llvm-project/clang/lib/AST/TextNodeDumper.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2371 lines
65 KiB
C++
Raw Normal View History

//===--- TextNodeDumper.cpp - Printing of AST nodes -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements AST dumping of components of individual AST nodes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/TextNodeDumper.h"
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-07 04:50:23 +08:00
#include "clang/AST/APValue.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/LocInfoType.h"
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-07 04:50:23 +08:00
#include "clang/AST/Type.h"
#include "clang/Basic/Module.h"
Avoid SourceManager.h include in RawCommentList.h, add missing incs SourceManager.h includes FileManager.h, which is expensive due to dependencies on LLVM FS headers. Remove dead BeforeThanCompare specialization. Sink ASTContext::addComment to cpp file. This reduces the time to compile a file that does nothing but include ASTContext.h from ~3.4s to ~2.8s for me. Saves these includes: 219 - ../clang/include/clang/Basic/SourceManager.h 204 - ../clang/include/clang/Basic/FileSystemOptions.h 204 - ../clang/include/clang/Basic/FileManager.h 165 - ../llvm/include/llvm/Support/VirtualFileSystem.h 164 - ../llvm/include/llvm/Support/SourceMgr.h 164 - ../llvm/include/llvm/Support/SMLoc.h 161 - ../llvm/include/llvm/Support/Path.h 141 - ../llvm/include/llvm/ADT/BitVector.h 128 - ../llvm/include/llvm/Support/MemoryBuffer.h 124 - ../llvm/include/llvm/Support/FileSystem.h 124 - ../llvm/include/llvm/Support/Chrono.h 124 - .../MSVCSTL/include/stack 122 - ../llvm/include/llvm-c/Types.h 122 - ../llvm/include/llvm/Support/NativeFormatting.h 122 - ../llvm/include/llvm/Support/FormatProviders.h 122 - ../llvm/include/llvm/Support/CBindingWrapping.h 122 - .../MSVCSTL/include/xtimec.h 122 - .../MSVCSTL/include/ratio 122 - .../MSVCSTL/include/chrono 121 - ../llvm/include/llvm/Support/FormatVariadicDetails.h 118 - ../llvm/include/llvm/Support/MD5.h 109 - .../MSVCSTL/include/deque 105 - ../llvm/include/llvm/Support/Host.h 105 - ../llvm/include/llvm/Support/Endian.h Reviewed By: aaron.ballman, hans Differential Revision: https://reviews.llvm.org/D75279
2020-02-28 03:01:58 +08:00
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TypeTraits.h"
#include "llvm/ADT/StringExtras.h"
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-07 04:50:23 +08:00
#include <algorithm>
#include <utility>
using namespace clang;
static void dumpPreviousDeclImpl(raw_ostream &OS, ...) {}
template <typename T>
static void dumpPreviousDeclImpl(raw_ostream &OS, const Mergeable<T> *D) {
const T *First = D->getFirstDecl();
if (First != D)
OS << " first " << First;
}
template <typename T>
static void dumpPreviousDeclImpl(raw_ostream &OS, const Redeclarable<T> *D) {
const T *Prev = D->getPreviousDecl();
if (Prev)
OS << " prev " << Prev;
}
/// Dump the previous declaration in the redeclaration chain for a declaration,
/// if any.
static void dumpPreviousDecl(raw_ostream &OS, const Decl *D) {
switch (D->getKind()) {
#define DECL(DERIVED, BASE) \
case Decl::DERIVED: \
return dumpPreviousDeclImpl(OS, cast<DERIVED##Decl>(D));
#define ABSTRACT_DECL(DECL)
#include "clang/AST/DeclNodes.inc"
}
llvm_unreachable("Decl that isn't part of DeclNodes.inc!");
}
TextNodeDumper::TextNodeDumper(raw_ostream &OS, const ASTContext &Context,
bool ShowColors)
: TextTreeStructure(OS, ShowColors), OS(OS), ShowColors(ShowColors),
Context(&Context), SM(&Context.getSourceManager()),
PrintPolicy(Context.getPrintingPolicy()),
Traits(&Context.getCommentCommandTraits()) {}
TextNodeDumper::TextNodeDumper(raw_ostream &OS, bool ShowColors)
: TextTreeStructure(OS, ShowColors), OS(OS), ShowColors(ShowColors) {}
void TextNodeDumper::Visit(const comments::Comment *C,
const comments::FullComment *FC) {
if (!C) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>>";
return;
}
{
ColorScope Color(OS, ShowColors, CommentColor);
OS << C->getCommentKindName();
}
dumpPointer(C);
dumpSourceRange(C->getSourceRange());
ConstCommentVisitor<TextNodeDumper, void,
const comments::FullComment *>::visit(C, FC);
}
void TextNodeDumper::Visit(const Attr *A) {
{
ColorScope Color(OS, ShowColors, AttrColor);
switch (A->getKind()) {
#define ATTR(X) \
case attr::X: \
OS << #X; \
break;
#include "clang/Basic/AttrList.inc"
}
OS << "Attr";
}
dumpPointer(A);
dumpSourceRange(A->getRange());
if (A->isInherited())
OS << " Inherited";
if (A->isImplicit())
OS << " Implicit";
ConstAttrVisitor<TextNodeDumper>::Visit(A);
}
void TextNodeDumper::Visit(const TemplateArgument &TA, SourceRange R,
const Decl *From, StringRef Label) {
OS << "TemplateArgument";
if (R.isValid())
dumpSourceRange(R);
if (From)
dumpDeclRef(From, Label);
ConstTemplateArgumentVisitor<TextNodeDumper>::Visit(TA);
}
void TextNodeDumper::Visit(const Stmt *Node) {
if (!Node) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>>";
return;
}
{
ColorScope Color(OS, ShowColors, StmtColor);
OS << Node->getStmtClassName();
}
dumpPointer(Node);
dumpSourceRange(Node->getSourceRange());
if (const auto *E = dyn_cast<Expr>(Node)) {
dumpType(E->getType());
if (E->containsErrors()) {
ColorScope Color(OS, ShowColors, ErrorsColor);
OS << " contains-errors";
}
{
ColorScope Color(OS, ShowColors, ValueKindColor);
switch (E->getValueKind()) {
case VK_PRValue:
break;
case VK_LValue:
OS << " lvalue";
break;
case VK_XValue:
OS << " xvalue";
break;
}
}
{
ColorScope Color(OS, ShowColors, ObjectKindColor);
switch (E->getObjectKind()) {
case OK_Ordinary:
break;
case OK_BitField:
OS << " bitfield";
break;
case OK_ObjCProperty:
OS << " objcproperty";
break;
case OK_ObjCSubscript:
OS << " objcsubscript";
break;
case OK_VectorComponent:
OS << " vectorcomponent";
break;
case OK_MatrixComponent:
OS << " matrixcomponent";
break;
}
}
}
ConstStmtVisitor<TextNodeDumper>::Visit(Node);
}
void TextNodeDumper::Visit(const Type *T) {
if (!T) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>>";
return;
}
if (isa<LocInfoType>(T)) {
{
ColorScope Color(OS, ShowColors, TypeColor);
OS << "LocInfo Type";
}
dumpPointer(T);
return;
}
{
ColorScope Color(OS, ShowColors, TypeColor);
OS << T->getTypeClassName() << "Type";
}
dumpPointer(T);
OS << " ";
dumpBareType(QualType(T, 0), false);
QualType SingleStepDesugar =
T->getLocallyUnqualifiedSingleStepDesugaredType();
if (SingleStepDesugar != QualType(T, 0))
OS << " sugar";
if (T->containsErrors()) {
ColorScope Color(OS, ShowColors, ErrorsColor);
OS << " contains-errors";
}
if (T->isDependentType())
OS << " dependent";
else if (T->isInstantiationDependentType())
OS << " instantiation_dependent";
if (T->isVariablyModifiedType())
OS << " variably_modified";
if (T->containsUnexpandedParameterPack())
OS << " contains_unexpanded_pack";
if (T->isFromAST())
OS << " imported";
TypeVisitor<TextNodeDumper>::Visit(T);
}
void TextNodeDumper::Visit(QualType T) {
OS << "QualType";
dumpPointer(T.getAsOpaquePtr());
OS << " ";
dumpBareType(T, false);
OS << " " << T.split().Quals.getAsString();
}
void TextNodeDumper::Visit(const Decl *D) {
if (!D) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>>";
return;
}
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << D->getDeclKindName() << "Decl";
}
dumpPointer(D);
if (D->getLexicalDeclContext() != D->getDeclContext())
OS << " parent " << cast<Decl>(D->getDeclContext());
dumpPreviousDecl(OS, D);
dumpSourceRange(D->getSourceRange());
OS << ' ';
dumpLocation(D->getLocation());
if (D->isFromASTFile())
OS << " imported";
if (Module *M = D->getOwningModule())
OS << " in " << M->getFullModuleName();
if (auto *ND = dyn_cast<NamedDecl>(D))
for (Module *M : D->getASTContext().getModulesWithMergedDefinition(
const_cast<NamedDecl *>(ND)))
AddChild([=] { OS << "also in " << M->getFullModuleName(); });
if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
if (!ND->isUnconditionallyVisible())
OS << " hidden";
if (D->isImplicit())
OS << " implicit";
if (D->isUsed())
OS << " used";
else if (D->isThisDeclarationReferenced())
OS << " referenced";
if (D->isInvalidDecl())
OS << " invalid";
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isConstexprSpecified())
OS << " constexpr";
if (FD->isConsteval())
OS << " consteval";
if (FD->isMultiVersion())
OS << " multiversion";
}
if (!isa<FunctionDecl>(*D)) {
const auto *MD = dyn_cast<ObjCMethodDecl>(D);
if (!MD || !MD->isThisDeclarationADefinition()) {
const auto *DC = dyn_cast<DeclContext>(D);
if (DC && DC->hasExternalLexicalStorage()) {
ColorScope Color(OS, ShowColors, UndeserializedColor);
OS << " <undeserialized declarations>";
}
}
}
ConstDeclVisitor<TextNodeDumper>::Visit(D);
}
void TextNodeDumper::Visit(const CXXCtorInitializer *Init) {
OS << "CXXCtorInitializer";
if (Init->isAnyMemberInitializer()) {
OS << ' ';
dumpBareDeclRef(Init->getAnyMember());
} else if (Init->isBaseInitializer()) {
dumpType(QualType(Init->getBaseClass(), 0));
} else if (Init->isDelegatingInitializer()) {
dumpType(Init->getTypeSourceInfo()->getType());
} else {
llvm_unreachable("Unknown initializer type");
}
}
void TextNodeDumper::Visit(const BlockDecl::Capture &C) {
OS << "capture";
if (C.isByRef())
OS << " byref";
if (C.isNested())
OS << " nested";
if (C.getVariable()) {
OS << ' ';
dumpBareDeclRef(C.getVariable());
}
}
void TextNodeDumper::Visit(const OMPClause *C) {
if (!C) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>> OMPClause";
return;
}
{
ColorScope Color(OS, ShowColors, AttrColor);
StringRef ClauseName(llvm::omp::getOpenMPClauseName(C->getClauseKind()));
OS << "OMP" << ClauseName.substr(/*Start=*/0, /*N=*/1).upper()
<< ClauseName.drop_front() << "Clause";
}
dumpPointer(C);
dumpSourceRange(SourceRange(C->getBeginLoc(), C->getEndLoc()));
if (C->isImplicit())
OS << " <implicit>";
}
void TextNodeDumper::Visit(const GenericSelectionExpr::ConstAssociation &A) {
const TypeSourceInfo *TSI = A.getTypeSourceInfo();
if (TSI) {
OS << "case ";
dumpType(TSI->getType());
} else {
OS << "default";
}
if (A.isSelected())
OS << " selected";
}
void TextNodeDumper::Visit(const concepts::Requirement *R) {
if (!R) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>> Requirement";
return;
}
{
ColorScope Color(OS, ShowColors, StmtColor);
switch (R->getKind()) {
case concepts::Requirement::RK_Type:
OS << "TypeRequirement";
break;
case concepts::Requirement::RK_Simple:
OS << "SimpleRequirement";
break;
case concepts::Requirement::RK_Compound:
OS << "CompoundRequirement";
break;
case concepts::Requirement::RK_Nested:
OS << "NestedRequirement";
break;
}
}
dumpPointer(R);
if (auto *ER = dyn_cast<concepts::ExprRequirement>(R)) {
if (ER->hasNoexceptRequirement())
OS << " noexcept";
}
if (R->isDependent())
OS << " dependent";
else
OS << (R->isSatisfied() ? " satisfied" : " unsatisfied");
if (R->containsUnexpandedParameterPack())
OS << " contains_unexpanded_pack";
}
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-07 04:50:23 +08:00
static double GetApproxValue(const llvm::APFloat &F) {
llvm::APFloat V = F;
bool ignored;
V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
&ignored);
return V.convertToDouble();
}
/// True if the \p APValue \p Value can be folded onto the current line.
