llvm-project/clang/lib/Frontend/PCHReader.cpp

1654 lines
55 KiB
C++
Raw Normal View History

//===--- PCHReader.cpp - Precompiled Headers Reader -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PCHReader class, which reads a precompiled header.
//
//===----------------------------------------------------------------------===//
#include "clang/Frontend/PCHReader.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/Expr.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceManagerInternals.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Bitcode/BitstreamReader.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MemoryBuffer.h"
#include <algorithm>
#include <cstdio>
using namespace clang;
//===----------------------------------------------------------------------===//
// Declaration deserialization
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN PCHDeclReader {
PCHReader &Reader;
const PCHReader::RecordData &Record;
unsigned &Idx;
public:
PCHDeclReader(PCHReader &Reader, const PCHReader::RecordData &Record,
unsigned &Idx)
: Reader(Reader), Record(Record), Idx(Idx) { }
void VisitDecl(Decl *D);
void VisitTranslationUnitDecl(TranslationUnitDecl *TU);
void VisitNamedDecl(NamedDecl *ND);
void VisitTypeDecl(TypeDecl *TD);
void VisitTypedefDecl(TypedefDecl *TD);
void VisitTagDecl(TagDecl *TD);
void VisitEnumDecl(EnumDecl *ED);
void VisitRecordDecl(RecordDecl *RD);
void VisitValueDecl(ValueDecl *VD);
void VisitEnumConstantDecl(EnumConstantDecl *ECD);
void VisitFunctionDecl(FunctionDecl *FD);
void VisitFieldDecl(FieldDecl *FD);
void VisitVarDecl(VarDecl *VD);
void VisitParmVarDecl(ParmVarDecl *PD);
void VisitOriginalParmVarDecl(OriginalParmVarDecl *PD);
void VisitFileScopeAsmDecl(FileScopeAsmDecl *AD);
void VisitBlockDecl(BlockDecl *BD);
std::pair<uint64_t, uint64_t> VisitDeclContext(DeclContext *DC);
};
}
void PCHDeclReader::VisitDecl(Decl *D) {
D->setDeclContext(cast_or_null<DeclContext>(Reader.GetDecl(Record[Idx++])));
D->setLexicalDeclContext(
cast_or_null<DeclContext>(Reader.GetDecl(Record[Idx++])));
D->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++]));
D->setInvalidDecl(Record[Idx++]);
// FIXME: hasAttrs
D->setImplicit(Record[Idx++]);
D->setAccess((AccessSpecifier)Record[Idx++]);
}
void PCHDeclReader::VisitTranslationUnitDecl(TranslationUnitDecl *TU) {
VisitDecl(TU);
}
void PCHDeclReader::VisitNamedDecl(NamedDecl *ND) {
VisitDecl(ND);
ND->setDeclName(Reader.ReadDeclarationName(Record, Idx));
}
void PCHDeclReader::VisitTypeDecl(TypeDecl *TD) {
VisitNamedDecl(TD);
TD->setTypeForDecl(Reader.GetType(Record[Idx++]).getTypePtr());
}
void PCHDeclReader::VisitTypedefDecl(TypedefDecl *TD) {
// Note that we cannot use VisitTypeDecl here, because we need to
// set the underlying type of the typedef *before* we try to read
// the type associated with the TypedefDecl.
VisitNamedDecl(TD);
TD->setUnderlyingType(Reader.GetType(Record[Idx + 1]));
TD->setTypeForDecl(Reader.GetType(Record[Idx]).getTypePtr());
Idx += 2;
}
void PCHDeclReader::VisitTagDecl(TagDecl *TD) {
VisitTypeDecl(TD);
TD->setTagKind((TagDecl::TagKind)Record[Idx++]);
TD->setDefinition(Record[Idx++]);
TD->setTypedefForAnonDecl(
cast_or_null<TypedefDecl>(Reader.GetDecl(Record[Idx++])));
}
void PCHDeclReader::VisitEnumDecl(EnumDecl *ED) {
VisitTagDecl(ED);
ED->setIntegerType(Reader.GetType(Record[Idx++]));
}
void PCHDeclReader::VisitRecordDecl(RecordDecl *RD) {
VisitTagDecl(RD);
RD->setHasFlexibleArrayMember(Record[Idx++]);
RD->setAnonymousStructOrUnion(Record[Idx++]);
}
void PCHDeclReader::VisitValueDecl(ValueDecl *VD) {
VisitNamedDecl(VD);
VD->setType(Reader.GetType(Record[Idx++]));
}
void PCHDeclReader::VisitEnumConstantDecl(EnumConstantDecl *ECD) {
VisitValueDecl(ECD);
if (Record[Idx++])
ECD->setInitExpr(Reader.ReadExpr());
ECD->setInitVal(Reader.ReadAPSInt(Record, Idx));
}
void PCHDeclReader::VisitFunctionDecl(FunctionDecl *FD) {
VisitValueDecl(FD);
// FIXME: function body
FD->setPreviousDeclaration(
cast_or_null<FunctionDecl>(Reader.GetDecl(Record[Idx++])));
FD->setStorageClass((FunctionDecl::StorageClass)Record[Idx++]);
FD->setInline(Record[Idx++]);
FD->setVirtual(Record[Idx++]);
FD->setPure(Record[Idx++]);
FD->setInheritedPrototype(Record[Idx++]);
FD->setHasPrototype(Record[Idx++]);
FD->setDeleted(Record[Idx++]);
FD->setTypeSpecStartLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
unsigned NumParams = Record[Idx++];
llvm::SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(cast<ParmVarDecl>(Reader.GetDecl(Record[Idx++])));
FD->setParams(Reader.getContext(), &Params[0], NumParams);
}
void PCHDeclReader::VisitFieldDecl(FieldDecl *FD) {
VisitValueDecl(FD);
FD->setMutable(Record[Idx++]);
if (Record[Idx++])
FD->setBitWidth(Reader.ReadExpr());
}
void PCHDeclReader::VisitVarDecl(VarDecl *VD) {
VisitValueDecl(VD);
VD->setStorageClass((VarDecl::StorageClass)Record[Idx++]);
VD->setThreadSpecified(Record[Idx++]);
VD->setCXXDirectInitializer(Record[Idx++]);
VD->setDeclaredInCondition(Record[Idx++]);
VD->setPreviousDeclaration(
cast_or_null<VarDecl>(Reader.GetDecl(Record[Idx++])));
VD->setTypeSpecStartLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
if (Record[Idx++])
VD->setInit(Reader.ReadExpr());
}
void PCHDeclReader::VisitParmVarDecl(ParmVarDecl *PD) {
VisitVarDecl(PD);
PD->setObjCDeclQualifier((Decl::ObjCDeclQualifier)Record[Idx++]);
// FIXME: default argument
}
void PCHDeclReader::VisitOriginalParmVarDecl(OriginalParmVarDecl *PD) {
VisitParmVarDecl(PD);
PD->setOriginalType(Reader.GetType(Record[Idx++]));
}
void PCHDeclReader::VisitFileScopeAsmDecl(FileScopeAsmDecl *AD) {
VisitDecl(AD);
// FIXME: read asm string
}
void PCHDeclReader::VisitBlockDecl(BlockDecl *BD) {
VisitDecl(BD);
unsigned NumParams = Record[Idx++];
llvm::SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(cast<ParmVarDecl>(Reader.GetDecl(Record[Idx++])));
BD->setParams(Reader.getContext(), &Params[0], NumParams);
}
std::pair<uint64_t, uint64_t>
PCHDeclReader::VisitDeclContext(DeclContext *DC) {
uint64_t LexicalOffset = Record[Idx++];
uint64_t VisibleOffset = 0;
if (DC->getPrimaryContext() == DC)
VisibleOffset = Record[Idx++];
return std::make_pair(LexicalOffset, VisibleOffset);
}
//===----------------------------------------------------------------------===//
// Statement/expression deserialization
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN PCHStmtReader
: public StmtVisitor<PCHStmtReader, unsigned> {
PCHReader &Reader;
const PCHReader::RecordData &Record;
unsigned &Idx;
llvm::SmallVectorImpl<Expr *> &ExprStack;
public:
PCHStmtReader(PCHReader &Reader, const PCHReader::RecordData &Record,
unsigned &Idx, llvm::SmallVectorImpl<Expr *> &ExprStack)
: Reader(Reader), Record(Record), Idx(Idx), ExprStack(ExprStack) { }
// Each of the Visit* functions reads in part of the expression
// from the given record and the current expression stack, then
// return the total number of operands that it read from the
// expression stack.
