llvm-project/llvm/lib/Transforms/Scalar/LoopVersioningLICM.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

641 lines
24 KiB
C++
Raw Normal View History

//===- LoopVersioningLICM.cpp - LICM Loop Versioning ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// When alias analysis is uncertain about the aliasing between any two accesses,
// it will return MayAlias. This uncertainty from alias analysis restricts LICM
// from proceeding further. In cases where alias analysis is uncertain we might
// use loop versioning as an alternative.
//
// Loop Versioning will create a version of the loop with aggressive aliasing
// assumptions in addition to the original with conservative (default) aliasing
// assumptions. The version of the loop making aggressive aliasing assumptions
// will have all the memory accesses marked as no-alias. These two versions of
// loop will be preceded by a memory runtime check. This runtime check consists
// of bound checks for all unique memory accessed in loop, and it ensures the
// lack of memory aliasing. The result of the runtime check determines which of
// the loop versions is executed: If the runtime check detects any memory
// aliasing, then the original loop is executed. Otherwise, the version with
// aggressive aliasing assumptions is used.
//
// Following are the top level steps:
//
// a) Perform LoopVersioningLICM's feasibility check.
// b) If loop is a candidate for versioning then create a memory bound check,
// by considering all the memory accesses in loop body.
// c) Clone original loop and set all memory accesses as no-alias in new loop.
// d) Set original loop & versioned loop as a branch target of the runtime check
// result.
//
// It transforms loop as shown below:
//
// +----------------+
// |Runtime Memcheck|
// +----------------+
// |
// +----------+----------------+----------+
// | |
// +---------+----------+ +-----------+----------+
// |Orig Loop Preheader | |Cloned Loop Preheader |
// +--------------------+ +----------------------+
// | |
// +--------------------+ +----------------------+
// |Orig Loop Body | |Cloned Loop Body |
// +--------------------+ +----------------------+
// | |
// +--------------------+ +----------------------+
// |Orig Loop Exit Block| |Cloned Loop Exit Block|
// +--------------------+ +-----------+----------+
// | |
// +----------+--------------+-----------+
// |
// +-----+----+
// |Join Block|
// +----------+
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include <cassert>
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "loop-versioning-licm"
static const char *LICMVersioningMetaData = "llvm.loop.licm_versioning.disable";
/// Threshold minimum allowed percentage for possible
/// invariant instructions in a loop.
static cl::opt<float>
LVInvarThreshold("licm-versioning-invariant-threshold",
cl::desc("LoopVersioningLICM's minimum allowed percentage"
"of possible invariant instructions per loop"),
cl::init(25), cl::Hidden);
/// Threshold for maximum allowed loop nest/depth
static cl::opt<unsigned> LVLoopDepthThreshold(
"licm-versioning-max-depth-threshold",
cl::desc(
"LoopVersioningLICM's threshold for maximum allowed loop nest/depth"),
cl::init(2), cl::Hidden);
namespace {
struct LoopVersioningLICM : public LoopPass {
static char ID;
LoopVersioningLICM()
: LoopPass(ID), LoopDepthThreshold(LVLoopDepthThreshold),
InvariantThreshold(LVInvarThreshold) {
initializeLoopVersioningLICMPass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequiredID(LCSSAID);
AU.addRequired<LoopAccessLegacyAnalysis>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
}
StringRef getPassName() const override { return "Loop Versioning for LICM"; }
void reset() {
AA = nullptr;
SE = nullptr;
LAA = nullptr;
CurLoop = nullptr;
LoadAndStoreCounter = 0;
InvariantCounter = 0;
IsReadOnlyLoop = true;
ORE = nullptr;
CurAST.reset();
}
class AutoResetter {
public:
AutoResetter(LoopVersioningLICM &LVLICM) : LVLICM(LVLICM) {}
~AutoResetter() { LVLICM.reset(); }
private:
LoopVersioningLICM &LVLICM;
};
private:
// Current AliasAnalysis information
AliasAnalysis *AA = nullptr;
// Current ScalarEvolution
ScalarEvolution *SE = nullptr;
// Current LoopAccessAnalysis
LoopAccessLegacyAnalysis *LAA = nullptr;
// Current Loop's LoopAccessInfo
const LoopAccessInfo *LAI = nullptr;
// The current loop we are working on.