static bool isSimpleAPValue(const APValue &Value) {
switch (Value.getKind()) {
case APValue::None:
case APValue::Indeterminate:
case APValue::Int:
case APValue::Float:
case APValue::FixedPoint:
case APValue::ComplexInt:
case APValue::ComplexFloat:
case APValue::LValue:
case APValue::MemberPointer:
case APValue::AddrLabelDiff:
return true;
case APValue::Vector:
case APValue::Array:
case APValue::Struct:
return false;
case APValue::Union:
return isSimpleAPValue(Value.getUnionValue());
}
llvm_unreachable("unexpected APValue kind!");
}
/// Dump the children of the \p APValue \p Value.
///
/// \param[in] Value The \p APValue to visit
/// \param[in] Ty The \p QualType passed to \p Visit
///
/// \param[in] IdxToChildFun A function mapping an \p APValue and an index
/// to one of the child of the \p APValue
///
/// \param[in] NumChildren \p IdxToChildFun will be called on \p Value with
/// the indices in the range \p [0,NumChildren(
///
/// \param[in] LabelSingular The label to use on a line with a single child
/// \param[in] LabelPlurial The label to use on a line with multiple children
void TextNodeDumper::dumpAPValueChildren(
const APValue &Value, QualType Ty,
const APValue &(*IdxToChildFun)(const APValue &, unsigned),
unsigned NumChildren, StringRef LabelSingular, StringRef LabelPlurial) {
// To save some vertical space we print up to MaxChildrenPerLine APValues
// considered to be simple (by isSimpleAPValue) on a single line.
constexpr unsigned MaxChildrenPerLine = 4;
unsigned I = 0;
while (I < NumChildren) {
unsigned J = I;
while (J < NumChildren) {
if (isSimpleAPValue(IdxToChildFun(Value, J)) &&
(J - I < MaxChildrenPerLine)) {
++J;
continue;
}
break;
}
J = std::max(I + 1, J);
// Print [I,J) on a single line.
AddChild(J - I > 1 ? LabelPlurial : LabelSingular, [=]() {
for (unsigned X = I; X < J; ++X) {
Visit(IdxToChildFun(Value, X), Ty);
if (X + 1 != J)
OS << ", ";
}
});
I = J;
}
}
void TextNodeDumper::Visit(const APValue &Value, QualType Ty) {
ColorScope Color(OS, ShowColors, ValueKindColor);
switch (Value.getKind()) {
case APValue::None:
OS << "None";
return;
case APValue::Indeterminate:
OS << "Indeterminate";
return;
case APValue::Int:
OS << "Int ";
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << Value.getInt();
}
return;
case APValue::Float:
OS << "Float ";
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << GetApproxValue(Value.getFloat());
}
return;
case APValue::FixedPoint:
OS << "FixedPoint ";
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << Value.getFixedPoint();
}
return;
case APValue::Vector: {
unsigned VectorLength = Value.getVectorLength();
OS << "Vector length=" << VectorLength;
dumpAPValueChildren(
Value, Ty,
[](const APValue &Value, unsigned Index) -> const APValue & {
return Value.getVectorElt(Index);
},
VectorLength, "element", "elements");
return;
}
case APValue::ComplexInt:
OS << "ComplexInt ";
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << Value.getComplexIntReal() << " + " << Value.getComplexIntImag()
<< 'i';
}
return;
case APValue::ComplexFloat:
OS << "ComplexFloat ";
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << GetApproxValue(Value.getComplexFloatReal()) << " + "
<< GetApproxValue(Value.getComplexFloatImag()) << 'i';
}
return;
case APValue::LValue:
(void)Context;
OS << "LValue <todo>";
return;
case APValue::Array: {
unsigned ArraySize = Value.getArraySize();
unsigned NumInitializedElements = Value.getArrayInitializedElts();
OS << "Array size=" << ArraySize;
dumpAPValueChildren(
Value, Ty,
[](const APValue &Value, unsigned Index) -> const APValue & {
return Value.getArrayInitializedElt(Index);
},
NumInitializedElements, "element", "elements");
if (Value.hasArrayFiller()) {
AddChild("filler", [=] {
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << ArraySize - NumInitializedElements << " x ";
}
Visit(Value.getArrayFiller(), Ty);
});
}
return;
}
case APValue::Struct: {
OS << "Struct";
dumpAPValueChildren(
Value, Ty,
[](const APValue &Value, unsigned Index) -> const APValue & {
return Value.getStructBase(Index);
},
Value.getStructNumBases(), "base", "bases");
dumpAPValueChildren(
Value, Ty,
[](const APValue &Value, unsigned Index) -> const APValue & {
return Value.getStructField(Index);
},
Value.getStructNumFields(), "field", "fields");
return;
}
case APValue::Union: {
OS << "Union";
{
ColorScope Color(OS, ShowColors, ValueColor);
if (const FieldDecl *FD = Value.getUnionField())
OS << " ." << *cast<NamedDecl>(FD);
}
// If the union value is considered to be simple, fold it into the
// current line to save some vertical space.
const APValue &UnionValue = Value.getUnionValue();
if (isSimpleAPValue(UnionValue)) {
OS << ' ';
Visit(UnionValue, Ty);
} else {
AddChild([=] { Visit(UnionValue, Ty); });
}
return;
}
case APValue::MemberPointer:
OS << "MemberPointer <todo>";
return;
case APValue::AddrLabelDiff:
OS << "AddrLabelDiff <todo>";
return;
}
llvm_unreachable("Unknown APValue kind!");
}
void TextNodeDumper::dumpPointer(const void *Ptr) {
ColorScope Color(OS, ShowColors, AddressColor);
OS << ' ' << Ptr;
}
void TextNodeDumper::dumpLocation(SourceLocation Loc) {
if (!SM)
return;
ColorScope Color(OS, ShowColors, LocationColor);
SourceLocation SpellingLoc = SM->getSpellingLoc(Loc);
// The general format we print out is filename:line:col, but we drop pieces
// that haven't changed since the last loc printed.
PresumedLoc PLoc = SM->getPresumedLoc(SpellingLoc);
if (PLoc.isInvalid()) {
OS << "<invalid sloc>";
return;
}
if (strcmp(PLoc.getFilename(), LastLocFilename) != 0) {
OS << PLoc.getFilename() << ':' << PLoc.getLine() << ':'
<< PLoc.getColumn();
LastLocFilename = PLoc.getFilename();
LastLocLine = PLoc.getLine();
} else if (PLoc.getLine() != LastLocLine) {
OS << "line" << ':' << PLoc.getLine() << ':' << PLoc.getColumn();
LastLocLine = PLoc.getLine();
} else {
OS << "col" << ':' << PLoc.getColumn();
}
}
void TextNodeDumper::dumpSourceRange(SourceRange R) {
// Can't translate locations if a SourceManager isn't available.
if (!SM)
return;
OS << " <";
dumpLocation(R.getBegin());
if (R.getBegin() != R.getEnd()) {
OS << ", ";
dumpLocation(R.getEnd());
}
OS << ">";
// <t2.c:123:421[blah], t2.c:412:321>
}
void TextNodeDumper::dumpBareType(QualType T, bool Desugar) {
ColorScope Color(OS, ShowColors, TypeColor);
SplitQualType T_split = T.split();
OS << "'" << QualType::getAsString(T_split, PrintPolicy) << "'";
if (Desugar && !T.isNull()) {
// If the type is sugared, also dump a (shallow) desugared type.