unsigned VisitExpr(Expr *E);
unsigned VisitPredefinedExpr(PredefinedExpr *E);
unsigned VisitDeclRefExpr(DeclRefExpr *E);
unsigned VisitIntegerLiteral(IntegerLiteral *E);
unsigned VisitFloatingLiteral(FloatingLiteral *E);
unsigned VisitCharacterLiteral(CharacterLiteral *E);
unsigned VisitParenExpr(ParenExpr *E);
unsigned VisitCastExpr(CastExpr *E);
unsigned VisitImplicitCastExpr(ImplicitCastExpr *E);
};
}
unsigned PCHStmtReader::VisitExpr(Expr *E) {
E->setType(Reader.GetType(Record[Idx++]));
E->setTypeDependent(Record[Idx++]);
E->setValueDependent(Record[Idx++]);
return 0;
}
unsigned PCHStmtReader::VisitPredefinedExpr(PredefinedExpr *E) {
VisitExpr(E);
E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++]));
E->setIdentType((PredefinedExpr::IdentType)Record[Idx++]);
return 0;
}
unsigned PCHStmtReader::VisitDeclRefExpr(DeclRefExpr *E) {
VisitExpr(E);
E->setDecl(cast<NamedDecl>(Reader.GetDecl(Record[Idx++])));
E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++]));
return 0;
}
unsigned PCHStmtReader::VisitIntegerLiteral(IntegerLiteral *E) {
VisitExpr(E);
E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++]));
E->setValue(Reader.ReadAPInt(Record, Idx));
return 0;
}
unsigned PCHStmtReader::VisitFloatingLiteral(FloatingLiteral *E) {
VisitExpr(E);
E->setValue(Reader.ReadAPFloat(Record, Idx));
E->setExact(Record[Idx++]);
E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++]));
return 0;
}
unsigned PCHStmtReader::VisitCharacterLiteral(CharacterLiteral *E) {
VisitExpr(E);
E->setValue(Record[Idx++]);
E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++]));
E->setWide(Record[Idx++]);
return 0;
}
unsigned PCHStmtReader::VisitParenExpr(ParenExpr *E) {
VisitExpr(E);
E->setLParen(SourceLocation::getFromRawEncoding(Record[Idx++]));
E->setRParen(SourceLocation::getFromRawEncoding(Record[Idx++]));
E->setSubExpr(ExprStack.back());
return 1;
}
unsigned PCHStmtReader::VisitCastExpr(CastExpr *E) {
VisitExpr(E);
E->setSubExpr(ExprStack.back());
return 1;
}
unsigned PCHStmtReader::VisitImplicitCastExpr(ImplicitCastExpr *E) {
VisitCastExpr(E);
E->setLvalueCast(Record[Idx++]);
return 1;
}
// FIXME: use the diagnostics machinery
static bool Error(const char *Str) {
std::fprintf(stderr, "%s\n", Str);
return true;
}
/// \brief Check the contents of the predefines buffer against the
/// contents of the predefines buffer used to build the PCH file.
///
/// The contents of the two predefines buffers should be the same. If
/// not, then some command-line option changed the preprocessor state
/// and we must reject the PCH file.
///
/// \param PCHPredef The start of the predefines buffer in the PCH
/// file.
///
/// \param PCHPredefLen The length of the predefines buffer in the PCH
/// file.
///
/// \param PCHBufferID The FileID for the PCH predefines buffer.
///
/// \returns true if there was a mismatch (in which case the PCH file
/// should be ignored), or false otherwise.
bool PCHReader::CheckPredefinesBuffer(const char *PCHPredef,
unsigned PCHPredefLen,
FileID PCHBufferID) {
const char *Predef = PP.getPredefines().c_str();
unsigned PredefLen = PP.getPredefines().size();
// If the two predefines buffers compare equal, we're done!.
if (PredefLen == PCHPredefLen &&
strncmp(Predef, PCHPredef, PCHPredefLen) == 0)
return false;
// The predefines buffers are different. Produce a reasonable
// diagnostic showing where they are different.
// The source locations (potentially in the two different predefines
// buffers)
SourceLocation Loc1, Loc2;
SourceManager &SourceMgr = PP.getSourceManager();
// Create a source buffer for our predefines string, so
// that we can build a diagnostic that points into that
// source buffer.
FileID BufferID;
if (Predef && Predef[0]) {
llvm::MemoryBuffer *Buffer
= llvm::MemoryBuffer::getMemBuffer(Predef, Predef + PredefLen,
"<built-in>");
BufferID = SourceMgr.createFileIDForMemBuffer(Buffer);
}
unsigned MinLen = std::min(PredefLen, PCHPredefLen);
std::pair<const char *, const char *> Locations
= std::mismatch(Predef, Predef + MinLen, PCHPredef);
if (Locations.first != Predef + MinLen) {
// We found the location in the two buffers where there is a
// difference. Form source locations to point there (in both
// buffers).
unsigned Offset = Locations.first - Predef;
Loc1 = SourceMgr.getLocForStartOfFile(BufferID)
.getFileLocWithOffset(Offset);
Loc2 = SourceMgr.getLocForStartOfFile(PCHBufferID)
.getFileLocWithOffset(Offset);
} else if (PredefLen > PCHPredefLen) {
Loc1 = SourceMgr.getLocForStartOfFile(BufferID)
.getFileLocWithOffset(MinLen);
} else {
Loc1 = SourceMgr.getLocForStartOfFile(PCHBufferID)
.getFileLocWithOffset(MinLen);
}
Diag(Loc1, diag::warn_pch_preprocessor);
if (Loc2.isValid())
Diag(Loc2, diag::note_predef_in_pch);
Diag(diag::note_ignoring_pch) << FileName;
return true;
}
/// \brief Read the line table in the source manager block.
