false;
}
//----------------------------------------------------------------------
// Remove the shared pointer for PID from the process map.
//
// Returns the number of items removed from the process map.
//----------------------------------------------------------------------
static size_t
RemoveProcessFromMap (nub_process_t pid)
{
ProcessMap* process_map = GetProcessMap(false);
if (process_map)
{
return process_map->erase(pid);
}
return 0;
}
//----------------------------------------------------------------------
// Get the shared pointer for PID from the existing process map.
//
// Returns true if we successfully find a shared pointer to a
// MachProcess object.
//----------------------------------------------------------------------
static nub_bool_t
GetProcessSP (nub_process_t pid, MachProcessSP& procSP)
{
ProcessMap* process_map = GetProcessMap(false);
if (process_map != NULL)
{
ProcessMapIter pos = process_map->find(pid);
if (pos != process_map->end())
{
procSP = pos->second;
return true;
}
}
procSP.reset();
return false;
}
#ifdef USE_KQUEUE
void *
kqueue_thread (void *arg)
{
int kq_id = (int) (intptr_t) arg;
#if defined (__APPLE__)
pthread_setname_np ("kqueue thread");
#if defined (__arm__) || defined (__arm64__) || defined (__aarch64__)
struct sched_param thread_param;
int thread_sched_policy;
if (pthread_getschedparam(pthread_self(), &thread_sched_policy, &thread_param) == 0)
{
thread_param.sched_priority = 47;
pthread_setschedparam(pthread_self(), thread_sched_policy, &thread_param);
}
#endif
#endif
struct kevent death_event;
while (1)
{
int n_events = kevent (kq_id, NULL, 0, &death_event, 1, NULL);
if (n_events == -1)
{
if (errno == EINTR)
continue;
else
{
DNBLogError ("kqueue failed with error: (%d): %s", errno, strerror(errno));
return NULL;
}
}
else if (death_event.flags & EV_ERROR)
{
int error_no = death_event.data;
const char *error_str = strerror(death_event.data);
if (error_str == NULL)
error_str = "Unknown error";
DNBLogError ("Failed to initialize kqueue event: (%d): %s", error_no, error_str );
return NULL;
}
else
{
int status;
const pid_t pid = (pid_t)death_event.ident;
const pid_t child_pid = waitpid (pid, &status, 0);
bool exited = false;
int signal = 0;
int exit_status = 0;
const char *status_cstr = NULL;
if (WIFSTOPPED(status))
{
signal = WSTOPSIG(status);
status_cstr = "STOPPED";
DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> STOPPED (signal = %i)", child_pid, signal);
}
else if (WIFEXITED(status))
{
exit_status = WEXITSTATUS(status);
status_cstr = "EXITED";
exited = true;
DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> EXITED (status = %i)", child_pid, exit_status);
}
else if (WIFSIGNALED(status))
{
signal = WTERMSIG(status);
status_cstr = "SIGNALED";
if (child_pid == abs(pid))
{
DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> SIGNALED and EXITED (signal = %i)", child_pid, signal);
char exit_info[64];
::snprintf (exit_info, sizeof(exit_info), "Terminated due to signal %i", signal);
DNBProcessSetExitInfo (child_pid, exit_info);
exited = true;
exit_status = INT8_MAX;
}
else
{
DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> SIGNALED (signal = %i)", child_pid, signal);
}
}
if (exited)
{
if (death_event.data & NOTE_EXIT_MEMORY)
DNBProcessSetExitInfo (child_pid, "Terminated due to memory issue");
else if (death_event.data & NOTE_EXIT_DECRYPTFAIL)
DNBProcessSetExitInfo (child_pid, "Terminated due to decrypt failure");
else if (death_event.data & NOTE_EXIT_CSERROR)
DNBProcessSetExitInfo (child_pid, "Terminated due to code signing error");
DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, exit_status);
DNBProcessSetExitStatus (child_pid, status);
return NULL;
}
}
}
}
static bool
spawn_kqueue_thread (pid_t pid)
{
pthread_t thread;
int kq_id;
kq_id = kqueue();
if (kq_id == -1)
{
DNBLogError ("Could not get kqueue for pid = %i.", pid);
return false;
}
struct kevent reg_event;
EV_SET(&reg_event, pid, EVFILT_PROC, EV_ADD, NOTE_EXIT|NOTE_EXITSTATUS|NOTE_EXIT_DETAIL, 0, NULL);
// Register the event:
int result = kevent (kq_id, &reg_event, 1, NULL, 0, NULL);
if (result != 0)
{
DNBLogError ("Failed to register kqueue NOTE_EXIT event for pid %i, error: %d.", pid, result);
return false;
}
int ret = ::pthread_create (&thread, NULL, kqueue_thread, (void *)(intptr_t)kq_id);
// pthread_create returns 0 if successful
if (ret == 0)
{
::pthread_detach (thread);
return true;
}
return false;
}
#endif // #if USE_KQUEUE
static void *
waitpid_thread (void *arg)
{
const pid_t pid = (pid_t)(intptr_t)arg;
int status;
#if defined (__APPLE__)
pthread_setname_np ("waitpid thread");
#if defined (__arm__) || defined (__arm64__) || defined (__aarch64__)
struct sched_param thread_param;
int thread_sched_policy;
if (pthread_getschedparam(pthread_self(), &thread_sched_policy, &thread_param) == 0)
{
thread_param.sched_priority = 47;
pthread_setschedparam(pthread_self(), thread_sched_policy, &thread_param);
}
#endif
#endif
while (1)
{
pid_t child_pid = waitpid(pid, &status, 0);
DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno);
if (child_pid < 0)
{
if (errno == EINTR)
continue;
break;
}
else
{
if (WIFSTOPPED(status))
{
continue;
}
else// if (WIFEXITED(status) || WIFSIGNALED(status))
{
DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): setting exit status for pid = %i to %i", child_pid, status);
DNBProcessSetExitStatus (child_pid, status);
return NULL;
}
}
}
// We should never exit as long as our child process is alive, so if we
// do something else went wrong and we should exit...
DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid);
DNBProcessSetExitStatus (pid, -1);
return NULL;
}
static bool
spawn_waitpid_thread (pid_t pid)
{
#ifdef USE_KQUEUE
bool success = spawn_kqueue_thread (pid);
if (success)
return true;
#endif
pthread_t thread;
int ret = ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
// pthread_create returns 0 if successful
if (ret == 0)
{
::pthread_detach (thread);
return true;
}
return false;
}
nub_process_t
DNBProcessLaunch (const char *path,
char const *argv[],
const char *envp[],
2014-07-09 02:05:41 +08:00
const char *working_directory, // NULL => don't change, non-NULL => set working directory for inferior to this
const char *stdin_path,
const char *stdout_path,
const char *stderr_path,
bool no_stdio,
nub_launch_flavor_t launch_flavor,
int disable_aslr,
const char *event_data,
char *err_str,
size_t err_len)
{
DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, working_dir=%s, stdin=%s, stdout=%s, stderr=%s, no-stdio=%i, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %llu) called...",
Added a new variant of SBTarget::Launch() that deprectates the old one that takes separate file handles for stdin, stdout, and stder and also allows for the working directory to be specified. Added support to "process launch" to a new option: --working-dir=PATH. We can now set the working directory. If this is not set, it defaults to that of the process that has LLDB loaded. Added the working directory to the host LaunchInNewTerminal function to allows the current working directory to be set in processes that are spawned in their own terminal. Also hooked this up to the lldb_private::Process and all mac plug-ins. The linux plug-in had its API changed, but nothing is making use of it yet. Modfied "debugserver" and "darwin-debug" to also handle the current working directory options and modified the code in LLDB that spawns these tools to pass the info along. Fixed ProcessGDBRemote to properly pass along all file handles for stdin, stdout and stderr. After clearing the default values for the stdin/out/err file handles for process to be NULL, we had a crasher in UserSettingsController::UpdateStringVariable which is now fixed. Also fixed the setting of boolean values to be able to be set as "true", "yes", "on", "1" for true (case insensitive) and "false", "no", "off", or "0" for false. Fixed debugserver to properly handle files for STDIN, STDOUT and STDERR that are not already opened. Previous to this fix debugserver would only correctly open and dupe file handles for the slave side of a pseudo terminal. It now correctly handles getting STDIN for the inferior from a file, and spitting STDOUT and STDERR out to files. Also made sure the file handles were correctly opened with the NOCTTY flag for terminals. llvm-svn: 124060
2011-01-23 13:56:20 +08:00
__FUNCTION__,
path,
argv,
envp,
working_directory,
stdin_path,
stdout_path,
stderr_path,
no_stdio,
launch_flavor,
disable_aslr,
err_str,
(uint64_t)err_len);
Added a new variant of SBTarget::Launch() that deprectates the old one that takes separate file handles for stdin, stdout, and stder and also allows for the working directory to be specified. Added support to "process launch" to a new option: --working-dir=PATH. We can now set the working directory. If this is not set, it defaults to that of the process that has LLDB loaded. Added the working directory to the host LaunchInNewTerminal function to allows the current working directory to be set in processes that are spawned in their own terminal. Also hooked this up to the lldb_private::Process and all mac plug-ins. The linux plug-in had its API changed, but nothing is making use of it yet. Modfied "debugserver" and "darwin-debug" to also handle the current working directory options and modified the code in LLDB that spawns these tools to pass the info along. Fixed ProcessGDBRemote to properly pass along all file handles for stdin, stdout and stderr. After clearing the default values for the stdin/out/err file handles for process to be NULL, we had a crasher in UserSettingsController::UpdateStringVariable which is now fixed. Also fixed the setting of boolean values to be able to be set as "true", "yes", "on", "1" for true (case insensitive) and "false", "no", "off", or "0" for false. Fixed debugserver to properly handle files for STDIN, STDOUT and STDERR that are not already opened. Previous to this fix debugserver would only correctly open and dupe file handles for the slave side of a pseudo terminal. It now correctly handles getting STDIN for the inferior from a file, and spitting STDOUT and STDERR out to files. Also made sure the file handles were correctly opened with the NOCTTY flag for terminals. llvm-svn: 124060
2011-01-23 13:56:20 +08:00
if (err_str && err_len > 0)
err_str[0] = '\0';
struct stat path_stat;
if (::stat(path, &path_stat) == -1)
{
char stat_error[256];
::strerror_r (errno, stat_error, sizeof(stat_error));
snprintf(err_str, err_len, "%s (%s)", stat_error, path);
return INVALID_NUB_PROCESS;
}
MachProcessSP processSP (new MachProcess);
if (processSP.get())
{
DNBError launch_err;
pid_t pid = processSP->LaunchForDebug (path,
argv,
envp,
working_directory,
stdin_path,
stdout_path,
stderr_path,
no_stdio,
launch_flavor,
disable_aslr,
event_data,
launch_err);
if (err_str)
{
*err_str = '\0';
if (launch_err.Fail())
{
const char *launch_err_str = launch_err.AsString();
if (launch_err_str)
{
strncpy(err_str, launch_err_str, err_len-1);
err_str[err_len-1] = '\0'; // Make sure the error string is terminated
}
}
}
DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
if (pid != INVALID_NUB_PROCESS)
{
// Spawn a thread to reap our child inferior process...
spawn_waitpid_thread (pid);
if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL)
{
// We failed to get the task for our process ID which is bad.
// Kill our process otherwise it will be stopped at the entry
// point and get reparented to someone else and never go away.
DNBLog ("Could not get task port for process, sending SIGKILL and exiting.");
kill (SIGKILL, pid);
if (err_str && err_len > 0)
{
if (launch_err.AsString())
{
::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString());
}
else
{
::snprintf (err_str, err_len, "failed to get the task for process %i", pid);
}
}
}
else
{
bool res = AddProcessToMap(pid, processSP);
assert(res && "Couldn't add process to map!");
return pid;
}
}
}
return INVALID_NUB_PROCESS;
}
nub_process_t
DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len)
{
if (err_str && err_len > 0)
err_str[0] = '\0';
std::vector<struct kinfo_proc> matching_proc_infos;
size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos);
if (num_matching_proc_infos == 0)
{
DNBLogError ("error: no processes match '%s'\n", name);
return INVALID_NUB_PROCESS;
}
else if (num_matching_proc_infos > 1)
{
DNBLogError ("error: %llu processes match '%s':\n", (uint64_t)num_matching_proc_infos, name);
size_t i;
for (i=0; i<num_matching_proc_infos; ++i)
DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm);
return INVALID_NUB_PROCESS;
}
2010-11-18 13:57:03 +08:00
return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len);
}
nub_process_t
DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len)
{
if (err_str && err_len > 0)
err_str[0] = '\0';
pid_t pid = INVALID_NUB_PROCESS;
MachProcessSP processSP(new MachProcess);
if (processSP.get())
{
DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid);
pid = processSP->AttachForDebug (attach_pid, err_str, err_len);
if (pid != INVALID_NUB_PROCESS)
{
bool res = AddProcessToMap(pid, processSP);
assert(res && "Couldn't add process to map!");
spawn_waitpid_thread(pid);
}
}
while (pid != INVALID_NUB_PROCESS)
{
// Wait for process to start up and hit entry point
2010-11-18 13:57:03 +08:00
DNBLogThreadedIf (LOG_PROCESS,
"%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...",
__FUNCTION__,
pid);
nub_event_t set_events = DNBProcessWaitForEvents (pid,
2010-11-18 13:57:03 +08:00
eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged,
true,
timeout);
DNBLogThreadedIf (LOG_PROCESS,
"%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x",
__FUNCTION__,
pid,
set_events);
if (set_events == 0)
{
if (err_str && err_len > 0)
snprintf(err_str, err_len, "operation timed out");
pid = INVALID_NUB_PROCESS;
}
else
{
if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged))
{
nub_state_t pid_state = DNBProcessGetState (pid);
DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s",
__FUNCTION__, pid, DNBStateAsString(pid_state));
switch (pid_state)
{
2010-11-18 13:57:03 +08:00
default:
case eStateInvalid:
case eStateUnloaded:
case eStateAttaching:
case eStateLaunching:
case eStateSuspended:
break; // Ignore
case eStateRunning:
case eStateStepping:
// Still waiting to stop at entry point...