SplitQualType D_split = T.getSplitDesugaredType();
if (T_split != D_split)
OS << ":'" << QualType::getAsString(D_split, PrintPolicy) << "'";
}
}
void TextNodeDumper::dumpType(QualType T) {
OS << ' ';
dumpBareType(T);
}
void TextNodeDumper::dumpBareDeclRef(const Decl *D) {
if (!D) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>>";
return;
}
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << D->getDeclKindName();
}
dumpPointer(D);
if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
ColorScope Color(OS, ShowColors, DeclNameColor);
OS << " '" << ND->getDeclName() << '\'';
}
if (const ValueDecl *VD = dyn_cast<ValueDecl>(D))
dumpType(VD->getType());
}
void TextNodeDumper::dumpName(const NamedDecl *ND) {
if (ND->getDeclName()) {
ColorScope Color(OS, ShowColors, DeclNameColor);
OS << ' ' << ND->getDeclName();
}
}
void TextNodeDumper::dumpAccessSpecifier(AccessSpecifier AS) {
const auto AccessSpelling = getAccessSpelling(AS);
if (AccessSpelling.empty())
return;
OS << AccessSpelling;
}
void TextNodeDumper::dumpCleanupObject(
const ExprWithCleanups::CleanupObject &C) {
if (auto *BD = C.dyn_cast<BlockDecl *>())
dumpDeclRef(BD, "cleanup");
else if (auto *CLE = C.dyn_cast<CompoundLiteralExpr *>())
AddChild([=] {
OS << "cleanup ";
{
ColorScope Color(OS, ShowColors, StmtColor);
OS << CLE->getStmtClassName();
}
dumpPointer(CLE);
});
else
llvm_unreachable("unexpected cleanup type");
}
void TextNodeDumper::dumpDeclRef(const Decl *D, StringRef Label) {
if (!D)
return;
AddChild([=] {
if (!Label.empty())
OS << Label << ' ';
dumpBareDeclRef(D);
});
}
const char *TextNodeDumper::getCommandName(unsigned CommandID) {
if (Traits)
return Traits->getCommandInfo(CommandID)->Name;
const comments::CommandInfo *Info =
comments::CommandTraits::getBuiltinCommandInfo(CommandID);
if (Info)
return Info->Name;
return "<not a builtin command>";
}
void TextNodeDumper::printFPOptions(FPOptionsOverride FPO) {
#define OPTION(NAME, TYPE, WIDTH, PREVIOUS) \
if (FPO.has##NAME##Override()) \
OS << " " #NAME "=" << FPO.get##NAME##Override();
#include "clang/Basic/FPOptions.def"
}
void TextNodeDumper::visitTextComment(const comments::TextComment *C,
const comments::FullComment *) {
OS << " Text=\"" << C->getText() << "\"";
}
void TextNodeDumper::visitInlineCommandComment(
const comments::InlineCommandComment *C, const comments::FullComment *) {
OS << " Name=\"" << getCommandName(C->getCommandID()) << "\"";
switch (C->getRenderKind()) {
case comments::InlineCommandComment::RenderNormal:
OS << " RenderNormal";
break;
case comments::InlineCommandComment::RenderBold:
OS << " RenderBold";
break;
case comments::InlineCommandComment::RenderMonospaced:
OS << " RenderMonospaced";
break;
case comments::InlineCommandComment::RenderEmphasized:
OS << " RenderEmphasized";
break;
case comments::InlineCommandComment::RenderAnchor:
OS << " RenderAnchor";
break;
}
for (unsigned i = 0, e = C->getNumArgs(); i != e; ++i)
OS << " Arg[" << i << "]=\"" << C->getArgText(i) << "\"";
}
void TextNodeDumper::visitHTMLStartTagComment(
const comments::HTMLStartTagComment *C, const comments::FullComment *) {
OS << " Name=\"" << C->getTagName() << "\"";
if (C->getNumAttrs() != 0) {
OS << " Attrs: ";
for (unsigned i = 0, e = C->getNumAttrs(); i != e; ++i) {
const comments::HTMLStartTagComment::Attribute &Attr = C->getAttr(i);
OS << " \"" << Attr.Name << "=\"" << Attr.Value << "\"";
}
}
if (C->isSelfClosing())
OS << " SelfClosing";
}
void TextNodeDumper::visitHTMLEndTagComment(
const comments::HTMLEndTagComment *C, const comments::FullComment *) {
OS << " Name=\"" << C->getTagName() << "\"";
}
void TextNodeDumper::visitBlockCommandComment(
const comments::BlockCommandComment *C, const comments::FullComment *) {
OS << " Name=\"" << getCommandName(C->getCommandID()) << "\"";
for (unsigned i = 0, e = C->getNumArgs(); i != e; ++i)
OS << " Arg[" << i << "]=\"" << C->getArgText(i) << "\"";
}
void TextNodeDumper::visitParamCommandComment(
const comments::ParamCommandComment *C, const comments::FullComment *FC) {
OS << " "
<< comments::ParamCommandComment::getDirectionAsString(C->getDirection());
if (C->isDirectionExplicit())
OS << " explicitly";
else
OS << " implicitly";
if (C->hasParamName()) {
if (C->isParamIndexValid())
OS << " Param=\"" << C->getParamName(FC) << "\"";
else
OS << " Param=\"" << C->getParamNameAsWritten() << "\"";
}
if (C->isParamIndexValid() && !C->isVarArgParam())
OS << " ParamIndex=" << C->getParamIndex();
}
void TextNodeDumper::visitTParamCommandComment(
const comments::TParamCommandComment *C, const comments::FullComment *FC) {
if (C->hasParamName()) {
if (C->isPositionValid())
OS << " Param=\"" << C->getParamName(FC) << "\"";
else
OS << " Param=\"" << C->getParamNameAsWritten() << "\"";
}
if (C->isPositionValid()) {
OS << " Position=<";
for (unsigned i = 0, e = C->getDepth(); i != e; ++i) {
OS << C->getIndex(i);
if (i != e - 1)
OS << ", ";
}
OS << ">";
}
}
void TextNodeDumper::visitVerbatimBlockComment(
const comments::VerbatimBlockComment *C, const comments::FullComment *) {
OS << " Name=\"" << getCommandName(C->getCommandID())
<< "\""
" CloseName=\""
<< C->getCloseName() << "\"";
}
void TextNodeDumper::visitVerbatimBlockLineComment(
const comments::VerbatimBlockLineComment *C,
const comments::FullComment *) {
OS << " Text=\"" << C->getText() << "\"";
}
void TextNodeDumper::visitVerbatimLineComment(
const comments::VerbatimLineComment *C, const comments::FullComment *) {
OS << " Text=\"" << C->getText() << "\"";
}
void TextNodeDumper::VisitNullTemplateArgument(const TemplateArgument &) {
OS << " null";
}
void TextNodeDumper::VisitTypeTemplateArgument(const TemplateArgument &TA) {
OS << " type";
dumpType(TA.getAsType());
}
void TextNodeDumper::VisitDeclarationTemplateArgument(
const TemplateArgument &TA) {
OS << " decl";
dumpDeclRef(TA.getAsDecl());
}
void TextNodeDumper::VisitNullPtrTemplateArgument(const TemplateArgument &) {
OS << " nullptr";
}
void TextNodeDumper::VisitIntegralTemplateArgument(const TemplateArgument &TA) {
OS << " integral " << TA.getAsIntegral();
}
void TextNodeDumper::VisitTemplateTemplateArgument(const TemplateArgument &TA) {
if (TA.getAsTemplate().getKind() == TemplateName::UsingTemplate)
OS << " using";
OS << " template ";
TA.getAsTemplate().dump(OS);
}
void TextNodeDumper::VisitTemplateExpansionTemplateArgument(
const TemplateArgument &TA) {
if (TA.getAsTemplateOrTemplatePattern().getKind() ==
TemplateName::UsingTemplate)
OS << " using";
OS << " template expansion ";
TA.getAsTemplateOrTemplatePattern().dump(OS);
}
void TextNodeDumper::VisitExpressionTemplateArgument(const TemplateArgument &) {
OS << " expr";
}
void TextNodeDumper::VisitPackTemplateArgument(const TemplateArgument &) {
OS << " pack";
}
static void dumpBasePath(raw_ostream &OS, const CastExpr *Node) {
if (Node->path_empty())
return;
OS << " (";
bool First = true;
for (CastExpr::path_const_iterator I = Node->path_begin(),
E = Node->path_end();
I != E; ++I) {
const CXXBaseSpecifier *Base = *I;
if (!First)
OS << " -> ";
const auto *RD =
cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
if (Base->isVirtual())
OS << "virtual ";
OS << RD->getName();
First = false;
}
OS << ')';
}
void TextNodeDumper::VisitIfStmt(const IfStmt *Node) {
if (Node->hasInitStorage())
OS << " has_init";
if (Node->hasVarStorage())
OS << " has_var";
if (Node->hasElseStorage())
OS << " has_else";
if (Node->isConstexpr())
OS << " constexpr";
if (Node->isConsteval()) {
OS << " ";
if (Node->isNegatedConsteval())
OS << "!";
OS << "consteval";
}
}
void TextNodeDumper::VisitSwitchStmt(const SwitchStmt *Node) {
if (Node->hasInitStorage())
OS << " has_init";
if (Node->hasVarStorage())
OS << " has_var";
}
void TextNodeDumper::VisitWhileStmt(const WhileStmt *Node) {
if (Node->hasVarStorage())
OS << " has_var";
}
void TextNodeDumper::VisitLabelStmt(const LabelStmt *Node) {
OS << " '" << Node->getName() << "'";
[Windows SEH]: HARDWARE EXCEPTION HANDLING (MSVC -EHa) - Part 1 This patch is the Part-1 (FE Clang) implementation of HW Exception handling. This new feature adds the support of Hardware Exception for Microsoft Windows SEH (Structured Exception Handling). This is the first step of this project; only X86_64 target is enabled in this patch. Compiler options: For clang-cl.exe, the option is -EHa, the same as MSVC. For clang.exe, the extra option is -fasync-exceptions, plus -triple x86_64-windows -fexceptions and -fcxx-exceptions as usual. NOTE:: Without the -EHa or -fasync-exceptions, this patch is a NO-DIFF change. The rules for C code: For C-code, one way (MSVC approach) to achieve SEH -EHa semantic is to follow three rules: * First, no exception can move in or out of _try region., i.e., no "potential faulty instruction can be moved across _try boundary. * Second, the order of exceptions for instructions 'directly' under a _try must be preserved (not applied to those in callees). * Finally, global states (local/global/heap variables) that can be read outside of _try region must be updated in memory (not just in register) before the subsequent exception occurs. The impact to C++ code: Although SEH is a feature for C code, -EHa does have a profound effect on C++ side. When a C++ function (in the same compilation unit with option -EHa ) is called by a SEH C function, a hardware exception occurs in C++ code can also be handled properly by an upstream SEH _try-handler or a C++ catch(...). As such, when that happens in the middle of an object's life scope, the dtor must be invoked the same way as C++ Synchronous Exception during unwinding process. Design: A natural way to achieve the rules above in LLVM today is to allow an EH edge added on memory/computation instruction (previous iload/istore idea) so that exception path is modeled in Flow graph preciously. However, tracking every single memory instruction and potential faulty instruction can create many Invokes, complicate flow graph and possibly result in negative performance impact for downstream optimization and code generation. Making all optimizations be aware of the new semantic is also substantial. This design does not intend to model exception path at instruction level. Instead, the proposed design tracks and reports EH state at BLOCK-level to reduce the complexity of flow graph and minimize the performance-impact on CPP code under -EHa option. One key element of this design is the ability to compute State number at block-level. Our algorithm is based on the following rationales: A _try scope is always a SEME (Single Entry Multiple Exits) region as jumping into a _try is not allowed. The single entry must start with a seh_try_begin() invoke with a correct State number that is the initial state of the SEME. Through control-flow, state number is propagated into all blocks. Side exits marked by seh_try_end() will unwind to parent state based on existing SEHUnwindMap[]. Note side exits can