/// \returns true if ther was an error.
static bool ParseLineTable(SourceManager &SourceMgr,
llvm::SmallVectorImpl<uint64_t> &Record) {
unsigned Idx = 0;
LineTableInfo &LineTable = SourceMgr.getLineTable();
// Parse the file names
std::map<int, int> FileIDs;
for (int I = 0, N = Record[Idx++]; I != N; ++I) {
// Extract the file name
unsigned FilenameLen = Record[Idx++];
std::string Filename(&Record[Idx], &Record[Idx] + FilenameLen);
Idx += FilenameLen;
FileIDs[I] = LineTable.getLineTableFilenameID(Filename.c_str(),
Filename.size());
}
// Parse the line entries
std::vector<LineEntry> Entries;
while (Idx < Record.size()) {
int FID = FileIDs[Record[Idx++]];
// Extract the line entries
unsigned NumEntries = Record[Idx++];
Entries.clear();
Entries.reserve(NumEntries);
for (unsigned I = 0; I != NumEntries; ++I) {
unsigned FileOffset = Record[Idx++];
unsigned LineNo = Record[Idx++];
int FilenameID = Record[Idx++];
SrcMgr::CharacteristicKind FileKind
= (SrcMgr::CharacteristicKind)Record[Idx++];
unsigned IncludeOffset = Record[Idx++];
Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID,
FileKind, IncludeOffset));
}
LineTable.AddEntry(FID, Entries);
}
return false;
}
/// \brief Read the source manager block
PCHReader::PCHReadResult PCHReader::ReadSourceManagerBlock() {
using namespace SrcMgr;
if (Stream.EnterSubBlock(pch::SOURCE_MANAGER_BLOCK_ID)) {
Error("Malformed source manager block record");
return Failure;
}
SourceManager &SourceMgr = Context.getSourceManager();
RecordData Record;
while (true) {
unsigned Code = Stream.ReadCode();
if (Code == llvm::bitc::END_BLOCK) {
if (Stream.ReadBlockEnd()) {
Error("Error at end of Source Manager block");
return Failure;
}
return Success;
}
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock()) {
Error("Malformed block record");
return Failure;
}
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
const char *BlobStart;
unsigned BlobLen;
Record.clear();
switch (Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)) {
default: // Default behavior: ignore.
break;
case pch::SM_SLOC_FILE_ENTRY: {
// FIXME: We would really like to delay the creation of this
// FileEntry until it is actually required, e.g., when producing
// a diagnostic with a source location in this file.
const FileEntry *File
= PP.getFileManager().getFile(BlobStart, BlobStart + BlobLen);
// FIXME: Error recovery if file cannot be found.
FileID ID = SourceMgr.createFileID(File,
SourceLocation::getFromRawEncoding(Record[1]),
(CharacteristicKind)Record[2]);
if (Record[3])
const_cast<SrcMgr::FileInfo&>(SourceMgr.getSLocEntry(ID).getFile())
.setHasLineDirectives();
break;
}
case pch::SM_SLOC_BUFFER_ENTRY: {
const char *Name = BlobStart;
unsigned Code = Stream.ReadCode();
Record.clear();
unsigned RecCode = Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen);
assert(RecCode == pch::SM_SLOC_BUFFER_BLOB && "Ill-formed PCH file");
llvm::MemoryBuffer *Buffer
= llvm::MemoryBuffer::getMemBuffer(BlobStart,
BlobStart + BlobLen - 1,
Name);
FileID BufferID = SourceMgr.createFileIDForMemBuffer(Buffer);
if (strcmp(Name, "<built-in>") == 0
&& CheckPredefinesBuffer(BlobStart, BlobLen - 1, BufferID))
return IgnorePCH;
break;
}
case pch::SM_SLOC_INSTANTIATION_ENTRY: {
SourceLocation SpellingLoc
= SourceLocation::getFromRawEncoding(Record[1]);
SourceMgr.createInstantiationLoc(
SpellingLoc,
SourceLocation::getFromRawEncoding(Record[2]),
SourceLocation::getFromRawEncoding(Record[3]),
Lexer::MeasureTokenLength(SpellingLoc,
SourceMgr,
PP.getLangOptions()));
break;
}
case pch::SM_LINE_TABLE:
if (ParseLineTable(SourceMgr, Record))
return Failure;
break;
}
}
}
bool PCHReader::ReadPreprocessorBlock() {
if (Stream.EnterSubBlock(pch::PREPROCESSOR_BLOCK_ID))
return Error("Malformed preprocessor block record");
RecordData Record;
llvm::SmallVector<IdentifierInfo*, 16> MacroArgs;
MacroInfo *LastMacro = 0;
while (true) {
unsigned Code = Stream.ReadCode();
switch (Code) {
case llvm::bitc::END_BLOCK:
if (Stream.ReadBlockEnd())
return Error("Error at end of preprocessor block");
return false;
case llvm::bitc::ENTER_SUBBLOCK:
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
case llvm::bitc::DEFINE_ABBREV:
Stream.ReadAbbrevRecord();
continue;
default: break;
}
// Read a record.
Record.clear();
pch::PreprocessorRecordTypes RecType =
(pch::PreprocessorRecordTypes)Stream.ReadRecord(Code, Record);
switch (RecType) {
default: // Default behavior: ignore unknown records.
break;
case pch::PP_COUNTER_VALUE:
if (!Record.empty())
PP.setCounterValue(Record[0]);
break;
case pch::PP_MACRO_OBJECT_LIKE:
case pch::PP_MACRO_FUNCTION_LIKE: {
IdentifierInfo *II = DecodeIdentifierInfo(Record[0]);
if (II == 0)
return Error("Macro must have a name");
SourceLocation Loc = SourceLocation::getFromRawEncoding(Record[1]);
bool isUsed = Record[2];
MacroInfo *MI = PP.AllocateMacroInfo(Loc);
MI->setIsUsed(isUsed);
if (RecType == pch::PP_MACRO_FUNCTION_LIKE) {
// Decode function-like macro info.
bool isC99VarArgs = Record[3];
bool isGNUVarArgs = Record[4];
MacroArgs.clear();
unsigned NumArgs = Record[5];
for (unsigned i = 0; i != NumArgs; ++i)
MacroArgs.push_back(DecodeIdentifierInfo(Record[6+i]));
// Install function-like macro info.
MI->setIsFunctionLike();
if (isC99VarArgs) MI->setIsC99Varargs();
if (isGNUVarArgs) MI->setIsGNUVarargs();
MI->setArgumentList(&MacroArgs[0], MacroArgs.size(),
PP.getPreprocessorAllocator());
}
// Finally, install the macro.
PP.setMacroInfo(II, MI);
// Remember that we saw this macro last so that we add the tokens that
// form its body to it.
LastMacro = MI;
break;
}
case pch::PP_TOKEN: {
// If we see a TOKEN before a PP_MACRO_*, then the file is eroneous, just
// pretend we didn't see this.
if (LastMacro == 0) break;
Token Tok;
Tok.startToken();
Tok.setLocation(SourceLocation::getFromRawEncoding(Record[0]));
Tok.setLength(Record[1]);
if (IdentifierInfo *II = DecodeIdentifierInfo(Record[2]))
Tok.setIdentifierInfo(II);
Tok.setKind((tok::TokenKind)Record[3]);
Tok.setFlag((Token::TokenFlags)Record[4]);
LastMacro->AddTokenToBody(Tok);
break;
}
}
}
}
PCHReader::PCHReadResult PCHReader::ReadPCHBlock() {
if (Stream.EnterSubBlock(pch::PCH_BLOCK_ID)) {
Error("Malformed block record");
return Failure;
}
uint64_t PreprocessorBlockBit = 0;
// Read all of the records and blocks for the PCH file.