break;
case eStateStopped:
case eStateCrashed:
return pid;
case eStateDetached:
case eStateExited:
if (err_str && err_len > 0)
snprintf(err_str, err_len, "process exited");
return INVALID_NUB_PROCESS;
}
}
DNBProcessResetEvents(pid, set_events);
}
}
return INVALID_NUB_PROCESS;
}
size_t
2010-11-18 13:57:03 +08:00
GetAllInfos (std::vector<struct kinfo_proc>& proc_infos)
{
size_t size = 0;
int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
u_int namelen = sizeof(name)/sizeof(int);
int err;
// Try to find out how many processes are around so we can
// size the buffer appropriately. sysctl's man page specifically suggests
// this approach, and says it returns a bit larger size than needed to
// handle any new processes created between then and now.
err = ::sysctl (name, namelen, NULL, &size, NULL, 0);
if ((err < 0) && (err != ENOMEM))
{
proc_infos.clear();
perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
return 0;
}
// Increase the size of the buffer by a few processes in case more have
// been spawned
proc_infos.resize (size / sizeof(struct kinfo_proc));
size = proc_infos.size() * sizeof(struct kinfo_proc); // Make sure we don't exceed our resize...
err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0);
if (err < 0)
{
proc_infos.clear();
return 0;
}
// Trim down our array to fit what we actually got back
proc_infos.resize(size / sizeof(struct kinfo_proc));
return proc_infos.size();
}
static size_t
GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos)
{
matching_proc_infos.clear();
if (full_process_name && full_process_name[0])
{
// We only get the process name, not the full path, from the proc_info. So just take the
// base name of the process name...
const char *process_name;
process_name = strrchr (full_process_name, '/');
if (process_name == NULL)
process_name = full_process_name;
else
process_name++;
const int process_name_len = strlen(process_name);
std::vector<struct kinfo_proc> proc_infos;
const size_t num_proc_infos = GetAllInfos(proc_infos);
if (num_proc_infos > 0)
{
uint32_t i;
for (i=0; i<num_proc_infos; i++)
{
// Skip zombie processes and processes with unset status
if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB)
continue;
// Check for process by name. We only check the first MAXCOMLEN
// chars as that is all that kp_proc.p_comm holds.
if (::strncasecmp(process_name, proc_infos[i].kp_proc.p_comm, MAXCOMLEN) == 0)
{
if (process_name_len > MAXCOMLEN)
{
// We found a matching process name whose first MAXCOMLEN
// characters match, but there is more to the name than
// this. We need to get the full process name. Use proc_pidpath, which will get
// us the full path to the executed process.
char proc_path_buf[PATH_MAX];
int return_val = proc_pidpath (proc_infos[i].kp_proc.p_pid, proc_path_buf, PATH_MAX);
if (return_val > 0)
{
// Okay, now search backwards from that to see if there is a
// slash in the name. Note, even though we got all the args we don't care
// because the list data is just a bunch of concatenated null terminated strings
// so strrchr will start from the end of argv0.
const char *argv_basename = strrchr(proc_path_buf, '/');
if (argv_basename)
{
// Skip the '/'
++argv_basename;
}
else
{
// We didn't find a directory delimiter in the process argv[0], just use what was in there
argv_basename = proc_path_buf;
}
if (argv_basename)
{
if (::strncasecmp(process_name, argv_basename, PATH_MAX) == 0)
{
matching_proc_infos.push_back(proc_infos[i]);
}
}
}
}
else
{
// We found a matching process, add it to our list
matching_proc_infos.push_back(proc_infos[i]);
}
}
}
}
}
// return the newly added matches.
return matching_proc_infos.size();
}
nub_process_t
DNBProcessAttachWait (const char *waitfor_process_name,
nub_launch_flavor_t launch_flavor,
bool ignore_existing,
struct timespec *timeout_abstime,
useconds_t waitfor_interval,
char *err_str,
size_t err_len,
DNBShouldCancelCallback should_cancel_callback,
void *callback_data)
{
DNBError prepare_error;
std::vector<struct kinfo_proc> exclude_proc_infos;
size_t num_exclude_proc_infos;
// If the PrepareForAttach returns a valid token, use MachProcess to check
// for the process, otherwise scan the process table.
const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error);
if (prepare_error.Fail())
{
DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString());
return INVALID_NUB_PROCESS;
}
if (attach_token == NULL)
{
if (ignore_existing)
num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos);
else
num_exclude_proc_infos = 0;
}
DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name);
// Loop and try to find the process by name
nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
while (waitfor_pid == INVALID_NUB_PROCESS)
{
if (attach_token != NULL)
{
nub_process_t pid;
pid = MachProcess::CheckForProcess(attach_token);
if (pid != INVALID_NUB_PROCESS)
{
waitfor_pid = pid;
break;
}
}
else
{
// Get the current process list, and check for matches that
// aren't in our original list. If anyone wants to attach
// to an existing process by name, they should do it with
// --attach=PROCNAME. Else we will wait for the first matching
// process that wasn't in our exclusion list.
std::vector<struct kinfo_proc> proc_infos;
const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos);
for (size_t i=0; i<num_proc_infos; i++)
{
nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
for (size_t j=0; j<num_exclude_proc_infos; j++)
{
if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid)
{
// This process was in our exclusion list, don't use it.
curr_pid = INVALID_NUB_PROCESS;
break;
}
}
// If we didn't find CURR_PID in our exclusion list, then use it.
if (curr_pid != INVALID_NUB_PROCESS)
{
// We found our process!
waitfor_pid = curr_pid;
break;
}
}
}
// If we haven't found our process yet, check for a timeout
// and then sleep for a bit until we poll again.
if (waitfor_pid == INVALID_NUB_PROCESS)
{
if (timeout_abstime != NULL)
{
// Check to see if we have a waitfor-duration option that
// has timed out?