ONLY jump into parent scopes (lower state number). Thus, when a block succeeds various states from its predecessors, the lowest State triumphs others. If some exits flow to unreachable, propagation on those paths terminate, not affecting remaining blocks. For CPP code, object lifetime region is usually a SEME as SEH _try. However there is one rare exception: jumping into a lifetime that has Dtor but has no Ctor is warned, but allowed: Warning: jump bypasses variable with a non-trivial destructor In that case, the region is actually a MEME (multiple entry multiple exits). Our solution is to inject a eha_scope_begin() invoke in the side entry block to ensure a correct State. Implementation: Part-1: Clang implementation described below. Two intrinsic are created to track CPP object scopes; eha_scope_begin() and eha_scope_end(). _scope_begin() is immediately added after ctor() is called and EHStack is pushed. So it must be an invoke, not a call. With that it's also guaranteed an EH-cleanup-pad is created regardless whether there exists a call in this scope. _scope_end is added before dtor(). These two intrinsics make the computation of Block-State possible in downstream code gen pass, even in the presence of ctor/dtor inlining. Two intrinsic, seh_try_begin() and seh_try_end(), are added for C-code to mark _try boundary and to prevent from exceptions being moved across _try boundary. All memory instructions inside a _try are considered as 'volatile' to assure 2nd and 3rd rules for C-code above. This is a little sub-optimized. But it's acceptable as the amount of code directly under _try is very small. Part-2 (will be in Part-2 patch): LLVM implementation described below. For both C++ & C-code, the state of each block is computed at the same place in BE (WinEHPreparing pass) where all other EH tables/maps are calculated. In addition to _scope_begin & _scope_end, the computation of block state also rely on the existing State tracking code (UnwindMap and InvokeStateMap). For both C++ & C-code, the state of each block with potential trap instruction is marked and reported in DAG Instruction Selection pass, the same place where the state for -EHsc (synchronous exceptions) is done. If the first instruction in a reported block scope can trap, a Nop is injected before this instruction. This nop is needed to accommodate LLVM Windows EH implementation, in which the address in IPToState table is offset by +1. (note the purpose of that is to ensure the return address of a call is in the same scope as the call address. The handler for catch(...) for -EHa must handle HW exception. So it is 'adjective' flag is reset (it cannot be IsStdDotDot (0x40) that only catches C++ exceptions). Suppress push/popTerminate() scope (from noexcept/noTHrow) so that HW exceptions can be passed through. Original llvm-dev [RFC] discussions can be found in these two threads below: https://lists.llvm.org/pipermail/llvm-dev/2020-March/140541.html https://lists.llvm.org/pipermail/llvm-dev/2020-April/141338.html Differential Revision: https://reviews.llvm.org/D80344/new/
2021-05-18 13:06:32 +08:00
if (Node->isSideEntry())
OS << " side_entry";
}
void TextNodeDumper::VisitGotoStmt(const GotoStmt *Node) {
OS << " '" << Node->getLabel()->getName() << "'";
dumpPointer(Node->getLabel());
}
void TextNodeDumper::VisitCaseStmt(const CaseStmt *Node) {
if (Node->caseStmtIsGNURange())
OS << " gnu_range";
}
void TextNodeDumper::VisitConstantExpr(const ConstantExpr *Node) {
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-07 04:50:23 +08:00
if (Node->hasAPValueResult())
AddChild("value",
[=] { Visit(Node->getAPValueResult(), Node->getType()); });
}
void TextNodeDumper::VisitCallExpr(const CallExpr *Node) {
if (Node->usesADL())
OS << " adl";
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getFPFeatures());
}
void TextNodeDumper::VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *Node) {
const char *OperatorSpelling = clang::getOperatorSpelling(Node->getOperator());
if (OperatorSpelling)
OS << " '" << OperatorSpelling << "'";
VisitCallExpr(Node);
}
void TextNodeDumper::VisitCastExpr(const CastExpr *Node) {
OS << " <";
{
ColorScope Color(OS, ShowColors, CastColor);
OS << Node->getCastKindName();
}
dumpBasePath(OS, Node);
OS << ">";
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getFPFeatures());
}
void TextNodeDumper::VisitImplicitCastExpr(const ImplicitCastExpr *Node) {
VisitCastExpr(Node);
if (Node->isPartOfExplicitCast())
OS << " part_of_explicit_cast";
}
void TextNodeDumper::VisitDeclRefExpr(const DeclRefExpr *Node) {
OS << " ";
dumpBareDeclRef(Node->getDecl());
if (Node->getDecl() != Node->getFoundDecl()) {
OS << " (";
dumpBareDeclRef(Node->getFoundDecl());
OS << ")";
}
switch (Node->isNonOdrUse()) {
case NOUR_None: break;
case NOUR_Unevaluated: OS << " non_odr_use_unevaluated"; break;
case NOUR_Constant: OS << " non_odr_use_constant"; break;
case NOUR_Discarded: OS << " non_odr_use_discarded"; break;
}
}
void TextNodeDumper::VisitUnresolvedLookupExpr(
const UnresolvedLookupExpr *Node) {
OS << " (";
if (!Node->requiresADL())
OS << "no ";
OS << "ADL) = '" << Node->getName() << '\'';
UnresolvedLookupExpr::decls_iterator I = Node->decls_begin(),
E = Node->decls_end();
if (I == E)
OS << " empty";
for (; I != E; ++I)
dumpPointer(*I);
}
void TextNodeDumper::VisitObjCIvarRefExpr(const ObjCIvarRefExpr *Node) {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << " " << Node->getDecl()->getDeclKindName() << "Decl";
}
OS << "='" << *Node->getDecl() << "'";
dumpPointer(Node->getDecl());
if (Node->isFreeIvar())
OS << " isFreeIvar";
}
void TextNodeDumper::VisitSYCLUniqueStableNameExpr(
const SYCLUniqueStableNameExpr *Node) {
dumpType(Node->getTypeSourceInfo()->getType());
}
void TextNodeDumper::VisitPredefinedExpr(const PredefinedExpr *Node) {
OS << " " << PredefinedExpr::getIdentKindName(Node->getIdentKind());
}
void TextNodeDumper::VisitCharacterLiteral(const CharacterLiteral *Node) {
ColorScope Color(OS, ShowColors, ValueColor);
OS << " " << Node->getValue();
}
void TextNodeDumper::VisitIntegerLiteral(const IntegerLiteral *Node) {
bool isSigned = Node->getType()->isSignedIntegerType();
ColorScope Color(OS, ShowColors, ValueColor);
OS << " " << toString(Node->getValue(), 10, isSigned);
}
void TextNodeDumper::VisitFixedPointLiteral(const FixedPointLiteral *Node) {
ColorScope Color(OS, ShowColors, ValueColor);
OS << " " << Node->getValueAsString(/*Radix=*/10);
}
void TextNodeDumper::VisitFloatingLiteral(const FloatingLiteral *Node) {
ColorScope Color(OS, ShowColors, ValueColor);
OS << " " << Node->getValueAsApproximateDouble();
}
void TextNodeDumper::VisitStringLiteral(const StringLiteral *Str) {
ColorScope Color(OS, ShowColors, ValueColor);
OS << " ";
Str->outputString(OS);
}
void TextNodeDumper::VisitInitListExpr(const InitListExpr *ILE) {
if (auto *Field = ILE->getInitializedFieldInUnion()) {
OS << " field ";
dumpBareDeclRef(Field);
}
}
void TextNodeDumper::VisitGenericSelectionExpr(const GenericSelectionExpr *E) {
if (E->isResultDependent())
OS << " result_dependent";
}
void TextNodeDumper::VisitUnaryOperator(const UnaryOperator *Node) {
OS << " " << (Node->isPostfix() ? "postfix" : "prefix") << " '"
<< UnaryOperator::getOpcodeStr(Node->getOpcode()) << "'";
if (!Node->canOverflow())
OS << " cannot overflow";
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getStoredFPFeatures());
}
void TextNodeDumper::VisitUnaryExprOrTypeTraitExpr(
const UnaryExprOrTypeTraitExpr *Node) {
OS << " " << getTraitSpelling(Node->getKind());
if (Node->isArgumentType())
dumpType(Node->getArgumentType());
}
void TextNodeDumper::VisitMemberExpr(const MemberExpr *Node) {
OS << " " << (Node->isArrow() ? "->" : ".") << *Node->getMemberDecl();
dumpPointer(Node->getMemberDecl());
switch (Node->isNonOdrUse()) {
case NOUR_None: break;
case NOUR_Unevaluated: OS << " non_odr_use_unevaluated"; break;
case NOUR_Constant: OS << " non_odr_use_constant"; break;
case NOUR_Discarded: OS << " non_odr_use_discarded"; break;
}
}
void TextNodeDumper::VisitExtVectorElementExpr(
const ExtVectorElementExpr *Node) {
OS << " " << Node->getAccessor().getNameStart();
}
void TextNodeDumper::VisitBinaryOperator(const BinaryOperator *Node) {
OS << " '" << BinaryOperator::getOpcodeStr(Node->getOpcode()) << "'";
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getStoredFPFeatures());
}
void TextNodeDumper::VisitCompoundAssignOperator(
const CompoundAssignOperator *Node) {
OS << " '" << BinaryOperator::getOpcodeStr(Node->getOpcode())
<< "' ComputeLHSTy=";
dumpBareType(Node->getComputationLHSType());
OS << " ComputeResultTy=";
dumpBareType(Node->getComputationResultType());
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getStoredFPFeatures());
}
void TextNodeDumper::VisitAddrLabelExpr(const AddrLabelExpr *Node) {
OS << " " << Node->getLabel()->getName();
dumpPointer(Node->getLabel());
}
void TextNodeDumper::VisitCXXNamedCastExpr(const CXXNamedCastExpr *Node) {
OS << " " << Node->getCastName() << "<"
<< Node->getTypeAsWritten().getAsString() << ">"
<< " <" << Node->getCastKindName();
dumpBasePath(OS, Node);
OS << ">";
}
void TextNodeDumper::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *Node) {
OS << " " << (Node->getValue() ? "true" : "false");
}
void TextNodeDumper::VisitCXXThisExpr(const CXXThisExpr *Node) {
if (Node->isImplicit())
OS << " implicit";
OS << " this";
}
void TextNodeDumper::VisitCXXFunctionalCastExpr(
const CXXFunctionalCastExpr *Node) {
OS << " functional cast to " << Node->getTypeAsWritten().getAsString() << " <"
<< Node->getCastKindName() << ">";
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getFPFeatures());
}
void TextNodeDumper::VisitCXXStaticCastExpr(const CXXStaticCastExpr *Node) {
VisitCXXNamedCastExpr(Node);
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getFPFeatures());
}
void TextNodeDumper::VisitCXXUnresolvedConstructExpr(
const CXXUnresolvedConstructExpr *Node) {
dumpType(Node->getTypeAsWritten());
if (Node->isListInitialization())
OS << " list";
}
void TextNodeDumper::VisitCXXConstructExpr(const CXXConstructExpr *Node) {
CXXConstructorDecl *Ctor = Node->getConstructor();
dumpType(Ctor->getType());
if (Node->isElidable())
OS << " elidable";
if (Node->isListInitialization())
OS << " list";
if (Node->isStdInitListInitialization())
OS << " std::initializer_list";
if (Node->requiresZeroInitialization())
OS << " zeroing";
}
void TextNodeDumper::VisitCXXBindTemporaryExpr(
const CXXBindTemporaryExpr *Node) {
OS << " (CXXTemporary";
dumpPointer(Node);
OS << ")";
}
void TextNodeDumper::VisitCXXNewExpr(const CXXNewExpr *Node) {
if (Node->isGlobalNew())
OS << " global";
if (Node->isArray())
OS << " array";
if (Node->getOperatorNew()) {
OS << ' ';
dumpBareDeclRef(Node->getOperatorNew());
}
// We could dump the deallocation function used in case of error, but it's
// usually not that interesting.