RecordData Record;
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code == llvm::bitc::END_BLOCK) {
// If we saw the preprocessor block, read it now.
if (PreprocessorBlockBit) {
uint64_t SavedPos = Stream.GetCurrentBitNo();
Stream.JumpToBit(PreprocessorBlockBit);
if (ReadPreprocessorBlock()) {
Error("Malformed preprocessor block");
return Failure;
}
Stream.JumpToBit(SavedPos);
}
if (Stream.ReadBlockEnd()) {
Error("Error at end of module block");
return Failure;
}
return Success;
}
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
case pch::DECLS_BLOCK_ID: // Skip decls block (lazily loaded)
case pch::TYPES_BLOCK_ID: // Skip types block (lazily loaded)
default: // Skip unknown content.
if (Stream.SkipBlock()) {
Error("Malformed block record");
return Failure;
}
break;
case pch::PREPROCESSOR_BLOCK_ID:
// Skip the preprocessor block for now, but remember where it is. We
// want to read it in after the identifier table.
if (PreprocessorBlockBit) {
Error("Multiple preprocessor blocks found.");
return Failure;
}
PreprocessorBlockBit = Stream.GetCurrentBitNo();
if (Stream.SkipBlock()) {
Error("Malformed block record");
return Failure;
}
break;
case pch::SOURCE_MANAGER_BLOCK_ID:
switch (ReadSourceManagerBlock()) {
case Success:
break;
case Failure:
Error("Malformed source manager block");
return Failure;
case IgnorePCH:
return IgnorePCH;
}
break;
}
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read and process a record.
Record.clear();
const char *BlobStart = 0;
unsigned BlobLen = 0;
switch ((pch::PCHRecordTypes)Stream.ReadRecord(Code, Record,
&BlobStart, &BlobLen)) {
default: // Default behavior: ignore.
break;
case pch::TYPE_OFFSET:
if (!TypeOffsets.empty()) {
Error("Duplicate TYPE_OFFSET record in PCH file");
return Failure;
}
TypeOffsets.swap(Record);
TypeAlreadyLoaded.resize(TypeOffsets.size(), false);
break;
case pch::DECL_OFFSET:
if (!DeclOffsets.empty()) {
Error("Duplicate DECL_OFFSET record in PCH file");
return Failure;
}
DeclOffsets.swap(Record);
DeclAlreadyLoaded.resize(DeclOffsets.size(), false);
break;
case pch::LANGUAGE_OPTIONS:
if (ParseLanguageOptions(Record))
return IgnorePCH;
break;
case pch::TARGET_TRIPLE: {
std::string TargetTriple(BlobStart, BlobLen);
if (TargetTriple != Context.Target.getTargetTriple()) {
Diag(diag::warn_pch_target_triple)
<< TargetTriple << Context.Target.getTargetTriple();
Diag(diag::note_ignoring_pch) << FileName;
return IgnorePCH;
}
break;
}
case pch::IDENTIFIER_TABLE:
IdentifierTable = BlobStart;
break;
case pch::IDENTIFIER_OFFSET:
if (!IdentifierData.empty()) {
Error("Duplicate IDENTIFIER_OFFSET record in PCH file");
return Failure;
}
IdentifierData.swap(Record);
#ifndef NDEBUG
for (unsigned I = 0, N = IdentifierData.size(); I != N; ++I) {
if ((IdentifierData[I] & 0x01) == 0) {
Error("Malformed identifier table in the precompiled header");
return Failure;
}
}
#endif
break;
case pch::EXTERNAL_DEFINITIONS:
if (!ExternalDefinitions.empty()) {
Error("Duplicate EXTERNAL_DEFINITIONS record in PCH file");
return Failure;
}
ExternalDefinitions.swap(Record);
break;
}
}
Error("Premature end of bitstream");
return Failure;
}
PCHReader::PCHReadResult PCHReader::ReadPCH(const std::string &FileName) {
// Set the PCH file name.
this->FileName = FileName;
// Open the PCH file.
std::string ErrStr;
Buffer.reset(llvm::MemoryBuffer::getFile(FileName.c_str(), &ErrStr));
if (!Buffer) {
Error(ErrStr.c_str());
return IgnorePCH;
}
// Initialize the stream
Stream.init((const unsigned char *)Buffer->getBufferStart(),
(const unsigned char *)Buffer->getBufferEnd());
// Sniff for the signature.
if (Stream.Read(8) != 'C' ||
Stream.Read(8) != 'P' ||
Stream.Read(8) != 'C' ||
Stream.Read(8) != 'H') {
Error("Not a PCH file");
return IgnorePCH;
}
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code != llvm::bitc::ENTER_SUBBLOCK) {
Error("Invalid record at top-level");
return Failure;
}
unsigned BlockID = Stream.ReadSubBlockID();
// We only know the PCH subblock ID.
switch (BlockID) {
case llvm::bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock()) {
Error("Malformed BlockInfoBlock");
return Failure;
}
break;
case pch::PCH_BLOCK_ID:
switch (ReadPCHBlock()) {
case Success:
break;
case Failure:
return Failure;
case IgnorePCH:
// FIXME: We could consider reading through to the end of this
// PCH block, skipping subblocks, to see if there are other
// PCH blocks elsewhere.
return IgnorePCH;
}
break;
default:
if (Stream.SkipBlock()) {
Error("Malformed block record");
return Failure;
}
break;
}
}
// Load the translation unit declaration
ReadDeclRecord(DeclOffsets[0], 0);
return Success;
}
namespace {
/// \brief Helper class that saves the current stream position and
/// then restores it when destroyed.
struct VISIBILITY_HIDDEN SavedStreamPosition {
explicit SavedStreamPosition(llvm::BitstreamReader &Stream)
: Stream(Stream), Offset(Stream.GetCurrentBitNo()),
EndOfStream(Stream.AtEndOfStream()){ }
~SavedStreamPosition() {
if (!EndOfStream)
Stream.JumpToBit(Offset);
}
private:
llvm::BitstreamReader &Stream;
uint64_t Offset;
bool EndOfStream;
};
}
/// \brief Parse the record that corresponds to a LangOptions data
/// structure.
///
/// This routine compares the language options used to generate the
/// PCH file against the language options set for the current
/// compilation. For each option, we classify differences between the
/// two compiler states as either "benign" or "important". Benign
/// differences don't matter, and we accept them without complaint
/// (and without modifying the language options). Differences between
/// the states for important options cause the PCH file to be
/// unusable, so we emit a warning and return true to indicate that
/// there was an error.