if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime))
{
if (err_str && err_len > 0)
snprintf(err_str, err_len, "operation timed out");
DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name);
return INVALID_NUB_PROCESS;
}
}
// Call the should cancel callback as well...
if (should_cancel_callback != NULL
&& should_cancel_callback (callback_data))
{
DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback.");
waitfor_pid = INVALID_NUB_PROCESS;
break;
}
::usleep (waitfor_interval); // Sleep for WAITFOR_INTERVAL, then poll again
}
}
if (waitfor_pid != INVALID_NUB_PROCESS)
{
DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid);
waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len);
}
bool success = waitfor_pid != INVALID_NUB_PROCESS;
MachProcess::CleanupAfterAttach (attach_token, success, prepare_error);
return waitfor_pid;
}
nub_bool_t
DNBProcessDetach (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
const bool remove = true;
DNBLogThreaded("Disabling breakpoints and watchpoints, and detaching from %d.", pid);
procSP->DisableAllBreakpoints(remove);
procSP->DisableAllWatchpoints (remove);
return procSP->Detach();
}
return false;
}
nub_bool_t
DNBProcessKill (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->Kill ();
}
return false;
}
nub_bool_t
DNBProcessSignal (nub_process_t pid, int signal)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->Signal (signal);
}
return false;
}
nub_bool_t
DNBProcessInterrupt(nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->Interrupt();
return false;
}
nub_bool_t
DNBProcessSendEvent (nub_process_t pid, const char *event)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
// FIXME: Do something with the error...
DNBError send_error;
return procSP->SendEvent (event, send_error);
}
return false;
}
nub_bool_t
DNBProcessIsAlive (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return MachTask::IsValid (procSP->Task().TaskPort());
}
return eStateInvalid;
}
//----------------------------------------------------------------------
// Process and Thread state information
//----------------------------------------------------------------------
nub_state_t
DNBProcessGetState (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->GetState();
}
return eStateInvalid;
}
//----------------------------------------------------------------------
// Process and Thread state information
//----------------------------------------------------------------------
nub_bool_t
DNBProcessGetExitStatus (nub_process_t pid, int* status)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->GetExitStatus(status);
}
return false;
}
nub_bool_t
DNBProcessSetExitStatus (nub_process_t pid, int status)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
procSP->SetExitStatus(status);
return true;
}
return false;
}
const char *
DNBProcessGetExitInfo (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->GetExitInfo();
}
return NULL;
}
nub_bool_t
DNBProcessSetExitInfo (nub_process_t pid, const char *info)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
procSP->SetExitInfo(info);
return true;
}
return false;
}
const char *
DNBThreadGetName (nub_process_t pid, nub_thread_t tid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->ThreadGetName(tid);
return NULL;
}
nub_bool_t
DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
return false;
}
nub_state_t
DNBThreadGetState (nub_process_t pid, nub_thread_t tid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->ThreadGetState(tid);
}
return eStateInvalid;
}
const char *
DNBStateAsString(nub_state_t state)
{
switch (state)
{
case eStateInvalid: return "Invalid";
case eStateUnloaded: return "Unloaded";
case eStateAttaching: return "Attaching";
case eStateLaunching: return "Launching";
case eStateStopped: return "Stopped";
case eStateRunning: return "Running";
case eStateStepping: return "Stepping";
case eStateCrashed: return "Crashed";
case eStateDetached: return "Detached";
case eStateExited: return "Exited";
case eStateSuspended: return "Suspended";
}
return "nub_state_t ???";
}
Initial merge of some of the iOS 8 / Mac OS X Yosemite specific lldb support. I'll be doing more testing & cleanup but I wanted to get the initial checkin done. This adds a new SBExpressionOptions::SetLanguage API for selecting a language of an expression. I added adds a new SBThread::GetInfoItemByPathString for retriving information about a thread from that thread's StructuredData. I added a new StructuredData class for representing key-value/array/dictionary information (e.g. JSON formatted data). Helper functions to read JSON and create a StructuredData object, and to print a StructuredData object in JSON format are included. A few Cocoa / Cocoa Touch data formatters were updated by Enrico to track changes in iOS 8 / Yosemite. Before we query a thread's extended information, the system runtime may provide hints to the remote debug stub that it will use to retrieve values out of runtime structures. I added a new SystemRuntime method AddThreadExtendedInfoPacketHints which allows the SystemRuntime to add key-value type data to the initial request that we send to the remote stub. The thread-format formatter string can now retrieve values out of a thread's extended info structured data. The default thread-format string picks up two of these - thread.info.activity.name and thread.info.trace_messages. I added a new "jThreadExtendedInfo" packet in debugserver; I will add documentation to the lldb-gdb-remote.txt doc soon. It accepts JSON formatted arguments (most importantly, "thread":threadnum) and it returns a variety of information regarding the thread to lldb in JSON format. This JSON return is scanned into a StructuredData object that is associated with the thread; UI layers can query the thread's StructuredData to see if key-values are present, and if so, show them to the user. These key-values are likely to be specific to different targets with some commonality among many targets. For instance, many targets will be able to advertise the pthread_t value for a thread. I added an initial rough cut of "thread info" command which will print the information about a thread from the jThreadExtendedInfo result. I need to do more work to make this format reasonably. Han Ming added calls into the pmenergy and pmsample libraries if debugserver is run on Mac OS X Yosemite to get information about the inferior's power use. I added support to debugserver for gathering the Genealogy information about threads, if it exists, and returning it in the jThreadExtendedInfo JSON result. llvm-svn: 210874
2014-06-13 10:37:02 +08:00
Genealogy::ThreadActivitySP
DNBGetGenealogyInfoForThread (nub_process_t pid, nub_thread_t tid, bool &timed_out)
{
Genealogy::ThreadActivitySP thread_activity_sp;
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
thread_activity_sp = procSP->GetGenealogyInfoForThread (tid, timed_out);
return thread_activity_sp;
}
Genealogy::ProcessExecutableInfoSP
DNBGetGenealogyImageInfo (nub_process_t pid, size_t idx)
{
Genealogy::ProcessExecutableInfoSP image_info_sp;
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
image_info_sp = procSP->GetGenealogyImageInfo (idx);
}
return image_info_sp;
}
ThreadInfo::QoS
DNBGetRequestedQoSForThread (nub_process_t pid, nub_thread_t tid, nub_addr_t tsd, uint64_t dti_qos_class_index)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->GetRequestedQoS (tid, tsd, dti_qos_class_index);
}
return ThreadInfo::QoS();
}
nub_addr_t
DNBGetPThreadT (nub_process_t pid, nub_thread_t tid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->GetPThreadT (tid);
}
return INVALID_NUB_ADDRESS;
}
nub_addr_t
DNBGetDispatchQueueT (nub_process_t pid, nub_thread_t tid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->GetDispatchQueueT (tid);
}
return INVALID_NUB_ADDRESS;
}
nub_addr_t
DNBGetTSDAddressForThread (nub_process_t pid, nub_thread_t tid, uint64_t plo_pthread_tsd_base_address_offset, uint64_t plo_pthread_tsd_base_offset, uint64_t plo_pthread_tsd_entry_size)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->GetTSDAddressForThread (tid, plo_pthread_tsd_base_address_offset, plo_pthread_tsd_base_offset, plo_pthread_tsd_entry_size);
}
return INVALID_NUB_ADDRESS;
}
const char *
DNBProcessGetExecutablePath (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->Path();
}
return NULL;
}
nub_size_t
DNBProcessGetArgumentCount (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->ArgumentCount();
}
return 0;
}
const char *
DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->ArgumentAtIndex (idx);
}
return NULL;
}
//----------------------------------------------------------------------
// Execution control
//----------------------------------------------------------------------
nub_bool_t
DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions)
{
DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
DNBThreadResumeActions thread_actions (actions, num_actions);
// Below we add a default thread plan just in case one wasn't
// provided so all threads always know what they were supposed to do
if (thread_actions.IsEmpty())
{
// No thread plans were given, so the default it to run all threads
thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
}
else
{
// Some thread plans were given which means anything that wasn't
// specified should remain stopped.
thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
}
return procSP->Resume (thread_actions);
}
return false;
}
nub_bool_t
DNBProcessHalt (nub_process_t pid)
{
DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->Signal (SIGSTOP);
return false;
}
//
//nub_bool_t
//DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
//{
// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step);
// MachProcessSP procSP;
// if (GetProcessSP (pid, procSP))
// {
// return procSP->Resume(tid, step, 0);
// }
// return false;
//}
//
//nub_bool_t
//DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal)
//{
// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
// MachProcessSP procSP;
// if (GetProcessSP (pid, procSP))
// {
// return procSP->Resume(tid, step, signal);
// }
// return false;
//}
nub_event_t
DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout)
{
nub_event_t result = 0;
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
if (wait_for_set)
result = procSP->Events().WaitForSetEvents(event_mask, timeout);
else
result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
}
return result;
}
void
DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
procSP->Events().ResetEvents(event_mask);
}
// Breakpoints
nub_bool_t
DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->CreateBreakpoint(addr, size, hardware) != NULL;
return false;
}
nub_bool_t
DNBBreakpointClear (nub_process_t pid, nub_addr_t addr)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->DisableBreakpoint(addr, true);
return false; // Failed
}
//----------------------------------------------------------------------
// Watchpoints
//----------------------------------------------------------------------
nub_bool_t
DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->CreateWatchpoint(addr, size, watch_flags, hardware) != NULL;
return false;
}
nub_bool_t
DNBWatchpointClear (nub_process_t pid, nub_addr_t addr)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->DisableWatchpoint(addr, true);
return false; // Failed
}
//----------------------------------------------------------------------
// Return the number of supported hardware watchpoints.
//----------------------------------------------------------------------
uint32_t
DNBWatchpointGetNumSupportedHWP (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetNumSupportedHardwareWatchpoints();
return 0;
}
//----------------------------------------------------------------------
// Read memory in the address space of process PID. This call will take
// care of setting and restoring permissions and breaking up the memory
// read into multiple chunks as required.
//
// RETURNS: number of bytes actually read
//----------------------------------------------------------------------
nub_size_t
DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->ReadMemory(addr, size, buf);
return 0;
}
//----------------------------------------------------------------------
// Write memory to the address space of process PID. This call will take
// care of setting and restoring permissions and breaking up the memory
// write into multiple chunks as required.
//
// RETURNS: number of bytes actually written
//----------------------------------------------------------------------
nub_size_t
DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->WriteMemory(addr, size, buf);
return 0;
}
nub_addr_t
DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->Task().AllocateMemory (size, permissions);
return 0;
}
nub_bool_t
DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->Task().DeallocateMemory (addr);
return 0;
}
//----------------------------------------------------------------------
// Find attributes of the memory region that contains ADDR for process PID,
// if possible, and return a string describing those attributes.
//
// Returns 1 if we could find attributes for this region and OUTBUF can
// be sent to the remote debugger.
//
// Returns 0 if we couldn't find the attributes for a region of memory at
// that address and OUTBUF should not be sent.
//
// Returns -1 if this platform cannot look up information about memory regions
// or if we do not yet have a valid launched process.
//
//----------------------------------------------------------------------
int
DNBProcessMemoryRegionInfo (nub_process_t pid, nub_addr_t addr, DNBRegionInfo *region_info)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->Task().GetMemoryRegionInfo (addr, region_info);
return -1;
}
std::string
DNBProcessGetProfileData (nub_process_t pid, DNBProfileDataScanType scanType)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->Task().GetProfileData(scanType);
return std::string("");
}
nub_bool_t
DNBProcessSetEnableAsyncProfiling (nub_process_t pid, nub_bool_t enable, uint64_t interval_usec, DNBProfileDataScanType scan_type)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
procSP->SetEnableAsyncProfiling(enable, interval_usec, scan_type);
return true;
}
return false;
}
//----------------------------------------------------------------------
// Formatted output that uses memory and registers from process and
// thread in place of arguments.
//----------------------------------------------------------------------
nub_size_t
DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format)
{
if (file == NULL)
return 0;
enum printf_flags
{
alternate_form = (1 << 0),
zero_padding = (1 << 1),
negative_field_width = (1 << 2),
blank_space = (1 << 3),
show_sign = (1 << 4),
show_thousands_separator= (1 << 5),
};
enum printf_length_modifiers
{
length_mod_h = (1 << 0),
length_mod_hh = (1 << 1),
length_mod_l = (1 << 2),
length_mod_ll = (1 << 3),
length_mod_L = (1 << 4),
length_mod_j = (1 << 5),
length_mod_t = (1 << 6),
length_mod_z = (1 << 7),
length_mod_q = (1 << 8),
};
nub_addr_t addr = base_addr;
char *end_format = (char*)format + strlen(format);
char *end = NULL; // For strtoXXXX calls;
std::basic_string<uint8_t> buf;
nub_size_t total_bytes_read = 0;
DNBDataRef data;
const char *f;
for (f = format; *f != '\0' && f < end_format; f++)
{
char ch = *f;
switch (ch)
{
case '%':
{
f++; // Skip the '%' character
// int min_field_width = 0;
// int precision = 0;
//uint32_t flags = 0;
uint32_t length_modifiers = 0;
uint32_t byte_size = 0;
uint32_t actual_byte_size = 0;
bool is_string = false;
bool is_register = false;
DNBRegisterValue register_value;
int64_t register_offset = 0;
nub_addr_t register_addr = INVALID_NUB_ADDRESS;
// Create the format string to use for this conversion specification
// so we can remove and mprintf specific flags and formatters.
