llvm-project/mlir/test/IR/core-ops.mlir

177 lines
5.4 KiB
MLIR
Raw Normal View History

// RUN: mlir-opt %s | FileCheck %s
// CHECK: #map0 = (d0) -> (d0 + 1)
// CHECK: #map1 = (d0, d1) -> (d0 + 1, d1 + 2)
#map5 = (d0, d1) -> (d0 + 1, d1 + 2)
// CHECK: #map2 = (d0, d1)[s0, s1] -> (d0 + s1, d1 + s0)
// CHECK: #map3 = ()[s0] -> (s0 + 1)
// CHECK-LABEL: cfgfunc @cfgfunc_with_ops(f32) {
cfgfunc @cfgfunc_with_ops(f32) {
bb0(%a : f32):
// CHECK: %0 = "getTensor"() : () -> tensor<4x4x?xf32>
%t = "getTensor"() : () -> tensor<4x4x?xf32>
// CHECK: %1 = dim %0, 2 : tensor<4x4x?xf32>
%t2 = "dim"(%t){index: 2} : (tensor<4x4x?xf32>) -> affineint
// CHECK: %2 = addf %arg0, %arg0 : f32
%x = "addf"(%a, %a) : (f32,f32) -> (f32)
// CHECK: return
return
}
// CHECK-LABEL: cfgfunc @standard_instrs(tensor<4x4x?xf32>, f32) {
cfgfunc @standard_instrs(tensor<4x4x?xf32>, f32) {
// CHECK: bb0(%arg0: tensor<4x4x?xf32>, %arg1: f32):
bb42(%t: tensor<4x4x?xf32>, %f: f32):
// CHECK: %0 = dim %arg0, 2 : tensor<4x4x?xf32>
%a = "dim"(%t){index: 2} : (tensor<4x4x?xf32>) -> affineint
// CHECK: %1 = dim %arg0, 2 : tensor<4x4x?xf32>
%a2 = dim %t, 2 : tensor<4x4x?xf32>
// CHECK: %2 = addf %arg1, %arg1 : f32
%f2 = "addf"(%f, %f) : (f32,f32) -> f32
// CHECK: %3 = addf %2, %2 : f32
%f3 = addf %f2, %f2 : f32
// CHECK: %4 = mulf %2, %2 : f32
%f4 = mulf %f2, %f2 : f32
// CHECK: %c42_i32 = constant 42 : i32
%x = "constant"(){value: 42} : () -> i32
// CHECK: %c42_i32_0 = constant 42 : i32
%7 = constant 42 : i32
// CHECK: %c43 = constant 43 {crazy: "foo"} : affineint
%8 = constant 43 {crazy: "foo"} : affineint
// CHECK: %cst = constant 4.300000e+01 : bf16
%9 = constant 43.0 : bf16
// CHECK: %f = constant @cfgfunc_with_ops : (f32) -> ()
%10 = constant @cfgfunc_with_ops : (f32) -> ()
// CHECK: %f_1 = constant @affine_apply : () -> ()
%11 = constant @affine_apply : () -> ()
// CHECK: %f_2 = constant @affine_apply : () -> ()
%12 = constant @affine_apply : () -> ()
return
}
// CHECK-LABEL: cfgfunc @affine_apply() {
cfgfunc @affine_apply() {
bb0:
%i = "constant"() {value: 0} : () -> affineint
%j = "constant"() {value: 1} : () -> affineint
// CHECK: affine_apply #map0(%c0)
%a = "affine_apply" (%i) { map: (d0) -> (d0 + 1) } :
(affineint) -> (affineint)
// CHECK: affine_apply #map1(%c0, %c1)
%b = "affine_apply" (%i, %j) { map: #map5 } :
(affineint, affineint) -> (affineint, affineint)
// CHECK: affine_apply #map2(%c0, %c1)[%c1, %c0]
%c = affine_apply (i,j)[m,n] -> (i+n, j+m)(%i, %j)[%j, %i]
// CHECK: affine_apply #map3()[%c0]
%d = affine_apply ()[x] -> (x+1)()[%i]
return
}
// CHECK-LABEL: cfgfunc @load_store
cfgfunc @load_store(memref<4x4xi32>, affineint) {
bb0(%0: memref<4x4xi32>, %1: affineint):