///
/// \returns true if the PCH file is unacceptable, false otherwise.
bool PCHReader::ParseLanguageOptions(
const llvm::SmallVectorImpl<uint64_t> &Record) {
const LangOptions &LangOpts = Context.getLangOptions();
#define PARSE_LANGOPT_BENIGN(Option) ++Idx
#define PARSE_LANGOPT_IMPORTANT(Option, DiagID) \
if (Record[Idx] != LangOpts.Option) { \
Diag(DiagID) << (unsigned)Record[Idx] << LangOpts.Option; \
Diag(diag::note_ignoring_pch) << FileName; \
return true; \
} \
++Idx
unsigned Idx = 0;
PARSE_LANGOPT_BENIGN(Trigraphs);
PARSE_LANGOPT_BENIGN(BCPLComment);
PARSE_LANGOPT_BENIGN(DollarIdents);
PARSE_LANGOPT_BENIGN(AsmPreprocessor);
PARSE_LANGOPT_IMPORTANT(GNUMode, diag::warn_pch_gnu_extensions);
PARSE_LANGOPT_BENIGN(ImplicitInt);
PARSE_LANGOPT_BENIGN(Digraphs);
PARSE_LANGOPT_BENIGN(HexFloats);
PARSE_LANGOPT_IMPORTANT(C99, diag::warn_pch_c99);
PARSE_LANGOPT_IMPORTANT(Microsoft, diag::warn_pch_microsoft_extensions);
PARSE_LANGOPT_IMPORTANT(CPlusPlus, diag::warn_pch_cplusplus);
PARSE_LANGOPT_IMPORTANT(CPlusPlus0x, diag::warn_pch_cplusplus0x);
PARSE_LANGOPT_IMPORTANT(NoExtensions, diag::warn_pch_extensions);
PARSE_LANGOPT_BENIGN(CXXOperatorName);
PARSE_LANGOPT_IMPORTANT(ObjC1, diag::warn_pch_objective_c);
PARSE_LANGOPT_IMPORTANT(ObjC2, diag::warn_pch_objective_c2);
PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI, diag::warn_pch_nonfragile_abi);
PARSE_LANGOPT_BENIGN(PascalStrings);
PARSE_LANGOPT_BENIGN(Boolean);
PARSE_LANGOPT_BENIGN(WritableStrings);
PARSE_LANGOPT_IMPORTANT(LaxVectorConversions,
diag::warn_pch_lax_vector_conversions);
PARSE_LANGOPT_IMPORTANT(Exceptions, diag::warn_pch_exceptions);
PARSE_LANGOPT_IMPORTANT(NeXTRuntime, diag::warn_pch_objc_runtime);
PARSE_LANGOPT_IMPORTANT(Freestanding, diag::warn_pch_freestanding);
PARSE_LANGOPT_IMPORTANT(NoBuiltin, diag::warn_pch_builtins);
PARSE_LANGOPT_IMPORTANT(ThreadsafeStatics,
diag::warn_pch_thread_safe_statics);
PARSE_LANGOPT_IMPORTANT(Blocks, diag::warn_pch_blocks);
PARSE_LANGOPT_BENIGN(EmitAllDecls);
PARSE_LANGOPT_IMPORTANT(MathErrno, diag::warn_pch_math_errno);
PARSE_LANGOPT_IMPORTANT(OverflowChecking, diag::warn_pch_overflow_checking);
PARSE_LANGOPT_IMPORTANT(HeinousExtensions,
diag::warn_pch_heinous_extensions);
// FIXME: Most of the options below are benign if the macro wasn't
// used. Unfortunately, this means that a PCH compiled without
// optimization can't be used with optimization turned on, even
// though the only thing that changes is whether __OPTIMIZE__ was
// defined... but if __OPTIMIZE__ never showed up in the header, it
// doesn't matter. We could consider making this some special kind
// of check.
PARSE_LANGOPT_IMPORTANT(Optimize, diag::warn_pch_optimize);
PARSE_LANGOPT_IMPORTANT(OptimizeSize, diag::warn_pch_optimize_size);
PARSE_LANGOPT_IMPORTANT(Static, diag::warn_pch_static);
PARSE_LANGOPT_IMPORTANT(PICLevel, diag::warn_pch_pic_level);
PARSE_LANGOPT_IMPORTANT(GNUInline, diag::warn_pch_gnu_inline);
PARSE_LANGOPT_IMPORTANT(NoInline, diag::warn_pch_no_inline);
if ((LangOpts.getGCMode() != 0) != (Record[Idx] != 0)) {
Diag(diag::warn_pch_gc_mode)
<< (unsigned)Record[Idx] << LangOpts.getGCMode();
Diag(diag::note_ignoring_pch) << FileName;
return true;
}
++Idx;
PARSE_LANGOPT_BENIGN(getVisibilityMode());
PARSE_LANGOPT_BENIGN(InstantiationDepth);
#undef PARSE_LANGOPT_IRRELEVANT
#undef PARSE_LANGOPT_BENIGN
return false;
}
/// \brief Read and return the type at the given offset.
///
/// This routine actually reads the record corresponding to the type
/// at the given offset in the bitstream. It is a helper routine for
/// GetType, which deals with reading type IDs.
QualType PCHReader::ReadTypeRecord(uint64_t Offset) {
// Keep track of where we are in the stream, then jump back there
// after reading this type.