std::string fprintf_format("%");
// Decode any flags
switch (*f)
{
case '#': fprintf_format += *f++; break; //flags |= alternate_form; break;
case '0': fprintf_format += *f++; break; //flags |= zero_padding; break;
case '-': fprintf_format += *f++; break; //flags |= negative_field_width; break;
case ' ': fprintf_format += *f++; break; //flags |= blank_space; break;
case '+': fprintf_format += *f++; break; //flags |= show_sign; break;
case ',': fprintf_format += *f++; break; //flags |= show_thousands_separator;break;
case '{':
case '[':
{
// We have a register name specification that can take two forms:
// ${regname} or ${regname+offset}
// The action is to read the register value and add the signed offset
// (if any) and use that as the value to format.
// $[regname] or $[regname+offset]
// The action is to read the register value and add the signed offset
// (if any) and use the result as an address to dereference. The size
// of what is dereferenced is specified by the actual byte size that
// follows the minimum field width and precision (see comments below).
switch (*f)
{
case '{':
case '[':
{
char open_scope_ch = *f;
f++;
const char *reg_name = f;
size_t reg_name_length = strcspn(f, "+-}]");
if (reg_name_length > 0)
{
std::string register_name(reg_name, reg_name_length);
f += reg_name_length;
register_offset = strtoll(f, &end, 0);
if (f < end)
f = end;
if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']'))
{
fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n");
return total_bytes_read;
}
else
{
f++;
if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), &register_value))
{
// Set the address to dereference using the register value plus the offset
switch (register_value.info.size)
{
default:
case 0:
fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size);
return total_bytes_read;
case 1: register_addr = register_value.value.uint8 + register_offset; break;
case 2: register_addr = register_value.value.uint16 + register_offset; break;
case 4: register_addr = register_value.value.uint32 + register_offset; break;
case 8: register_addr = register_value.value.uint64 + register_offset; break;
case 16:
if (open_scope_ch == '[')
{
fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size);
return total_bytes_read;
}
break;
}
if (open_scope_ch == '{')
{
byte_size = register_value.info.size;
is_register = true; // value is in a register
}
else
{
addr = register_addr; // Use register value and offset as the address
}
}
else
{
fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.8" PRIx64 "\n", register_name.c_str(), pid, tid);
return total_bytes_read;
}
}
}
}
break;
default:
fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n");
return total_bytes_read;
}
}
break;
}
// Check for a minimum field width
if (isdigit(*f))
{
//min_field_width = strtoul(f, &end, 10);
strtoul(f, &end, 10);
if (end > f)
{
fprintf_format.append(f, end - f);
f = end;
}
}
// Check for a precision
if (*f == '.')
{
f++;
if (isdigit(*f))
{
fprintf_format += '.';
//precision = strtoul(f, &end, 10);
strtoul(f, &end, 10);
if (end > f)
{
fprintf_format.append(f, end - f);
f = end;
}
}
}
// mprintf specific: read the optional actual byte size (abs)
// after the standard minimum field width (mfw) and precision (prec).
// Standard printf calls you can have "mfw.prec" or ".prec", but
// mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice
// for strings that may be in a fixed size buffer, but may not use all bytes
// in that buffer for printable characters.
if (*f == '.')
{
f++;
actual_byte_size = strtoul(f, &end, 10);
if (end > f)
{
byte_size = actual_byte_size;
f = end;
}
}
// Decode the length modifiers
switch (*f)
{
case 'h': // h and hh length modifiers
fprintf_format += *f++;
length_modifiers |= length_mod_h;
if (*f == 'h')
{
fprintf_format += *f++;
length_modifiers |= length_mod_hh;
}
break;
case 'l': // l and ll length modifiers
fprintf_format += *f++;
length_modifiers |= length_mod_l;
if (*f == 'h')
{
fprintf_format += *f++;
length_modifiers |= length_mod_ll;
}
break;
case 'L': fprintf_format += *f++; length_modifiers |= length_mod_L; break;
case 'j': fprintf_format += *f++; length_modifiers |= length_mod_j; break;
case 't': fprintf_format += *f++; length_modifiers |= length_mod_t; break;
case 'z': fprintf_format += *f++; length_modifiers |= length_mod_z; break;
case 'q': fprintf_format += *f++; length_modifiers |= length_mod_q; break;
}
// Decode the conversion specifier
switch (*f)
{
case '_':
// mprintf specific format items
{
++f; // Skip the '_' character
switch (*f)
{
case 'a': // Print the current address
++f;
fprintf_format += "ll";
2014-07-09 02:05:41 +08:00
fprintf_format += *f; // actual format to show address with follows the 'a' ("%_ax")
fprintf (file, fprintf_format.c_str(), addr);
break;
case 'o': // offset from base address
++f;
fprintf_format += "ll";
2014-07-09 02:05:41 +08:00
fprintf_format += *f; // actual format to show address with follows the 'a' ("%_ox")
fprintf(file, fprintf_format.c_str(), addr - base_addr);
break;
default:
fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f);
break;
}
continue;
}
break;
case 'D':
case 'O':
case 'U':
fprintf_format += *f;
if (byte_size == 0)
byte_size = sizeof(long int);
break;
case 'd':
case 'i':
case 'o':
case 'u':
case 'x':
case 'X':
fprintf_format += *f;
if (byte_size == 0)
{
if (length_modifiers & length_mod_hh)
byte_size = sizeof(char);
else if (length_modifiers & length_mod_h)
byte_size = sizeof(short);
else if (length_modifiers & length_mod_ll)
byte_size = sizeof(long long);
else if (length_modifiers & length_mod_l)
byte_size = sizeof(long);
else
byte_size = sizeof(int);
}
break;
case 'a':
case 'A':
case 'f':
case 'F':
case 'e':
case 'E':
case 'g':
case 'G':
fprintf_format += *f;
if (byte_size == 0)
{
if (length_modifiers & length_mod_L)
byte_size = sizeof(long double);
else
byte_size = sizeof(double);
}
break;
case 'c':
if ((length_modifiers & length_mod_l) == 0)
{
fprintf_format += *f;
if (byte_size == 0)
byte_size = sizeof(char);
break;
}
// Fall through to 'C' modifier below...