}
void TextNodeDumper::VisitCXXDeleteExpr(const CXXDeleteExpr *Node) {
if (Node->isGlobalDelete())
OS << " global";
if (Node->isArrayForm())
OS << " array";
if (Node->getOperatorDelete()) {
OS << ' ';
dumpBareDeclRef(Node->getOperatorDelete());
}
}
void TextNodeDumper::VisitTypeTraitExpr(const TypeTraitExpr *Node) {
OS << " " << getTraitSpelling(Node->getTrait());
}
void TextNodeDumper::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *Node) {
OS << " " << getTraitSpelling(Node->getTrait());
}
void TextNodeDumper::VisitExpressionTraitExpr(const ExpressionTraitExpr *Node) {
OS << " " << getTraitSpelling(Node->getTrait());
}
void TextNodeDumper::VisitMaterializeTemporaryExpr(
const MaterializeTemporaryExpr *Node) {
if (const ValueDecl *VD = Node->getExtendingDecl()) {
OS << " extended by ";
dumpBareDeclRef(VD);
}
}
void TextNodeDumper::VisitExprWithCleanups(const ExprWithCleanups *Node) {
for (unsigned i = 0, e = Node->getNumObjects(); i != e; ++i)
dumpCleanupObject(Node->getObject(i));
}
void TextNodeDumper::VisitSizeOfPackExpr(const SizeOfPackExpr *Node) {
dumpPointer(Node->getPack());
dumpName(Node->getPack());
}
void TextNodeDumper::VisitCXXDependentScopeMemberExpr(
const CXXDependentScopeMemberExpr *Node) {
OS << " " << (Node->isArrow() ? "->" : ".") << Node->getMember();
}
void TextNodeDumper::VisitObjCMessageExpr(const ObjCMessageExpr *Node) {
OS << " selector=";
Node->getSelector().print(OS);
switch (Node->getReceiverKind()) {
case ObjCMessageExpr::Instance:
break;
case ObjCMessageExpr::Class:
OS << " class=";
dumpBareType(Node->getClassReceiver());
break;
case ObjCMessageExpr::SuperInstance:
OS << " super (instance)";
break;
case ObjCMessageExpr::SuperClass:
OS << " super (class)";
break;
}
}
void TextNodeDumper::VisitObjCBoxedExpr(const ObjCBoxedExpr *Node) {
if (auto *BoxingMethod = Node->getBoxingMethod()) {
OS << " selector=";
BoxingMethod->getSelector().print(OS);
}
}
void TextNodeDumper::VisitObjCAtCatchStmt(const ObjCAtCatchStmt *Node) {
if (!Node->getCatchParamDecl())
OS << " catch all";
}
void TextNodeDumper::VisitObjCEncodeExpr(const ObjCEncodeExpr *Node) {
dumpType(Node->getEncodedType());
}
void TextNodeDumper::VisitObjCSelectorExpr(const ObjCSelectorExpr *Node) {
OS << " ";
Node->getSelector().print(OS);
}
void TextNodeDumper::VisitObjCProtocolExpr(const ObjCProtocolExpr *Node) {
OS << ' ' << *Node->getProtocol();
}
void TextNodeDumper::VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *Node) {
if (Node->isImplicitProperty()) {
OS << " Kind=MethodRef Getter=\"";
if (Node->getImplicitPropertyGetter())
Node->getImplicitPropertyGetter()->getSelector().print(OS);
else
OS << "(null)";
OS << "\" Setter=\"";
if (ObjCMethodDecl *Setter = Node->getImplicitPropertySetter())
Setter->getSelector().print(OS);
else
OS << "(null)";
OS << "\"";
} else {
OS << " Kind=PropertyRef Property=\"" << *Node->getExplicitProperty()
<< '"';
}
if (Node->isSuperReceiver())
OS << " super";
OS << " Messaging=";
if (Node->isMessagingGetter() && Node->isMessagingSetter())
OS << "Getter&Setter";
else if (Node->isMessagingGetter())
OS << "Getter";
else if (Node->isMessagingSetter())
OS << "Setter";
}
void TextNodeDumper::VisitObjCSubscriptRefExpr(
const ObjCSubscriptRefExpr *Node) {
if (Node->isArraySubscriptRefExpr())
OS << " Kind=ArraySubscript GetterForArray=\"";
else
OS << " Kind=DictionarySubscript GetterForDictionary=\"";
if (Node->getAtIndexMethodDecl())
Node->getAtIndexMethodDecl()->getSelector().print(OS);
else
OS << "(null)";
if (Node->isArraySubscriptRefExpr())
OS << "\" SetterForArray=\"";
else
OS << "\" SetterForDictionary=\"";
if (Node->setAtIndexMethodDecl())
Node->setAtIndexMethodDecl()->getSelector().print(OS);
else
OS << "(null)";
}
void TextNodeDumper::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *Node) {
OS << " " << (Node->getValue() ? "__objc_yes" : "__objc_no");
}
void TextNodeDumper::VisitOMPIteratorExpr(const OMPIteratorExpr *Node) {
OS << " ";
for (unsigned I = 0, E = Node->numOfIterators(); I < E; ++I) {
Visit(Node->getIteratorDecl(I));
OS << " = ";
const OMPIteratorExpr::IteratorRange Range = Node->getIteratorRange(I);
OS << " begin ";
Visit(Range.Begin);
OS << " end ";
Visit(Range.End);
if (Range.Step) {
OS << " step ";
Visit(Range.Step);
}
}
}
void TextNodeDumper::VisitConceptSpecializationExpr(
const ConceptSpecializationExpr *Node) {
OS << " ";
dumpBareDeclRef(Node->getFoundDecl());
}
void TextNodeDumper::VisitRequiresExpr(
const RequiresExpr *Node) {
if (!Node->isValueDependent())
OS << (Node->isSatisfied() ? " satisfied" : " unsatisfied");
}
void TextNodeDumper::VisitRValueReferenceType(const ReferenceType *T) {
if (T->isSpelledAsLValue())
OS << " written as lvalue reference";
}
void TextNodeDumper::VisitArrayType(const ArrayType *T) {
switch (T->getSizeModifier()) {
case ArrayType::Normal:
break;
case ArrayType::Static:
OS << " static";
break;
case ArrayType::Star:
OS << " *";
break;
}
OS << " " << T->getIndexTypeQualifiers().getAsString();
}
void TextNodeDumper::VisitConstantArrayType(const ConstantArrayType *T) {
OS << " " << T->getSize();
VisitArrayType(T);
}
void TextNodeDumper::VisitVariableArrayType(const VariableArrayType *T) {
OS << " ";
dumpSourceRange(T->getBracketsRange());
VisitArrayType(T);
}
void TextNodeDumper::VisitDependentSizedArrayType(
const DependentSizedArrayType *T) {
VisitArrayType(T);
OS << " ";
dumpSourceRange(T->getBracketsRange());
}
void TextNodeDumper::VisitDependentSizedExtVectorType(
const DependentSizedExtVectorType *T) {
OS << " ";
dumpLocation(T->getAttributeLoc());
}
void TextNodeDumper::VisitVectorType(const VectorType *T) {
switch (T->getVectorKind()) {
case VectorType::GenericVector:
break;
case VectorType::AltiVecVector:
OS << " altivec";
break;
case VectorType::AltiVecPixel:
OS << " altivec pixel";
break;
case VectorType::AltiVecBool:
OS << " altivec bool";
break;
case VectorType::NeonVector:
OS << " neon";
break;
case VectorType::NeonPolyVector:
OS << " neon poly";
break;
[Sema][AArch64] Support arm_sve_vector_bits attribute This patch implements the semantics for the 'arm_sve_vector_bits' type attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1]. The purpose of this attribute is to define vector-length-specific (VLS) versions of existing vector-length-agnostic (VLA) types. The semantics were already implemented by D83551, although the implementation approach has since changed to represent VLSTs as VectorType in the AST and fixed-length vectors in the IR everywhere except in function args/returns. This is described in the prototype patch D85128 demonstrating the new approach. The semantic changes added in D83551 are changed since the AttributedType is replaced by VectorType in the AST. Minimal changes were necessary in the previous patch as the canonical type for both VLA and VLS was the same (i.e. sizeless), except in constructs such as globals and structs where sizeless types are unsupported. This patch reverts the changes that permitted VLS types that were represented as sizeless types in such circumstances, and adds support for implicit casting between VLA <-> VLS types as described in section 3.7.3.2 of the ACLE. Since the SVE builtin types for bool and uint8 are both represented as BuiltinType::UChar in VLSTs, two new vector kinds are implemented to distinguish predicate and data vectors. [1] https://developer.arm.com/documentation/100987/latest Reviewed By: aaron.ballman Differential Revision: https://reviews.llvm.org/D85736
2020-08-11 21:04:21 +08:00
case VectorType::SveFixedLengthDataVector:
OS << " fixed-length sve data vector";
break;
case VectorType::SveFixedLengthPredicateVector:
OS << " fixed-length sve predicate vector";
break;
}
OS << " " << T->getNumElements();
}
void TextNodeDumper::VisitFunctionType(const FunctionType *T) {
auto EI = T->getExtInfo();
if (EI.getNoReturn())
OS << " noreturn";
if (EI.getProducesResult())
OS << " produces_result";
if (EI.getHasRegParm())
OS << " regparm " << EI.getRegParm();
OS << " " << FunctionType::getNameForCallConv(EI.getCC());
}
void TextNodeDumper::VisitFunctionProtoType(const FunctionProtoType *T) {
auto EPI = T->getExtProtoInfo();
if (EPI.HasTrailingReturn)
OS << " trailing_return";
if (T->isConst())
OS << " const";
if (T->isVolatile())
OS << " volatile";
if (T->isRestrict())
OS << " restrict";
if (T->getExtProtoInfo().Variadic)
OS << " variadic";
switch (EPI.RefQualifier) {
case RQ_None:
break;
case RQ_LValue:
OS << " &";
break;
case RQ_RValue:
OS << " &&";
break;
}
// FIXME: Exception specification.
// FIXME: Consumed parameters.