SavedStreamPosition SavedPosition(Stream);
Stream.JumpToBit(Offset);
RecordData Record;
unsigned Code = Stream.ReadCode();
switch ((pch::TypeCode)Stream.ReadRecord(Code, Record)) {
case pch::TYPE_EXT_QUAL:
// FIXME: Deserialize ExtQualType
assert(false && "Cannot deserialize qualified types yet");
return QualType();
case pch::TYPE_FIXED_WIDTH_INT: {
assert(Record.size() == 2 && "Incorrect encoding of fixed-width int type");
return Context.getFixedWidthIntType(Record[0], Record[1]);
}
case pch::TYPE_COMPLEX: {
assert(Record.size() == 1 && "Incorrect encoding of complex type");
QualType ElemType = GetType(Record[0]);
return Context.getComplexType(ElemType);
}
case pch::TYPE_POINTER: {
assert(Record.size() == 1 && "Incorrect encoding of pointer type");
QualType PointeeType = GetType(Record[0]);
return Context.getPointerType(PointeeType);
}
case pch::TYPE_BLOCK_POINTER: {
assert(Record.size() == 1 && "Incorrect encoding of block pointer type");
QualType PointeeType = GetType(Record[0]);
return Context.getBlockPointerType(PointeeType);
}
case pch::TYPE_LVALUE_REFERENCE: {
assert(Record.size() == 1 && "Incorrect encoding of lvalue reference type");
QualType PointeeType = GetType(Record[0]);
return Context.getLValueReferenceType(PointeeType);
}
case pch::TYPE_RVALUE_REFERENCE: {
assert(Record.size() == 1 && "Incorrect encoding of rvalue reference type");
QualType PointeeType = GetType(Record[0]);
return Context.getRValueReferenceType(PointeeType);
}
case pch::TYPE_MEMBER_POINTER: {
assert(Record.size() == 1 && "Incorrect encoding of member pointer type");
QualType PointeeType = GetType(Record[0]);
QualType ClassType = GetType(Record[1]);
return Context.getMemberPointerType(PointeeType, ClassType.getTypePtr());
}
case pch::TYPE_CONSTANT_ARRAY: {
QualType ElementType = GetType(Record[0]);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
unsigned Idx = 3;
llvm::APInt Size = ReadAPInt(Record, Idx);
return Context.getConstantArrayType(ElementType, Size, ASM, IndexTypeQuals);
}
case pch::TYPE_INCOMPLETE_ARRAY: {
QualType ElementType = GetType(Record[0]);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
return Context.getIncompleteArrayType(ElementType, ASM, IndexTypeQuals);
}
case pch::TYPE_VARIABLE_ARRAY: {
QualType ElementType = GetType(Record[0]);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
return Context.getVariableArrayType(ElementType, ReadExpr(),
ASM, IndexTypeQuals);
}
case pch::TYPE_VECTOR: {
if (Record.size() != 2) {
Error("Incorrect encoding of vector type in PCH file");
return QualType();
}
QualType ElementType = GetType(Record[0]);
unsigned NumElements = Record[1];
return Context.getVectorType(ElementType, NumElements);
}
case pch::TYPE_EXT_VECTOR: {
if (Record.size() != 2) {
Error("Incorrect encoding of extended vector type in PCH file");
return QualType();
}
QualType ElementType = GetType(Record[0]);
unsigned NumElements = Record[1];
return Context.getExtVectorType(ElementType, NumElements);
}
case pch::TYPE_FUNCTION_NO_PROTO: {
if (Record.size() != 1) {
Error("Incorrect encoding of no-proto function type");
return QualType();
}
QualType ResultType = GetType(Record[0]);
return Context.getFunctionNoProtoType(ResultType);
}
case pch::TYPE_FUNCTION_PROTO: {
QualType ResultType = GetType(Record[0]);
unsigned Idx = 1;
unsigned NumParams = Record[Idx++];
llvm::SmallVector<QualType, 16> ParamTypes;
for (unsigned I = 0; I != NumParams; ++I)
ParamTypes.push_back(GetType(Record[Idx++]));
bool isVariadic = Record[Idx++];
unsigned Quals = Record[Idx++];
return Context.getFunctionType(ResultType, &ParamTypes[0], NumParams,
isVariadic, Quals);
}
case pch::TYPE_TYPEDEF:
assert(Record.size() == 1 && "Incorrect encoding of typedef type");
return Context.getTypeDeclType(cast<TypedefDecl>(GetDecl(Record[0])));
case pch::TYPE_TYPEOF_EXPR:
return Context.getTypeOfExprType(ReadExpr());
case pch::TYPE_TYPEOF: {
if (Record.size() != 1) {
Error("Incorrect encoding of typeof(type) in PCH file");
return QualType();
}
QualType UnderlyingType = GetType(Record[0]);
return Context.getTypeOfType(UnderlyingType);
}
case pch::TYPE_RECORD:
assert(Record.size() == 1 && "Incorrect encoding of record type");
return Context.getTypeDeclType(cast<RecordDecl>(GetDecl(Record[0])));
case pch::TYPE_ENUM:
assert(Record.size() == 1 && "Incorrect encoding of enum type");
return Context.getTypeDeclType(cast<EnumDecl>(GetDecl(Record[0])));
case pch::TYPE_OBJC_INTERFACE:
// FIXME: Deserialize ObjCInterfaceType
assert(false && "Cannot de-serialize ObjC interface types yet");
return QualType();
case pch::TYPE_OBJC_QUALIFIED_INTERFACE:
// FIXME: Deserialize ObjCQualifiedInterfaceType
assert(false && "Cannot de-serialize ObjC qualified interface types yet");
return QualType();
case pch::TYPE_OBJC_QUALIFIED_ID:
// FIXME: Deserialize ObjCQualifiedIdType
assert(false && "Cannot de-serialize ObjC qualified id types yet");
return QualType();
case pch::TYPE_OBJC_QUALIFIED_CLASS:
// FIXME: Deserialize ObjCQualifiedClassType
assert(false && "Cannot de-serialize ObjC qualified class types yet");
return QualType();
}
// Suppress a GCC warning
return QualType();
}
/// \brief Note that we have loaded the declaration with the given
/// Index.
///
/// This routine notes that this declaration has already been loaded,
/// so that future GetDecl calls will return this declaration rather
/// than trying to load a new declaration.
inline void PCHReader::LoadedDecl(unsigned Index, Decl *D) {
assert(!DeclAlreadyLoaded[Index] && "Decl loaded twice?");
DeclAlreadyLoaded[Index] = true;
DeclOffsets[Index] = reinterpret_cast<uint64_t>(D);
}
/// \brief Read the declaration at the given offset from the PCH file.
Decl *PCHReader::ReadDeclRecord(uint64_t Offset, unsigned Index) {
// Keep track of where we are in the stream, then jump back there
// after reading this declaration.
SavedStreamPosition SavedPosition(Stream);
Decl *D = 0;
Stream.JumpToBit(Offset);
RecordData Record;
unsigned Code = Stream.ReadCode();
unsigned Idx = 0;
PCHDeclReader Reader(*this, Record, Idx);
switch ((pch::DeclCode)Stream.ReadRecord(Code, Record)) {
case pch::DECL_TRANSLATION_UNIT:
assert(Index == 0 && "Translation unit must be at index 0");
Reader.VisitTranslationUnitDecl(Context.getTranslationUnitDecl());
D = Context.getTranslationUnitDecl();
LoadedDecl(Index, D);
break;
case pch::DECL_TYPEDEF: {
TypedefDecl *Typedef = TypedefDecl::Create(Context, 0, SourceLocation(),
0, QualType());
LoadedDecl(Index, Typedef);
Reader.VisitTypedefDecl(Typedef);
D = Typedef;
break;
}
case pch::DECL_ENUM: {
EnumDecl *Enum = EnumDecl::Create(Context, 0, SourceLocation(), 0, 0);
LoadedDecl(Index, Enum);
Reader.VisitEnumDecl(Enum);
D = Enum;
break;
}
case pch::DECL_RECORD: {
RecordDecl *Record = RecordDecl::Create(Context, TagDecl::TK_struct,
0, SourceLocation(), 0, 0);
LoadedDecl(Index, Record);
Reader.VisitRecordDecl(Record);
D = Record;
break;
}
case pch::DECL_ENUM_CONSTANT: {
EnumConstantDecl *ECD = EnumConstantDecl::Create(Context, 0,
SourceLocation(), 0,
QualType(), 0,
llvm::APSInt());
LoadedDecl(Index, ECD);
Reader.VisitEnumConstantDecl(ECD);
D = ECD;
break;
}
case pch::DECL_FUNCTION: {
FunctionDecl *Function = FunctionDecl::Create(Context, 0, SourceLocation(),
DeclarationName(),
QualType());
LoadedDecl(Index, Function);
Reader.VisitFunctionDecl(Function);
D = Function;
break;
}
case pch::DECL_FIELD: {
FieldDecl *Field = FieldDecl::Create(Context, 0, SourceLocation(), 0,
QualType(), 0, false);
LoadedDecl(Index, Field);
Reader.VisitFieldDecl(Field);
D = Field;
break;
}
case pch::DECL_VAR: {
VarDecl *Var = VarDecl::Create(Context, 0, SourceLocation(), 0, QualType(),
VarDecl::None, SourceLocation());
LoadedDecl(Index, Var);
Reader.VisitVarDecl(Var);
D = Var;
break;
}
case pch::DECL_PARM_VAR: {
ParmVarDecl *Parm = ParmVarDecl::Create(Context, 0, SourceLocation(), 0,
QualType(), VarDecl::None, 0);
LoadedDecl(Index, Parm);
Reader.VisitParmVarDecl(Parm);
D = Parm;
break;
}
case pch::DECL_ORIGINAL_PARM_VAR: {
OriginalParmVarDecl *Parm
= OriginalParmVarDecl::Create(Context, 0, SourceLocation(), 0,
QualType(), QualType(), VarDecl::None,
0);
LoadedDecl(Index, Parm);
Reader.VisitOriginalParmVarDecl(Parm);
D = Parm;
break;
}
case pch::DECL_FILE_SCOPE_ASM: {
FileScopeAsmDecl *Asm = FileScopeAsmDecl::Create(Context, 0,
SourceLocation(), 0);
LoadedDecl(Index, Asm);
Reader.VisitFileScopeAsmDecl(Asm);
D = Asm;
break;
}
case pch::DECL_BLOCK: {
BlockDecl *Block = BlockDecl::Create(Context, 0, SourceLocation());
LoadedDecl(Index, Block);
Reader.VisitBlockDecl(Block);
D = Block;
break;
}
default:
assert(false && "Cannot de-serialize this kind of declaration");
break;
}
// If this declaration is also a declaration context, get the
// offsets for its tables of lexical and visible declarations.