case 'C':
fprintf_format += *f;
if (byte_size == 0)
byte_size = sizeof(wchar_t);
break;
case 's':
fprintf_format += *f;
if (is_register || byte_size == 0)
is_string = 1;
break;
case 'p':
fprintf_format += *f;
if (byte_size == 0)
byte_size = sizeof(void*);
break;
}
if (is_string)
{
std::string mem_string;
const size_t string_buf_len = 4;
char string_buf[string_buf_len+1];
char *string_buf_end = string_buf + string_buf_len;
string_buf[string_buf_len] = '\0';
nub_size_t bytes_read;
nub_addr_t str_addr = is_register ? register_addr : addr;
while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0)
{
// Did we get a NULL termination character yet?
if (strchr(string_buf, '\0') == string_buf_end)
{
// no NULL terminator yet, append as a std::string
mem_string.append(string_buf, string_buf_len);
str_addr += string_buf_len;
}
else
{
// yep
break;
}
}
// Append as a C-string so we don't get the extra NULL
// characters in the temp buffer (since it was resized)
mem_string += string_buf;
size_t mem_string_len = mem_string.size() + 1;
fprintf(file, fprintf_format.c_str(), mem_string.c_str());
if (mem_string_len > 0)
{
if (!is_register)
{
addr += mem_string_len;
total_bytes_read += mem_string_len;
}
}
else
return total_bytes_read;
}
else
if (byte_size > 0)
{
buf.resize(byte_size);
nub_size_t bytes_read = 0;
if (is_register)
bytes_read = register_value.info.size;
else
bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]);
if (bytes_read > 0)
{
if (!is_register)
total_bytes_read += bytes_read;
if (bytes_read == byte_size)
{
switch (*f)
{
case 'd':
case 'i':
case 'o':
case 'u':
case 'X':
case 'x':
case 'a':
case 'A':
case 'f':
case 'F':
case 'e':
case 'E':
case 'g':
case 'G':
case 'p':
case 'c':
case 'C':
{
if (is_register)
data.SetData(&register_value.value.v_uint8[0], register_value.info.size);
else
data.SetData(&buf[0], bytes_read);
DNBDataRef::offset_t data_offset = 0;
if (byte_size <= 4)
{
uint32_t u32 = data.GetMax32(&data_offset, byte_size);
// Show the actual byte width when displaying hex
fprintf(file, fprintf_format.c_str(), u32);
}
else if (byte_size <= 8)
{
uint64_t u64 = data.GetMax64(&data_offset, byte_size);
// Show the actual byte width when displaying hex
fprintf(file, fprintf_format.c_str(), u64);
}
else
{
fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size);
}
if (!is_register)
addr += byte_size;
}
break;
case 's':
fprintf(file, fprintf_format.c_str(), buf.c_str());
addr += byte_size;
break;
default:
fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f);
break;
}
}
}
}
else
return total_bytes_read;
}
break;
case '\\':
{
f++;
switch (*f)
{
case 'e': ch = '\e'; break;
case 'a': ch = '\a'; break;
case 'b': ch = '\b'; break;
case 'f': ch = '\f'; break;
case 'n': ch = '\n'; break;
case 'r': ch = '\r'; break;
case 't': ch = '\t'; break;
case 'v': ch = '\v'; break;
case '\'': ch = '\''; break;
case '\\': ch = '\\'; break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
ch = strtoul(f, &end, 8);
f = end;
break;
default:
ch = *f;
break;
}
fputc(ch, file);
}
break;
default:
fputc(ch, file);
break;
}
}
return total_bytes_read;
}
//----------------------------------------------------------------------
// Get the number of threads for the specified process.
//----------------------------------------------------------------------
nub_size_t
DNBProcessGetNumThreads (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetNumThreads();
return 0;
}
//----------------------------------------------------------------------
// Get the thread ID of the current thread.
//----------------------------------------------------------------------
nub_thread_t
DNBProcessGetCurrentThread (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetCurrentThread();
return 0;
}
//----------------------------------------------------------------------
// Get the mach port number of the current thread.
//----------------------------------------------------------------------
nub_thread_t
DNBProcessGetCurrentThreadMachPort (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetCurrentThreadMachPort();
return 0;
}
//----------------------------------------------------------------------
// Change the current thread.
//----------------------------------------------------------------------
nub_thread_t
DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->SetCurrentThread (tid);
return INVALID_NUB_THREAD;
}
//----------------------------------------------------------------------
// Dump a string describing a thread's stop reason to the specified file
// handle
//----------------------------------------------------------------------
nub_bool_t
DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetThreadStoppedReason (tid, stop_info);
return false;
}
//----------------------------------------------------------------------
// Return string description for the specified thread.
//
// RETURNS: NULL if the thread isn't valid, else a NULL terminated C
// string from a static buffer that must be copied prior to subsequent
// calls.
//----------------------------------------------------------------------
const char *
DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetThreadInfo (tid);
return NULL;
}
//----------------------------------------------------------------------
// Get the thread ID given a thread index.
//----------------------------------------------------------------------
nub_thread_t
DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetThreadAtIndex (thread_idx);
return INVALID_NUB_THREAD;
}
//----------------------------------------------------------------------
// Do whatever is needed to sync the thread's register state with it's kernel values.
//----------------------------------------------------------------------
nub_bool_t
DNBProcessSyncThreadState (nub_process_t pid, nub_thread_t tid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->SyncThreadState (tid);
return false;
}
nub_addr_t
DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid)
{
MachProcessSP procSP;
DNBError err;
if (GetProcessSP (pid, procSP))
return procSP->Task().GetDYLDAllImageInfosAddress (err);
return INVALID_NUB_ADDRESS;
}
nub_bool_t
DNBProcessSharedLibrariesUpdated(nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
procSP->SharedLibrariesUpdated ();
return true;
}
return false;
}
//----------------------------------------------------------------------
// Get the current shared library information for a process. Only return
// the shared libraries that have changed since the last shared library
// state changed event if only_changed is non-zero.
//----------------------------------------------------------------------
nub_size_t
DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->CopyImageInfos (image_infos, only_changed);
// If we have no process, then return NULL for the shared library info
// and zero for shared library count
*image_infos = NULL;
return 0;
}
//----------------------------------------------------------------------
// Get the register set information for a specific thread.
//----------------------------------------------------------------------
const DNBRegisterSetInfo *
DNBGetRegisterSetInfo (nub_size_t *num_reg_sets)
{
2010-11-18 13:57:03 +08:00
return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets);
}
//----------------------------------------------------------------------
// Read a register value by register set and register index.