VisitFunctionType(T);
}
void TextNodeDumper::VisitUnresolvedUsingType(const UnresolvedUsingType *T) {
dumpDeclRef(T->getDecl());
}
void TextNodeDumper::VisitUsingType(const UsingType *T) {
dumpDeclRef(T->getFoundDecl());
}
void TextNodeDumper::VisitTypedefType(const TypedefType *T) {
dumpDeclRef(T->getDecl());
}
void TextNodeDumper::VisitUnaryTransformType(const UnaryTransformType *T) {
switch (T->getUTTKind()) {
case UnaryTransformType::EnumUnderlyingType:
OS << " underlying_type";
break;
}
}
void TextNodeDumper::VisitTagType(const TagType *T) {
dumpDeclRef(T->getDecl());
}
void TextNodeDumper::VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
OS << " depth " << T->getDepth() << " index " << T->getIndex();
if (T->isParameterPack())
OS << " pack";
dumpDeclRef(T->getDecl());
}
void TextNodeDumper::VisitAutoType(const AutoType *T) {
if (T->isDecltypeAuto())
OS << " decltype(auto)";
if (!T->isDeduced())
OS << " undeduced";
if (T->isConstrained()) {
dumpDeclRef(T->getTypeConstraintConcept());
for (const auto &Arg : T->getTypeConstraintArguments())
VisitTemplateArgument(Arg);
}
}
void TextNodeDumper::VisitDeducedTemplateSpecializationType(
const DeducedTemplateSpecializationType *T) {
if (T->getTemplateName().getKind() == TemplateName::UsingTemplate)
OS << " using";
}
void TextNodeDumper::VisitTemplateSpecializationType(
const TemplateSpecializationType *T) {
if (T->isTypeAlias())
OS << " alias";
if (T->getTemplateName().getKind() == TemplateName::UsingTemplate)
OS << " using";
OS << " ";
T->getTemplateName().dump(OS);
}
void TextNodeDumper::VisitInjectedClassNameType(
const InjectedClassNameType *T) {
dumpDeclRef(T->getDecl());
}
void TextNodeDumper::VisitObjCInterfaceType(const ObjCInterfaceType *T) {
dumpDeclRef(T->getDecl());
}
void TextNodeDumper::VisitPackExpansionType(const PackExpansionType *T) {
if (auto N = T->getNumExpansions())
OS << " expansions " << *N;
}
void TextNodeDumper::VisitLabelDecl(const LabelDecl *D) { dumpName(D); }
void TextNodeDumper::VisitTypedefDecl(const TypedefDecl *D) {
dumpName(D);
dumpType(D->getUnderlyingType());
if (D->isModulePrivate())
OS << " __module_private__";
}
void TextNodeDumper::VisitEnumDecl(const EnumDecl *D) {
if (D->isScoped()) {
if (D->isScopedUsingClassTag())
OS << " class";
else
OS << " struct";
}
dumpName(D);
if (D->isModulePrivate())
OS << " __module_private__";
if (D->isFixed())
dumpType(D->getIntegerType());
}
void TextNodeDumper::VisitRecordDecl(const RecordDecl *D) {
OS << ' ' << D->getKindName();
dumpName(D);
if (D->isModulePrivate())
OS << " __module_private__";
if (D->isCompleteDefinition())
OS << " definition";
}
void TextNodeDumper::VisitEnumConstantDecl(const EnumConstantDecl *D) {
dumpName(D);
dumpType(D->getType());
}
void TextNodeDumper::VisitIndirectFieldDecl(const IndirectFieldDecl *D) {
dumpName(D);
dumpType(D->getType());
for (const auto *Child : D->chain())
dumpDeclRef(Child);
}
void TextNodeDumper::VisitFunctionDecl(const FunctionDecl *D) {
dumpName(D);
dumpType(D->getType());
StorageClass SC = D->getStorageClass();
if (SC != SC_None)
OS << ' ' << VarDecl::getStorageClassSpecifierString(SC);
if (D->isInlineSpecified())
OS << " inline";
if (D->isVirtualAsWritten())
OS << " virtual";
if (D->isModulePrivate())
OS << " __module_private__";
if (D->isPure())
OS << " pure";
if (D->isDefaulted()) {
OS << " default";
if (D->isDeleted())
OS << "_delete";
}
if (D->isDeletedAsWritten())
OS << " delete";
if (D->isTrivial())
OS << " trivial";
if (const auto *FPT = D->getType()->getAs<FunctionProtoType>()) {
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
switch (EPI.ExceptionSpec.Type) {
default:
break;
case EST_Unevaluated:
OS << " noexcept-unevaluated " << EPI.ExceptionSpec.SourceDecl;
break;
case EST_Uninstantiated:
OS << " noexcept-uninstantiated " << EPI.ExceptionSpec.SourceTemplate;
break;
}
}
if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
if (MD->size_overridden_methods() != 0) {
auto dumpOverride = [=](const CXXMethodDecl *D) {
SplitQualType T_split = D->getType().split();
OS << D << " " << D->getParent()->getName() << "::" << D->getDeclName()
<< " '" << QualType::getAsString(T_split, PrintPolicy) << "'";
};
AddChild([=] {
auto Overrides = MD->overridden_methods();
OS << "Overrides: [ ";
dumpOverride(*Overrides.begin());
for (const auto *Override :
llvm::make_range(Overrides.begin() + 1, Overrides.end())) {
OS << ", ";
dumpOverride(Override);
}
OS << " ]";
});
}
}
// Since NumParams comes from the FunctionProtoType of the FunctionDecl and
// the Params are set later, it is possible for a dump during debugging to
// encounter a FunctionDecl that has been created but hasn't been assigned
// ParmVarDecls yet.
if (!D->param_empty() && !D->param_begin())
OS << " <<<NULL params x " << D->getNumParams() << ">>>";
}
void TextNodeDumper::VisitLifetimeExtendedTemporaryDecl(
const LifetimeExtendedTemporaryDecl *D) {
OS << " extended by ";
dumpBareDeclRef(D->getExtendingDecl());
OS << " mangling ";
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << D->getManglingNumber();
}
}
void TextNodeDumper::VisitFieldDecl(const FieldDecl *D) {
dumpName(D);
dumpType(D->getType());
if (D->isMutable())
OS << " mutable";
if (D->isModulePrivate())
OS << " __module_private__";
}
void TextNodeDumper::VisitVarDecl(const VarDecl *D) {
dumpName(D);
dumpType(D->getType());
StorageClass SC = D->getStorageClass();
if (SC != SC_None)
OS << ' ' << VarDecl::getStorageClassSpecifierString(SC);
switch (D->getTLSKind()) {
case VarDecl::TLS_None:
break;
case VarDecl::TLS_Static:
OS << " tls";
break;
case VarDecl::TLS_Dynamic:
OS << " tls_dynamic";
break;
}
if (D->isModulePrivate())
OS << " __module_private__";
if (D->isNRVOVariable())
OS << " nrvo";
if (D->isInline())
OS << " inline";
if (D->isConstexpr())
OS << " constexpr";
if (D->hasInit()) {
switch (D->getInitStyle()) {
case VarDecl::CInit:
OS << " cinit";
break;
case VarDecl::CallInit:
OS << " callinit";
break;
case VarDecl::ListInit:
OS << " listinit";
break;
}
}
if (D->needsDestruction(D->getASTContext()))
OS << " destroyed";
if (D->isParameterPack())
OS << " pack";
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-07 04:50:23 +08:00
if (D->hasInit()) {
const Expr *E = D->getInit();
// Only dump the value of constexpr VarDecls for now.
if (E && !E->isValueDependent() && D->isConstexpr()) {
const APValue *Value = D->evaluateValue();
if (Value)
AddChild("value", [=] { Visit(*Value, E->getType()); });
}
}
}
void TextNodeDumper::VisitBindingDecl(const BindingDecl *D) {
dumpName(D);
dumpType(D->getType());
}
void TextNodeDumper::VisitCapturedDecl(const CapturedDecl *D) {
if (D->isNothrow())
OS << " nothrow";
}
void TextNodeDumper::VisitImportDecl(const ImportDecl *D) {
OS << ' ' << D->getImportedModule()->getFullModuleName();
for (Decl *InitD :
D->getASTContext().getModuleInitializers(D->getImportedModule()))
dumpDeclRef(InitD, "initializer");
}
void TextNodeDumper::VisitPragmaCommentDecl(const PragmaCommentDecl *D) {
OS << ' ';
switch (D->getCommentKind()) {
case PCK_Unknown:
llvm_unreachable("unexpected pragma comment kind");
case PCK_Compiler:
OS << "compiler";
break;
case PCK_ExeStr:
OS << "exestr";
break;
case PCK_Lib:
OS << "lib";
break;
case PCK_Linker:
OS << "linker";
break;
case PCK_User:
OS << "user";
break;
}
StringRef Arg = D->getArg();
if (!Arg.empty())
OS << " \"" << Arg << "\"";
}
void TextNodeDumper::VisitPragmaDetectMismatchDecl(
const PragmaDetectMismatchDecl *D) {
OS << " \"" << D->getName() << "\" \"" << D->getValue() << "\"";
}
[clang][OpeMP] Model OpenMP structured-block in AST (PR40563) Summary: https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf, page 3: ``` structured block For C/C++, an executable statement, possibly compound, with a single entry at the top and a single exit at the bottom, or an OpenMP construct. COMMENT: See Section 2.1 on page 38 for restrictions on structured blocks. ``` ``` 2.1 Directive Format Some executable directives include a structured block. A structured block: • may contain infinite loops where the point of exit is never reached; • may halt due to an IEEE exception; • may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a _Noreturn specifier (in C) or a noreturn attribute (in C/C++); • may be an expression statement, iteration statement, selection statement, or try block, provided that the corresponding compound statement obtained by enclosing it in { and } would be a structured block; and Restrictions Restrictions to structured blocks are as follows: • Entry to a structured block must not be the result of a branch. • The point of exit cannot be a branch out of the structured block. C / C++ • The point of entry to a structured block must not be a call to setjmp(). • longjmp() and throw() must not violate the entry/exit criteria. ``` Of particular note here is the fact that OpenMP structured blocks are as-if `noexcept`, in the same sense as with the normal `noexcept` functions in C++. I.e. if throw happens, and it attempts to travel out of the `noexcept` function (here: out of the current structured-block), then the program terminates. Now, one of course can say that since it is explicitly prohibited by the Specification, then any and all programs that violate this Specification contain undefined behavior, and are unspecified, and thus no one should care about them. Just don't write broken code /s But i'm not sure this is a reasonable approach. I have personally had oss-fuzz issues of this origin - exception thrown inside of an OpenMP structured-block that is not caught, thus causing program termination. This issue isn't all that hard to catch, it's not any particularly different from diagnosing the same situation with the normal `noexcept` function. Now, clang static analyzer does not presently model exceptions. But clang-tidy has a simplisic [[ https://clang.llvm.org/extra/clang-tidy/checks/bugprone-exception-escape.html | bugprone-exception-escape ]] check, and it is even refactored as a `ExceptionAnalyzer` class for reuse. So it would be trivial to use that analyzer to check for exceptions escaping out of OpenMP structured blocks. (D59466) All that sounds too great to be true. Indeed, there is a caveat. Presently, it's practically impossible to do. To check a OpenMP structured block you need to somehow 'get' the OpenMP structured block, and you can't because it's simply not modelled in AST. `CapturedStmt`/`CapturedDecl` is not it's representation. Now, it is of course possible to write e.g. some AST matcher that would e.g. match every OpenMP executable directive, and then return the whatever `Stmt` is the structured block of said executable directive, if any. But i said //practically//. This isn't practical for the following reasons: 1. This **will** bitrot. That matcher will need to be kept up-to-date, and refreshed with every new OpenMP spec version. 