if (DeclContext *DC = dyn_cast<DeclContext>(D)) {
std::pair<uint64_t, uint64_t> Offsets = Reader.VisitDeclContext(DC);
if (Offsets.first || Offsets.second) {
DC->setHasExternalLexicalStorage(Offsets.first != 0);
DC->setHasExternalVisibleStorage(Offsets.second != 0);
DeclContextOffsets[DC] = Offsets;
}
}
assert(Idx == Record.size());
return D;
}
QualType PCHReader::GetType(pch::TypeID ID) {
unsigned Quals = ID & 0x07;
unsigned Index = ID >> 3;
if (Index < pch::NUM_PREDEF_TYPE_IDS) {
QualType T;
switch ((pch::PredefinedTypeIDs)Index) {
case pch::PREDEF_TYPE_NULL_ID: return QualType();
case pch::PREDEF_TYPE_VOID_ID: T = Context.VoidTy; break;
case pch::PREDEF_TYPE_BOOL_ID: T = Context.BoolTy; break;
case pch::PREDEF_TYPE_CHAR_U_ID:
case pch::PREDEF_TYPE_CHAR_S_ID:
// FIXME: Check that the signedness of CharTy is correct!
T = Context.CharTy;
break;
case pch::PREDEF_TYPE_UCHAR_ID: T = Context.UnsignedCharTy; break;
case pch::PREDEF_TYPE_USHORT_ID: T = Context.UnsignedShortTy; break;
case pch::PREDEF_TYPE_UINT_ID: T = Context.UnsignedIntTy; break;
case pch::PREDEF_TYPE_ULONG_ID: T = Context.UnsignedLongTy; break;
case pch::PREDEF_TYPE_ULONGLONG_ID: T = Context.UnsignedLongLongTy; break;
case pch::PREDEF_TYPE_SCHAR_ID: T = Context.SignedCharTy; break;
case pch::PREDEF_TYPE_WCHAR_ID: T = Context.WCharTy; break;
case pch::PREDEF_TYPE_SHORT_ID: T = Context.ShortTy; break;
case pch::PREDEF_TYPE_INT_ID: T = Context.IntTy; break;
case pch::PREDEF_TYPE_LONG_ID: T = Context.LongTy; break;
case pch::PREDEF_TYPE_LONGLONG_ID: T = Context.LongLongTy; break;
case pch::PREDEF_TYPE_FLOAT_ID: T = Context.FloatTy; break;
case pch::PREDEF_TYPE_DOUBLE_ID: T = Context.DoubleTy; break;
case pch::PREDEF_TYPE_LONGDOUBLE_ID: T = Context.LongDoubleTy; break;
case pch::PREDEF_TYPE_OVERLOAD_ID: T = Context.OverloadTy; break;
case pch::PREDEF_TYPE_DEPENDENT_ID: T = Context.DependentTy; break;
}
assert(!T.isNull() && "Unknown predefined type");
return T.getQualifiedType(Quals);
}
Index -= pch::NUM_PREDEF_TYPE_IDS;
if (!TypeAlreadyLoaded[Index]) {
// Load the type from the PCH file.
TypeOffsets[Index] = reinterpret_cast<uint64_t>(
ReadTypeRecord(TypeOffsets[Index]).getTypePtr());
TypeAlreadyLoaded[Index] = true;
}
return QualType(reinterpret_cast<Type *>(TypeOffsets[Index]), Quals);
}
Decl *PCHReader::GetDecl(pch::DeclID ID) {
if (ID == 0)
return 0;
unsigned Index = ID - 1;
if (DeclAlreadyLoaded[Index])
return reinterpret_cast<Decl *>(DeclOffsets[Index]);
// Load the declaration from the PCH file.
return ReadDeclRecord(DeclOffsets[Index], Index);
}
bool PCHReader::ReadDeclsLexicallyInContext(DeclContext *DC,
llvm::SmallVectorImpl<pch::DeclID> &Decls) {
assert(DC->hasExternalLexicalStorage() &&
"DeclContext has no lexical decls in storage");
uint64_t Offset = DeclContextOffsets[DC].first;
assert(Offset && "DeclContext has no lexical decls in storage");
// Keep track of where we are in the stream, then jump back there
// after reading this context.
SavedStreamPosition SavedPosition(Stream);
// Load the record containing all of the declarations lexically in
// this context.
Stream.JumpToBit(Offset);
RecordData Record;
unsigned Code = Stream.ReadCode();
unsigned RecCode = Stream.ReadRecord(Code, Record);
assert(RecCode == pch::DECL_CONTEXT_LEXICAL && "Expected lexical block");
// Load all of the declaration IDs
Decls.clear();
Decls.insert(Decls.end(), Record.begin(), Record.end());
return false;
}
bool PCHReader::ReadDeclsVisibleInContext(DeclContext *DC,
llvm::SmallVectorImpl<VisibleDeclaration> & Decls) {
assert(DC->hasExternalVisibleStorage() &&
"DeclContext has no visible decls in storage");
uint64_t Offset = DeclContextOffsets[DC].second;
assert(Offset && "DeclContext has no visible decls in storage");
// Keep track of where we are in the stream, then jump back there
// after reading this context.
SavedStreamPosition SavedPosition(Stream);
// Load the record containing all of the declarations visible in
// this context.