//----------------------------------------------------------------------
nub_bool_t
DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value)
{
MachProcessSP procSP;
::bzero (value, sizeof(DNBRegisterValue));
if (GetProcessSP (pid, procSP))
{
if (tid != INVALID_NUB_THREAD)
return procSP->GetRegisterValue (tid, set, reg, value);
}
return false;
}
nub_bool_t
DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value)
{
if (tid != INVALID_NUB_THREAD)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->SetRegisterValue (tid, set, reg, value);
}
return false;
}
nub_size_t
DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
if (tid != INVALID_NUB_THREAD)
return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len);
}
::bzero (buf, buf_len);
return 0;
}
nub_size_t
DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
if (tid != INVALID_NUB_THREAD)
return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len);
}
return 0;
}
uint32_t
DNBThreadSaveRegisterState (nub_process_t pid, nub_thread_t tid)
{
if (tid != INVALID_NUB_THREAD)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetThreadList().SaveRegisterState (tid);
}
return 0;
}
nub_bool_t
DNBThreadRestoreRegisterState (nub_process_t pid, nub_thread_t tid, uint32_t save_id)
{
if (tid != INVALID_NUB_THREAD)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetThreadList().RestoreRegisterState (tid, save_id);
}
return false;
}
//----------------------------------------------------------------------
// Read a register value by name.
//----------------------------------------------------------------------
nub_bool_t
DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value)
{
MachProcessSP procSP;
::bzero (value, sizeof(DNBRegisterValue));
if (GetProcessSP (pid, procSP))
{
const struct DNBRegisterSetInfo *set_info;
nub_size_t num_reg_sets = 0;
set_info = DNBGetRegisterSetInfo (&num_reg_sets);
if (set_info)
{
uint32_t set = reg_set;
uint32_t reg;
if (set == REGISTER_SET_ALL)
{
for (set = 1; set < num_reg_sets; ++set)
{
for (reg = 0; reg < set_info[set].num_registers; ++reg)
{
if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
return procSP->GetRegisterValue (tid, set, reg, value);
}
}
}
else
{
for (reg = 0; reg < set_info[set].num_registers; ++reg)
{
if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
return procSP->GetRegisterValue (tid, set, reg, value);
}
}
}
}
return false;
}
//----------------------------------------------------------------------
// Read a register set and register number from the register name.
//----------------------------------------------------------------------
nub_bool_t
DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info)
{
const struct DNBRegisterSetInfo *set_info;
nub_size_t num_reg_sets = 0;
set_info = DNBGetRegisterSetInfo (&num_reg_sets);
if (set_info)
{
uint32_t set, reg;
for (set = 1; set < num_reg_sets; ++set)
{
for (reg = 0; reg < set_info[set].num_registers; ++reg)
{
if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
{
*info = set_info[set].registers[reg];
return true;
}
}
}
for (set = 1; set < num_reg_sets; ++set)
{
uint32_t reg;
for (reg = 0; reg < set_info[set].num_registers; ++reg)
{
if (set_info[set].registers[reg].alt == NULL)
continue;
if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0)
{
*info = set_info[set].registers[reg];
return true;
}
}
}
}
::bzero (info, sizeof(DNBRegisterInfo));
return false;
}
//----------------------------------------------------------------------
// Set the name to address callback function that this nub can use
// for any name to address lookups that are needed.
//----------------------------------------------------------------------
nub_bool_t
DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
procSP->SetNameToAddressCallback (callback, baton);
return true;
}
return false;
}
//----------------------------------------------------------------------
// Set the name to address callback function that this nub can use
// for any name to address lookups that are needed.
//----------------------------------------------------------------------
nub_bool_t
DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void *baton)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
procSP->SetSharedLibraryInfoCallback (callback, baton);
return true;
}
return false;
}
nub_addr_t
DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
{
return procSP->LookupSymbol (name, shlib);
}
return INVALID_NUB_ADDRESS;
}
nub_size_t
DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetAvailableSTDOUT (buf, buf_size);
return 0;
}
nub_size_t
DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetAvailableSTDERR (buf, buf_size);
return 0;
}
nub_size_t
DNBProcessGetAvailableProfileData (nub_process_t pid, char *buf, nub_size_t buf_size)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetAsyncProfileData (buf, buf_size);
return 0;
}
nub_size_t
DNBProcessGetStopCount (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->StopCount();
return 0;
}
uint32_t
DNBProcessGetCPUType (nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->GetCPUType ();
return 0;
}
nub_bool_t
DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size)
{
if (path == NULL || path[0] == '\0')
return false;
char max_path[PATH_MAX];
std::string result;
CFString::GlobPath(path, result);
if (result.empty())
result = path;
struct stat path_stat;
if (::stat(path, &path_stat) == 0)
{
if ((path_stat.st_mode & S_IFMT) == S_IFDIR)
{
CFBundle bundle (path);
CFReleaser<CFURLRef> url(bundle.CopyExecutableURL ());
if (url.get())
{
if (::CFURLGetFileSystemRepresentation (url.get(), true, (UInt8*)resolved_path, resolved_path_size))
return true;
}
}
}
if (realpath(path, max_path))
{
// Found the path relatively...
::strncpy(resolved_path, max_path, resolved_path_size);
return strlen(resolved_path) + 1 < resolved_path_size;
}
else
{
// Not a relative path, check the PATH environment variable if the
const char *PATH = getenv("PATH");
if (PATH)
{
const char *curr_path_start = PATH;
const char *curr_path_end;
while (curr_path_start && *curr_path_start)
{
curr_path_end = strchr(curr_path_start, ':');
if (curr_path_end == NULL)
{
result.assign(curr_path_start);
curr_path_start = NULL;
}
else if (curr_path_end > curr_path_start)
{
size_t len = curr_path_end - curr_path_start;
result.assign(curr_path_start, len);
curr_path_start += len + 1;
}
else
break;
result += '/';
result += path;
struct stat s;
if (stat(result.c_str(), &s) == 0)
{
::strncpy(resolved_path, result.c_str(), resolved_path_size);
return result.size() + 1 < resolved_path_size;
}
}
}
}
return false;
}
2010-11-18 13:57:03 +08:00
void
DNBInitialize()
{
DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()");
#if defined (__i386__) || defined (__x86_64__)
DNBArchImplI386::Initialize();
DNBArchImplX86_64::Initialize();
#elif defined (__arm__) || defined (__arm64__) || defined (__aarch64__)
2010-11-18 13:57:03 +08:00
DNBArchMachARM::Initialize();
DNBArchMachARM64::Initialize();
2010-11-18 13:57:03 +08:00
#endif
}
void
DNBTerminate()
{
}
nub_bool_t
DNBSetArchitecture (const char *arch)
{
if (arch && arch[0])
{
if (strcasecmp (arch, "i386") == 0)
return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386);
else if ((strcasecmp (arch, "x86_64") == 0) || (strcasecmp (arch, "x86_64h") == 0))
return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64);
else if (strstr (arch, "arm64") == arch || strstr (arch, "armv8") == arch || strstr (arch, "aarch64") == arch)
return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM64);
else if (strstr (arch, "arm") == arch)
return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM);
}
return false;
}