2. Every single piece of code that would want that knowledge would need to have such matcher. Well, okay, if it is an AST matcher, it could be shared. But then you still have `RecursiveASTVisitor` and friends. `2 > 1`, so now you have code duplication. So it would be reasonable (and is fully within clang AST spirit) to not force every single consumer to do that work, but instead store that knowledge in the correct, and appropriate place - AST, class structure. Now, there is another hoop we need to get through. It isn't fully obvious //how// to model this. The best solution would of course be to simply add a `OMPStructuredBlock` transparent node. It would be optimal, it would give us two properties: * Given this `OMPExecutableDirective`, what's it OpenMP structured block? * It is trivial to check whether the `Stmt*` is a OpenMP structured block (`isa<OMPStructuredBlock>(ptr)`) But OpenMP structured block isn't **necessarily** the first, direct child of `OMP*Directive`. (even ignoring the clang's `CapturedStmt`/`CapturedDecl` that were inserted inbetween). So i'm not sure whether or not we could re-create AST statements after they were already created? There would be other costs to a new AST node: https://bugs.llvm.org/show_bug.cgi?id=40563#c12 ``` 1. You will need to break the representation of loops. The body should be replaced by the "structured block" entity. 2. You will need to support serialization/deserialization. 3. You will need to support template instantiation. 4. You will need to support codegen and take this new construct to account in each OpenMP directive. ``` Instead, there **is** an functionally-equivalent, alternative solution, consisting of two parts. Part 1: * Add a member function `isStandaloneDirective()` to the `OMPExecutableDirective` class, that will tell whether this directive is stand-alone or not, as per the spec. We need it because we can't just check for the existance of associated statements, see code comment. * Add a member function `getStructuredBlock()` to the OMPExecutableDirective` class itself, that assert that this is not a stand-alone directive, and either return the correct loop body if this is a loop-like directive, or the captured statement. This way, given an `OMPExecutableDirective`, we can get it's structured block. Also, since the knowledge is ingrained into the clang OpenMP implementation, it will not cause any duplication, and //hopefully// won't bitrot. Great we achieved 1 of 2 properties of `OMPStructuredBlock` approach. Thus, there is a second part needed: * How can we check whether a given `Stmt*` is `OMPStructuredBlock`? Well, we can't really, in general. I can see this workaround: ``` class FunctionASTVisitor : public RecursiveASTVisitor<FunctionASTVisitor> { using Base = RecursiveASTVisitor<FunctionASTVisitor>; public: bool VisitOMPExecDir(OMPExecDir *D) { OmpStructuredStmts.emplace_back(D.getStructuredStmt()); } bool VisitSOMETHINGELSE(???) { if(InOmpStructuredStmt) HI! } bool TraverseStmt(Stmt *Node) { if (!Node) return Base::TraverseStmt(Node); if (OmpStructuredStmts.back() == Node) ++InOmpStructuredStmt; Base::TraverseStmt(Node); if (OmpStructuredStmts.back() == Node) { OmpStructuredStmts.pop_back(); --InOmpStructuredStmt; } return true; } std::vector<Stmt*> OmpStructuredStmts; int InOmpStructuredStmt = 0; }; ``` But i really don't see using it in practice. It's just too intrusive; and again, requires knowledge duplication. .. but no. The solution lies right on the ground. Why don't we simply store this `i'm a openmp structured block` in the bitfield of the `Stmt` itself? This does not appear to have any impact on the memory footprint of the clang AST, since it's just a single extra bit in the bitfield. At least the static assertions don't fail. Thus, indeed, we can achieve both of the properties without a new AST node. We can cheaply set that bit right in sema, at the end of `Sema::ActOnOpenMPExecutableDirective()`, by just calling the `getStructuredBlock()` that we just added. Test coverage that demonstrates all this has been added. This isn't as great with serialization though. Most of it does not use abbrevs, so we do end up paying the full price (4 bytes?) instead of a single bit. That price, of course, can be reclaimed by using abbrevs. In fact, i suspect that //might// not just reclaim these bytes, but pack these PCH significantly. I'm not seeing a third solution. If there is one, it would be interesting to hear about it. ("just don't write code that would require `isa<OMPStructuredBlock>(ptr)`" is not a solution.) Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40563 | PR40563 ]]. Reviewers: ABataev, rjmccall, hfinkel, rsmith, riccibruno, gribozavr Reviewed By: ABataev, gribozavr Subscribers: mgorny, aaron.ballman, steveire, guansong, jfb, jdoerfert, cfe-commits Tags: #clang, #openmp Differential Revision: https://reviews.llvm.org/D59214 llvm-svn: 356570
2019-03-21 00:32:36 +08:00
void TextNodeDumper::VisitOMPExecutableDirective(
const OMPExecutableDirective *D) {
if (D->isStandaloneDirective())
OS << " openmp_standalone_directive";
}
void TextNodeDumper::VisitOMPDeclareReductionDecl(
const OMPDeclareReductionDecl *D) {
dumpName(D);
dumpType(D->getType());
OS << " combiner";
dumpPointer(D->getCombiner());
if (const auto *Initializer = D->getInitializer()) {
OS << " initializer";
dumpPointer(Initializer);
switch (D->getInitializerKind()) {
case OMPDeclareReductionDecl::DirectInit:
OS << " omp_priv = ";
break;
case OMPDeclareReductionDecl::CopyInit:
OS << " omp_priv ()";
break;
case OMPDeclareReductionDecl::CallInit:
break;
}
}
}
void TextNodeDumper::VisitOMPRequiresDecl(const OMPRequiresDecl *D) {
for (const auto *C : D->clauselists()) {
AddChild([=] {
if (!C) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>> OMPClause";
return;
}
{
ColorScope Color(OS, ShowColors, AttrColor);
StringRef ClauseName(
llvm::omp::getOpenMPClauseName(C->getClauseKind()));
OS << "OMP" << ClauseName.substr(/*Start=*/0, /*N=*/1).upper()
<< ClauseName.drop_front() << "Clause";
}
dumpPointer(C);
dumpSourceRange(SourceRange(C->getBeginLoc(), C->getEndLoc()));
});
}
}
void TextNodeDumper::VisitOMPCapturedExprDecl(const OMPCapturedExprDecl *D) {
dumpName(D);
dumpType(D->getType());
}
void TextNodeDumper::VisitNamespaceDecl(const NamespaceDecl *D) {
dumpName(D);
if (D->isInline())
OS << " inline";
if (!D->isOriginalNamespace())
dumpDeclRef(D->getOriginalNamespace(), "original");
}
void TextNodeDumper::VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
OS << ' ';
dumpBareDeclRef(D->getNominatedNamespace());
}
void TextNodeDumper::VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
dumpName(D);
dumpDeclRef(D->getAliasedNamespace());
}
void TextNodeDumper::VisitTypeAliasDecl(const TypeAliasDecl *D) {
dumpName(D);
dumpType(D->getUnderlyingType());
}
void TextNodeDumper::VisitTypeAliasTemplateDecl(
const TypeAliasTemplateDecl *D) {
dumpName(D);
}
void TextNodeDumper::VisitCXXRecordDecl(const CXXRecordDecl *D) {
VisitRecordDecl(D);
if (!D->isCompleteDefinition())
return;
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "DefinitionData";
}
#define FLAG(fn, name) \
if (D->fn()) \
OS << " " #name;
FLAG(isParsingBaseSpecifiers, parsing_base_specifiers);
FLAG(isGenericLambda, generic);
FLAG(isLambda, lambda);
FLAG(isAnonymousStructOrUnion, is_anonymous);
FLAG(canPassInRegisters, pass_in_registers);
FLAG(isEmpty, empty);
FLAG(isAggregate, aggregate);
FLAG(isStandardLayout, standard_layout);
FLAG(isTriviallyCopyable, trivially_copyable);
FLAG(isPOD, pod);
FLAG(isTrivial, trivial);
FLAG(isPolymorphic, polymorphic);
FLAG(isAbstract, abstract);
FLAG(isLiteral, literal);
FLAG(hasUserDeclaredConstructor, has_user_declared_ctor);
FLAG(hasConstexprNonCopyMoveConstructor, has_constexpr_non_copy_move_ctor);
FLAG(hasMutableFields, has_mutable_fields);
FLAG(hasVariantMembers, has_variant_members);
FLAG(allowConstDefaultInit, can_const_default_init);
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "DefaultConstructor";
}
FLAG(hasDefaultConstructor, exists);
FLAG(hasTrivialDefaultConstructor, trivial);
FLAG(hasNonTrivialDefaultConstructor, non_trivial);
FLAG(hasUserProvidedDefaultConstructor, user_provided);
FLAG(hasConstexprDefaultConstructor, constexpr);
FLAG(needsImplicitDefaultConstructor, needs_implicit);
FLAG(defaultedDefaultConstructorIsConstexpr, defaulted_is_constexpr);
});
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "CopyConstructor";
}
FLAG(hasSimpleCopyConstructor, simple);
FLAG(hasTrivialCopyConstructor, trivial);
FLAG(hasNonTrivialCopyConstructor, non_trivial);
FLAG(hasUserDeclaredCopyConstructor, user_declared);
FLAG(hasCopyConstructorWithConstParam, has_const_param);
FLAG(needsImplicitCopyConstructor, needs_implicit);
FLAG(needsOverloadResolutionForCopyConstructor,
needs_overload_resolution);
if (!D->needsOverloadResolutionForCopyConstructor())
FLAG(defaultedCopyConstructorIsDeleted, defaulted_is_deleted);
FLAG(implicitCopyConstructorHasConstParam, implicit_has_const_param);
});
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "MoveConstructor";
}
FLAG(hasMoveConstructor, exists);
FLAG(hasSimpleMoveConstructor, simple);
FLAG(hasTrivialMoveConstructor, trivial);
FLAG(hasNonTrivialMoveConstructor, non_trivial);
FLAG(hasUserDeclaredMoveConstructor, user_declared);
FLAG(needsImplicitMoveConstructor, needs_implicit);
FLAG(needsOverloadResolutionForMoveConstructor,
needs_overload_resolution);
if (!D->needsOverloadResolutionForMoveConstructor())
FLAG(defaultedMoveConstructorIsDeleted, defaulted_is_deleted);
});
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "CopyAssignment";
}
FLAG(hasSimpleCopyAssignment, simple);
FLAG(hasTrivialCopyAssignment, trivial);
FLAG(hasNonTrivialCopyAssignment, non_trivial);
FLAG(hasCopyAssignmentWithConstParam, has_const_param);
FLAG(hasUserDeclaredCopyAssignment, user_declared);
FLAG(needsImplicitCopyAssignment, needs_implicit);
FLAG(needsOverloadResolutionForCopyAssignment, needs_overload_resolution);
FLAG(implicitCopyAssignmentHasConstParam, implicit_has_const_param);
});
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "MoveAssignment";
}
FLAG(hasMoveAssignment, exists);
FLAG(hasSimpleMoveAssignment, simple);
FLAG(hasTrivialMoveAssignment, trivial);
FLAG(hasNonTrivialMoveAssignment, non_trivial);
FLAG(hasUserDeclaredMoveAssignment, user_declared);
FLAG(needsImplicitMoveAssignment, needs_implicit);
FLAG(needsOverloadResolutionForMoveAssignment, needs_overload_resolution);
});
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "Destructor";