Stream.JumpToBit(Offset);
RecordData Record;
unsigned Code = Stream.ReadCode();
unsigned RecCode = Stream.ReadRecord(Code, Record);
assert(RecCode == pch::DECL_CONTEXT_VISIBLE && "Expected visible block");
if (Record.size() == 0)
return false;
Decls.clear();
unsigned Idx = 0;
while (Idx < Record.size()) {
Decls.push_back(VisibleDeclaration());
Decls.back().Name = ReadDeclarationName(Record, Idx);
unsigned Size = Record[Idx++];
llvm::SmallVector<unsigned, 4> & LoadedDecls
= Decls.back().Declarations;
LoadedDecls.reserve(Size);
for (unsigned I = 0; I < Size; ++I)
LoadedDecls.push_back(Record[Idx++]);
}
return false;
}
void PCHReader::StartTranslationUnit(ASTConsumer *Consumer) {
if (!Consumer)
return;
for (unsigned I = 0, N = ExternalDefinitions.size(); I != N; ++I) {
Decl *D = GetDecl(ExternalDefinitions[I]);
DeclGroupRef DG(D);
Consumer->HandleTopLevelDecl(DG);
}
}
void PCHReader::PrintStats() {
std::fprintf(stderr, "*** PCH Statistics:\n");
unsigned NumTypesLoaded = std::count(TypeAlreadyLoaded.begin(),
TypeAlreadyLoaded.end(),
true);
unsigned NumDeclsLoaded = std::count(DeclAlreadyLoaded.begin(),
DeclAlreadyLoaded.end(),
true);
unsigned NumIdentifiersLoaded = 0;
for (unsigned I = 0; I < IdentifierData.size(); ++I) {
if ((IdentifierData[I] & 0x01) == 0)
++NumIdentifiersLoaded;
}
std::fprintf(stderr, " %u/%u types read (%f%%)\n",
NumTypesLoaded, (unsigned)TypeAlreadyLoaded.size(),
((float)NumTypesLoaded/TypeAlreadyLoaded.size() * 100));
std::fprintf(stderr, " %u/%u declarations read (%f%%)\n",
NumDeclsLoaded, (unsigned)DeclAlreadyLoaded.size(),
((float)NumDeclsLoaded/DeclAlreadyLoaded.size() * 100));
std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n",
NumIdentifiersLoaded, (unsigned)IdentifierData.size(),
((float)NumIdentifiersLoaded/IdentifierData.size() * 100));
std::fprintf(stderr, "\n");
}
IdentifierInfo *PCHReader::DecodeIdentifierInfo(unsigned ID) {
if (ID == 0)
return 0;
if (!IdentifierTable || IdentifierData.empty()) {
Error("No identifier table in PCH file");
return 0;
}
if (IdentifierData[ID - 1] & 0x01) {
uint64_t Offset = IdentifierData[ID - 1];
IdentifierData[ID - 1] = reinterpret_cast<uint64_t>(
&Context.Idents.get(IdentifierTable + Offset));
}
return reinterpret_cast<IdentifierInfo *>(IdentifierData[ID - 1]);
}
DeclarationName
PCHReader::ReadDeclarationName(const RecordData &Record, unsigned &Idx) {
DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++];
switch (Kind) {
case DeclarationName::Identifier:
return DeclarationName(GetIdentifierInfo(Record, Idx));
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
assert(false && "Unable to de-serialize Objective-C selectors");
break;
case DeclarationName::CXXConstructorName:
return Context.DeclarationNames.getCXXConstructorName(
GetType(Record[Idx++]));
case DeclarationName::CXXDestructorName:
return Context.DeclarationNames.getCXXDestructorName(
GetType(Record[Idx++]));
case DeclarationName::CXXConversionFunctionName:
return Context.DeclarationNames.getCXXConversionFunctionName(
GetType(Record[Idx++]));
case DeclarationName::CXXOperatorName:
return Context.DeclarationNames.getCXXOperatorName(
(OverloadedOperatorKind)Record[Idx++]);
case DeclarationName::CXXUsingDirective:
return DeclarationName::getUsingDirectiveName();
}
// Required to silence GCC warning
return DeclarationName();
}
/// \brief Read an integral value
llvm::APInt PCHReader::ReadAPInt(const RecordData &Record, unsigned &Idx) {
unsigned BitWidth = Record[Idx++];
unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
llvm::APInt Result(BitWidth, NumWords, &Record[Idx]);
Idx += NumWords;
return Result;
}
/// \brief Read a signed integral value
llvm::APSInt PCHReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) {
bool isUnsigned = Record[Idx++];
return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned);
}
/// \brief Read a floating-point value
llvm::APFloat PCHReader::ReadAPFloat(const RecordData &Record, unsigned &Idx) {
// FIXME: is this really correct?
return llvm::APFloat(ReadAPInt(Record, Idx));
}
Expr *PCHReader::ReadExpr() {
// Within the bitstream, expressions are stored in Reverse Polish
// Notation, with each of the subexpressions preceding the
// expression they are stored in. To evaluate expressions, we
// continue reading expressions and placing them on the stack, with
// expressions having operands removing those operands from the
// stack. Evaluation terminates when we see a EXPR_STOP record, and
// the single remaining expression on the stack is our result.
RecordData Record;
unsigned Idx;
llvm::SmallVector<Expr *, 16> ExprStack;
PCHStmtReader Reader(*this, Record, Idx, ExprStack);
Stmt::EmptyShell Empty;
while (true) {
unsigned Code = Stream.ReadCode();
if (Code == llvm::bitc::END_BLOCK) {
if (Stream.ReadBlockEnd()) {
Error("Error at end of Source Manager block");
return 0;
}
break;
}
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock()) {
Error("Malformed block record");
return 0;
}
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
Expr *E = 0;
Idx = 0;
Record.clear();
bool Finished = false;
switch ((pch::StmtCode)Stream.ReadRecord(Code, Record)) {
case pch::EXPR_STOP:
Finished = true;
break;
case pch::EXPR_NULL:
E = 0;
break;
case pch::EXPR_PREDEFINED:
// FIXME: untested (until we can serialize function bodies).
E = new (Context) PredefinedExpr(Empty);
break;
case pch::EXPR_DECL_REF:
E = new (Context) DeclRefExpr(Empty);
break;
case pch::EXPR_INTEGER_LITERAL:
E = new (Context) IntegerLiteral(Empty);
break;
case pch::EXPR_FLOATING_LITERAL:
E = new (Context) FloatingLiteral(Empty);
break;
case pch::EXPR_CHARACTER_LITERAL:
E = new (Context) CharacterLiteral(Empty);
break;
case pch::EXPR_PAREN:
E = new (Context) ParenExpr(Empty);
break;
case pch::EXPR_IMPLICIT_CAST:
E = new (Context) ImplicitCastExpr(Empty);
break;
}
// We hit an EXPR_STOP, so we're done with this expression.
if (Finished)
break;
if (E) {
unsigned NumSubExprs = Reader.Visit(E);
while (NumSubExprs > 0) {
ExprStack.pop_back();
--NumSubExprs;
}
}
assert(Idx == Record.size() && "Invalid deserialization of expression");
ExprStack.push_back(E);
}
assert(ExprStack.size() == 1 && "Extra expressions on stack!");
return ExprStack.back();
}
DiagnosticBuilder PCHReader::Diag(unsigned DiagID) {
return Diag(SourceLocation(), DiagID);
}
DiagnosticBuilder PCHReader::Diag(SourceLocation Loc, unsigned DiagID) {
return PP.getDiagnostics().Report(FullSourceLoc(Loc,
Context.getSourceManager()),
DiagID);
}