Loop *CurLoop = nullptr;
// AliasSet information for the current loop.
std::unique_ptr<AliasSetTracker> CurAST;
// Maximum loop nest threshold
unsigned LoopDepthThreshold;
// Minimum invariant threshold
float InvariantThreshold;
// Counter to track num of load & store
unsigned LoadAndStoreCounter = 0;
// Counter to track num of invariant
unsigned InvariantCounter = 0;
// Read only loop marker.
bool IsReadOnlyLoop = true;
// OptimizationRemarkEmitter
OptimizationRemarkEmitter *ORE;
bool isLegalForVersioning();
bool legalLoopStructure();
bool legalLoopInstructions();
bool legalLoopMemoryAccesses();
bool isLoopAlreadyVisited();
void setNoAliasToLoop(Loop *VerLoop);
bool instructionSafeForVersioning(Instruction *I);
};
} // end anonymous namespace
/// Check loop structure and confirms it's good for LoopVersioningLICM.
bool LoopVersioningLICM::legalLoopStructure() {
// Loop must be in loop simplify form.
if (!CurLoop->isLoopSimplifyForm()) {
LLVM_DEBUG(dbgs() << " loop is not in loop-simplify form.\n");
return false;
}
// Loop should be innermost loop, if not return false.
if (!CurLoop->getSubLoops().empty()) {
LLVM_DEBUG(dbgs() << " loop is not innermost\n");
return false;
}
// Loop should have a single backedge, if not return false.
if (CurLoop->getNumBackEdges() != 1) {
LLVM_DEBUG(dbgs() << " loop has multiple backedges\n");
return false;
}
// Loop must have a single exiting block, if not return false.
if (!CurLoop->getExitingBlock()) {
LLVM_DEBUG(dbgs() << " loop has multiple exiting block\n");
return false;
}
// We only handle bottom-tested loop, i.e. loop in which the condition is
// checked at the end of each iteration. With that we can assume that all
// instructions in the loop are executed the same number of times.
if (CurLoop->getExitingBlock() != CurLoop->getLoopLatch()) {
LLVM_DEBUG(dbgs() << " loop is not bottom tested\n");
return false;
}
// Parallel loops must not have aliasing loop-invariant memory accesses.
// Hence we don't need to version anything in this case.
if (CurLoop->isAnnotatedParallel()) {
LLVM_DEBUG(dbgs() << " Parallel loop is not worth versioning\n");
return false;
}
// Loop depth more then LoopDepthThreshold are not allowed
if (CurLoop->getLoopDepth() > LoopDepthThreshold) {
LLVM_DEBUG(dbgs() << " loop depth is more then threshold\n");
return false;
}
// We need to be able to compute the loop trip count in order
// to generate the bound checks.
const SCEV *ExitCount = SE->getBackedgeTakenCount(CurLoop);
if (ExitCount == SE->getCouldNotCompute()) {
LLVM_DEBUG(dbgs() << " loop does not has trip count\n");
return false;
}
return true;
}
/// Check memory accesses in loop and confirms it's good for
/// LoopVersioningLICM.
bool LoopVersioningLICM::legalLoopMemoryAccesses() {
bool HasMayAlias = false;
bool TypeSafety = false;
bool HasMod = false;
// Memory check:
// Transform phase will generate a versioned loop and also a runtime check to
// ensure the pointers are independent and they dont alias.
// In version variant of loop, alias meta data asserts that all access are
// mutually independent.
//
// Pointers aliasing in alias domain are avoided because with multiple
// aliasing domains we may not be able to hoist potential loop invariant
// access out of the loop.
//
// Iterate over alias tracker sets, and confirm AliasSets doesn't have any
// must alias set.
for (const auto &I : *CurAST) {
const AliasSet &AS = I;
// Skip Forward Alias Sets, as this should be ignored as part of
// the AliasSetTracker object.
if (AS.isForwardingAliasSet())
continue;
// With MustAlias its not worth adding runtime bound check.
if (AS.isMustAlias())
return false;
Value *SomePtr = AS.begin()->getValue();
bool TypeCheck = true;
// Check for Mod & MayAlias
HasMayAlias |= AS.isMayAlias();
HasMod |= AS.isMod();
for (const auto &A : AS) {
Value *Ptr = A.getValue();
// Alias tracker should have pointers of same data type.
TypeCheck = (TypeCheck && (SomePtr->getType() == Ptr->getType()));
}
// At least one alias tracker should have pointers of same data type.
TypeSafety |= TypeCheck;
}
// Ensure types should be of same type.
if (!TypeSafety) {
LLVM_DEBUG(dbgs() << " Alias tracker type safety failed!\n");
return false;
}
// Ensure loop body shouldn't be read only.
if (!HasMod) {
LLVM_DEBUG(dbgs() << " No memory modified in loop body\n");
return false;
}
// Make sure alias set has may alias case.
// If there no alias memory ambiguity, return false.
if (!HasMayAlias) {
LLVM_DEBUG(dbgs() << " No ambiguity in memory access.\n");
return false;
}
return true;
}
/// Check loop instructions safe for Loop versioning.