}
FLAG(hasSimpleDestructor, simple);
FLAG(hasIrrelevantDestructor, irrelevant);
FLAG(hasTrivialDestructor, trivial);
FLAG(hasNonTrivialDestructor, non_trivial);
FLAG(hasUserDeclaredDestructor, user_declared);
FLAG(hasConstexprDestructor, constexpr);
FLAG(needsImplicitDestructor, needs_implicit);
FLAG(needsOverloadResolutionForDestructor, needs_overload_resolution);
if (!D->needsOverloadResolutionForDestructor())
FLAG(defaultedDestructorIsDeleted, defaulted_is_deleted);
});
});
for (const auto &I : D->bases()) {
AddChild([=] {
if (I.isVirtual())
OS << "virtual ";
dumpAccessSpecifier(I.getAccessSpecifier());
dumpType(I.getType());
if (I.isPackExpansion())
OS << "...";
});
}
}
void TextNodeDumper::VisitFunctionTemplateDecl(const FunctionTemplateDecl *D) {
dumpName(D);
}
void TextNodeDumper::VisitClassTemplateDecl(const ClassTemplateDecl *D) {
dumpName(D);
}
void TextNodeDumper::VisitVarTemplateDecl(const VarTemplateDecl *D) {
dumpName(D);
}
void TextNodeDumper::VisitBuiltinTemplateDecl(const BuiltinTemplateDecl *D) {
dumpName(D);
}
void TextNodeDumper::VisitTemplateTypeParmDecl(const TemplateTypeParmDecl *D) {
if (const auto *TC = D->getTypeConstraint()) {
OS << " ";
dumpBareDeclRef(TC->getNamedConcept());
if (TC->getNamedConcept() != TC->getFoundDecl()) {
OS << " (";
dumpBareDeclRef(TC->getFoundDecl());
OS << ")";
}
} else if (D->wasDeclaredWithTypename())
OS << " typename";
else
OS << " class";
OS << " depth " << D->getDepth() << " index " << D->getIndex();
if (D->isParameterPack())
OS << " ...";
dumpName(D);
}
void TextNodeDumper::VisitNonTypeTemplateParmDecl(
const NonTypeTemplateParmDecl *D) {
dumpType(D->getType());
OS << " depth " << D->getDepth() << " index " << D->getIndex();
if (D->isParameterPack())
OS << " ...";
dumpName(D);
}
void TextNodeDumper::VisitTemplateTemplateParmDecl(
const TemplateTemplateParmDecl *D) {
OS << " depth " << D->getDepth() << " index " << D->getIndex();
if (D->isParameterPack())
OS << " ...";
dumpName(D);
}
void TextNodeDumper::VisitUsingDecl(const UsingDecl *D) {
OS << ' ';
if (D->getQualifier())
D->getQualifier()->print(OS, D->getASTContext().getPrintingPolicy());
OS << D->getDeclName();
}
void TextNodeDumper::VisitUsingEnumDecl(const UsingEnumDecl *D) {
OS << ' ';
dumpBareDeclRef(D->getEnumDecl());
}
void TextNodeDumper::VisitUnresolvedUsingTypenameDecl(
const UnresolvedUsingTypenameDecl *D) {
OS << ' ';
if (D->getQualifier())
D->getQualifier()->print(OS, D->getASTContext().getPrintingPolicy());
OS << D->getDeclName();
}
void TextNodeDumper::VisitUnresolvedUsingValueDecl(
const UnresolvedUsingValueDecl *D) {
OS << ' ';
if (D->getQualifier())
D->getQualifier()->print(OS, D->getASTContext().getPrintingPolicy());
OS << D->getDeclName();
dumpType(D->getType());
}
void TextNodeDumper::VisitUsingShadowDecl(const UsingShadowDecl *D) {
OS << ' ';
dumpBareDeclRef(D->getTargetDecl());
}
void TextNodeDumper::VisitConstructorUsingShadowDecl(
const ConstructorUsingShadowDecl *D) {
if (D->constructsVirtualBase())
OS << " virtual";
AddChild([=] {
OS << "target ";
dumpBareDeclRef(D->getTargetDecl());
});
AddChild([=] {
OS << "nominated ";
dumpBareDeclRef(D->getNominatedBaseClass());
OS << ' ';
dumpBareDeclRef(D->getNominatedBaseClassShadowDecl());
});
AddChild([=] {
OS << "constructed ";
dumpBareDeclRef(D->getConstructedBaseClass());
OS << ' ';
dumpBareDeclRef(D->getConstructedBaseClassShadowDecl());
});
}
void TextNodeDumper::VisitLinkageSpecDecl(const LinkageSpecDecl *D) {
switch (D->getLanguage()) {
case LinkageSpecDecl::lang_c:
OS << " C";
break;
case LinkageSpecDecl::lang_cxx:
OS << " C++";
break;
}
}
void TextNodeDumper::VisitAccessSpecDecl(const AccessSpecDecl *D) {
OS << ' ';
dumpAccessSpecifier(D->getAccess());
}
void TextNodeDumper::VisitFriendDecl(const FriendDecl *D) {
if (TypeSourceInfo *T = D->getFriendType())
dumpType(T->getType());
}
void TextNodeDumper::VisitObjCIvarDecl(const ObjCIvarDecl *D) {
dumpName(D);
dumpType(D->getType());
if (D->getSynthesize())
OS << " synthesize";
switch (D->getAccessControl()) {
case ObjCIvarDecl::None:
OS << " none";
break;
case ObjCIvarDecl::Private:
OS << " private";
break;
case ObjCIvarDecl::Protected:
OS << " protected";
break;
case ObjCIvarDecl::Public:
OS << " public";
break;
case ObjCIvarDecl::Package:
OS << " package";
break;
}
}
void TextNodeDumper::VisitObjCMethodDecl(const ObjCMethodDecl *D) {
if (D->isInstanceMethod())
OS << " -";
else
OS << " +";
dumpName(D);
dumpType(D->getReturnType());
if (D->isVariadic())
OS << " variadic";
}
void TextNodeDumper::VisitObjCTypeParamDecl(const ObjCTypeParamDecl *D) {
dumpName(D);
switch (D->getVariance()) {
case ObjCTypeParamVariance::Invariant:
break;
case ObjCTypeParamVariance::Covariant:
OS << " covariant";
break;
case ObjCTypeParamVariance::Contravariant:
OS << " contravariant";
break;
}
if (D->hasExplicitBound())
OS << " bounded";
dumpType(D->getUnderlyingType());
}
void TextNodeDumper::VisitObjCCategoryDecl(const ObjCCategoryDecl *D) {
dumpName(D);
dumpDeclRef(D->getClassInterface());
dumpDeclRef(D->getImplementation());
for (const auto *P : D->protocols())
dumpDeclRef(P);
}
void TextNodeDumper::VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *D) {
dumpName(D);
dumpDeclRef(D->getClassInterface());
dumpDeclRef(D->getCategoryDecl());
}
void TextNodeDumper::VisitObjCProtocolDecl(const ObjCProtocolDecl *D) {
dumpName(D);
for (const auto *Child : D->protocols())
dumpDeclRef(Child);
}
void TextNodeDumper::VisitObjCInterfaceDecl(const ObjCInterfaceDecl *D) {
dumpName(D);
dumpDeclRef(D->getSuperClass(), "super");
dumpDeclRef(D->getImplementation());
for (const auto *Child : D->protocols())
dumpDeclRef(Child);
}
void TextNodeDumper::VisitObjCImplementationDecl(
const ObjCImplementationDecl *D) {
dumpName(D);
dumpDeclRef(D->getSuperClass(), "super");
dumpDeclRef(D->getClassInterface());
}
void TextNodeDumper::VisitObjCCompatibleAliasDecl(
const ObjCCompatibleAliasDecl *D) {
dumpName(D);
dumpDeclRef(D->getClassInterface());
}
void TextNodeDumper::VisitObjCPropertyDecl(const ObjCPropertyDecl *D) {
dumpName(D);
dumpType(D->getType());
if (D->getPropertyImplementation() == ObjCPropertyDecl::Required)
OS << " required";
else if (D->getPropertyImplementation() == ObjCPropertyDecl::Optional)
OS << " optional";
ObjCPropertyAttribute::Kind Attrs = D->getPropertyAttributes();
if (Attrs != ObjCPropertyAttribute::kind_noattr) {
if (Attrs & ObjCPropertyAttribute::kind_readonly)
OS << " readonly";
if (Attrs & ObjCPropertyAttribute::kind_assign)
OS << " assign";
if (Attrs & ObjCPropertyAttribute::kind_readwrite)
OS << " readwrite";
if (Attrs & ObjCPropertyAttribute::kind_retain)
OS << " retain";
if (Attrs & ObjCPropertyAttribute::kind_copy)
OS << " copy";
if (Attrs & ObjCPropertyAttribute::kind_nonatomic)
OS << " nonatomic";
if (Attrs & ObjCPropertyAttribute::kind_atomic)
OS << " atomic";
if (Attrs & ObjCPropertyAttribute::kind_weak)
OS << " weak";
if (Attrs & ObjCPropertyAttribute::kind_strong)
OS << " strong";
if (Attrs & ObjCPropertyAttribute::kind_unsafe_unretained)
OS << " unsafe_unretained";
if (Attrs & ObjCPropertyAttribute::kind_class)
OS << " class";
if (Attrs & ObjCPropertyAttribute::kind_direct)
Implement __attribute__((objc_direct)), __attribute__((objc_direct_members)) __attribute__((objc_direct)) is an attribute on methods declaration, and __attribute__((objc_direct_members)) on implementation, categories or extensions. A `direct` property specifier is added (@property(direct) type name) These attributes / specifiers cause the method to have no associated Objective-C metadata (for the property or the method itself), and the calling convention to be a direct C function call. The symbol for the method has enforced hidden visibility and such direct calls are hence unreachable cross image. An explicit C function must be made if so desired to wrap them. The implicit `self` and `_cmd` arguments are preserved, however to maintain compatibility with the usual `objc_msgSend` semantics, 3 fundamental precautions are taken: 1) for instance methods, `self` is nil-checked. On arm64 backends this typically adds a single instruction (cbz x0, <closest-ret>) to the codegen, for the vast majority of the cases when the return type is a scalar. 2) for class methods, because the class may not be realized/initialized yet, a call to `[self self]` is emitted. When the proper deployment target is used, this is optimized to `objc_opt_self(self)`. However, long term we might want to emit something better that the optimizer can reason about. When inlining kicks in, these calls aren't optimized away as the optimizer has no idea that a single call is really necessary. 3) the calling convention for the `_cmd` argument is changed: the caller leaves the second argument to the call undefined, and the selector is loaded inside the body when it's referenced only. As far as error reporting goes, the compiler refuses: - making any overloads direct, - making an overload of a direct method, - implementations marked as direct when the declaration in the interface isn't (the other way around is allowed, as the direct attribute is inherited from the declaration), - marking methods required for protocol conformance as direct, - messaging an unqualified `id` with a direct method, - forming any @selector() expression with only direct selectors. As warnings: - any inconsistency of direct-related calling convention when @selector() or messaging is used, - forming any @selector() expression with a possibly direct selector. Lastly an `objc_direct_members` attribute is added that can decorate `@implementation` blocks and causes methods only declared there (and in no `@interface`) to be automatically direct. When decorating an `@interface` then all methods and properties declared in this block are marked direct. Radar-ID: rdar://problem/2684889 Differential Revision: https://reviews.llvm.org/D69991 Reviewed-By: John McCall
2019-11-08 15:14:58 +08:00
OS << " direct";
if (Attrs & ObjCPropertyAttribute::kind_getter)
dumpDeclRef(D->getGetterMethodDecl(), "getter");
if (Attrs & ObjCPropertyAttribute::kind_setter)
dumpDeclRef(D->getSetterMethodDecl(), "setter");
}
}
void TextNodeDumper::VisitObjCPropertyImplDecl(const ObjCPropertyImplDecl *D) {
dumpName(D->getPropertyDecl());
if (D->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize)
OS << " synthesize";
else
OS << " dynamic";
dumpDeclRef(D->getPropertyDecl());
dumpDeclRef(D->getPropertyIvarDecl());
}
void TextNodeDumper::VisitBlockDecl(const BlockDecl *D) {
if (D->isVariadic())
OS << " variadic";
if (D->capturesCXXThis())
OS << " captures_this";
}
void TextNodeDumper::VisitConceptDecl(const ConceptDecl *D) {
dumpName(D);
}