// CHECK: %0 = load %arg0[%arg1, %arg1] : memref<4x4xi32>
%2 = "load"(%0, %1, %1) : (memref<4x4xi32>, affineint, affineint)->i32
// CHECK: %1 = load %arg0[%arg1, %arg1] : memref<4x4xi32>
%3 = load %0[%1, %1] : memref<4x4xi32>
return
}
// CHECK-LABEL: mlfunc @return_op(%arg0 : i32) -> i32 {
mlfunc @return_op(%a : i32) -> i32 {
// CHECK: return %arg0 : i32
"return" (%a) : (i32)->()
}
// CHECK-LABEL: mlfunc @calls(%arg0 : i32) {
mlfunc @calls(%arg0 : i32) {
// CHECK: %0 = call @return_op(%arg0) : (i32) -> i32
%x = call @return_op(%arg0) : (i32) -> i32
// CHECK: %1 = call @return_op(%0) : (i32) -> i32
%y = call @return_op(%x) : (i32) -> i32
// CHECK: %2 = call @return_op(%0) : (i32) -> i32
%z = "call"(%x) {callee: @return_op : (i32) -> i32} : (i32) -> i32
// CHECK: %f = constant @affine_apply : () -> ()
%f = constant @affine_apply : () -> ()
// CHECK: call_indirect %f() : () -> ()
call_indirect %f() : () -> ()
// CHECK: %f_0 = constant @return_op : (i32) -> i32
%f_0 = constant @return_op : (i32) -> i32
// CHECK: %3 = call_indirect %f_0(%arg0) : (i32) -> i32
%2 = call_indirect %f_0(%arg0) : (i32) -> i32
// CHECK: %4 = call_indirect %f_0(%arg0) : (i32) -> i32
%3 = "call_indirect"(%f_0, %arg0) : ((i32) -> i32, i32) -> i32
return
}
// CHECK-LABEL: mlfunc @extract_element(%arg0 : tensor<*xi32>, %arg1 : tensor<4x4xf32>) -> i32 {
mlfunc @extract_element(%arg0 : tensor<*xi32>, %arg1 : tensor<4x4xf32>) -> i32 {
%c0 = "constant"() {value: 0} : () -> affineint
// CHECK: %0 = extract_element %arg0[%c0, %c0, %c0, %c0] : tensor<*xi32>
%0 = extract_element %arg0[%c0, %c0, %c0, %c0] : tensor<*xi32>
// CHECK: %1 = extract_element %arg1[%c0, %c0] : tensor<4x4xf32>
%1 = extract_element %arg1[%c0, %c0] : tensor<4x4xf32>
return %0 : i32
}
// CHECK-LABEL: mlfunc @shape_cast(%arg0
mlfunc @shape_cast(%arg0 : tensor<*xf32>, %arg1 : tensor<4x4xf32>, %arg2 : tensor<?x?xf32>) {
// CHECK: %0 = shape_cast %arg0 : tensor<*xf32> to tensor<?x?xf32>
%0 = shape_cast %arg0 : tensor<*xf32> to tensor<?x?xf32>
// CHECK: %1 = shape_cast %arg1 : tensor<4x4xf32> to tensor<*xf32>
%1 = shape_cast %arg1 : tensor<4x4xf32> to tensor<*xf32>
// CHECK: %2 = shape_cast %arg2 : tensor<?x?xf32> to tensor<4x?xf32>
%2 = shape_cast %arg2 : tensor<?x?xf32> to tensor<4x?xf32>
// CHECK: %3 = shape_cast %2 : tensor<4x?xf32> to tensor<?x?xf32>
%3 = shape_cast %2 : tensor<4x?xf32> to tensor<?x?xf32>
return
}
// CHECK-LABEL: mlfunc @test_dimop(%arg0
mlfunc @test_dimop(%arg0 : tensor<4x4x?xf32>) {
// CHECK: %0 = dim %arg0, 2 : tensor<4x4x?xf32>
%0 = dim %arg0, 2 : tensor<4x4x?xf32>
// use dim as an affine_int to ensure type correctness
%1 = affine_apply (d0) -> (d0)(%0)
return
}