/// It returns true if it's safe else returns false.
/// Consider following:
/// 1) Check all load store in loop body are non atomic & non volatile.
/// 2) Check function call safety, by ensuring its not accessing memory.
/// 3) Loop body shouldn't have any may throw instruction.
/// 4) Loop body shouldn't have any convergent or noduplicate instructions.
bool LoopVersioningLICM::instructionSafeForVersioning(Instruction *I) {
assert(I != nullptr && "Null instruction found!");
// Check function call safety
if (auto *Call = dyn_cast<CallBase>(I)) {
if (Call->isConvergent() || Call->cannotDuplicate()) {
LLVM_DEBUG(dbgs() << " Convergent call site found.\n");
return false;
}
if (!AA->doesNotAccessMemory(Call)) {
LLVM_DEBUG(dbgs() << " Unsafe call site found.\n");
return false;
}
}
// Avoid loops with possiblity of throw
if (I->mayThrow()) {
LLVM_DEBUG(dbgs() << " May throw instruction found in loop body\n");
return false;
}
// If current instruction is load instructions
// make sure it's a simple load (non atomic & non volatile)
if (I->mayReadFromMemory()) {
LoadInst *Ld = dyn_cast<LoadInst>(I);
if (!Ld || !Ld->isSimple()) {
LLVM_DEBUG(dbgs() << " Found a non-simple load.\n");
return false;
}
LoadAndStoreCounter++;
Value *Ptr = Ld->getPointerOperand();
// Check loop invariant.
if (SE->isLoopInvariant(SE->getSCEV(Ptr), CurLoop))
InvariantCounter++;
}
// If current instruction is store instruction
// make sure it's a simple store (non atomic & non volatile)
else if (I->mayWriteToMemory()) {
StoreInst *St = dyn_cast<StoreInst>(I);
if (!St || !St->isSimple()) {
LLVM_DEBUG(dbgs() << " Found a non-simple store.\n");
return false;
}
LoadAndStoreCounter++;
Value *Ptr = St->getPointerOperand();
// Check loop invariant.
if (SE->isLoopInvariant(SE->getSCEV(Ptr), CurLoop))
InvariantCounter++;
IsReadOnlyLoop = false;
}
return true;
}
/// Check loop instructions and confirms it's good for
/// LoopVersioningLICM.
bool LoopVersioningLICM::legalLoopInstructions() {
// Resetting counters.
LoadAndStoreCounter = 0;
InvariantCounter = 0;
IsReadOnlyLoop = true;
using namespace ore;
// Iterate over loop blocks and instructions of each block and check
// instruction safety.
for (auto *Block : CurLoop->getBlocks())
for (auto &Inst : *Block) {
// If instruction is unsafe just return false.
if (!instructionSafeForVersioning(&Inst)) {
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "IllegalLoopInst", &Inst)
<< " Unsafe Loop Instruction";
});
return false;
}
}
// Get LoopAccessInfo from current loop.
LAI = &LAA->getInfo(CurLoop);
// Check LoopAccessInfo for need of runtime check.
if (LAI->getRuntimePointerChecking()->getChecks().empty()) {
LLVM_DEBUG(dbgs() << " LAA: Runtime check not found !!\n");
return false;
}
// Number of runtime-checks should be less then RuntimeMemoryCheckThreshold
if (LAI->getNumRuntimePointerChecks() >
VectorizerParams::RuntimeMemoryCheckThreshold) {
LLVM_DEBUG(
dbgs() << " LAA: Runtime checks are more than threshold !!\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "RuntimeCheck",
CurLoop->getStartLoc(),
CurLoop->getHeader())
<< "Number of runtime checks "
<< NV("RuntimeChecks", LAI->getNumRuntimePointerChecks())
<< " exceeds threshold "
<< NV("Threshold", VectorizerParams::RuntimeMemoryCheckThreshold);
});
return false;
}
// Loop should have at least one invariant load or store instruction.
if (!InvariantCounter) {
LLVM_DEBUG(dbgs() << " Invariant not found !!\n");
return false;
}
// Read only loop not allowed.
if (IsReadOnlyLoop) {
LLVM_DEBUG(dbgs() << " Found a read-only loop!\n");
return false;
}
// Profitablity check:
// Check invariant threshold, should be in limit.
if (InvariantCounter * 100 < InvariantThreshold * LoadAndStoreCounter) {
LLVM_DEBUG(
dbgs()
<< " Invariant load & store are less then defined threshold\n");
LLVM_DEBUG(dbgs() << " Invariant loads & stores: "
<< ((InvariantCounter * 100) / LoadAndStoreCounter)
<< "%\n");
LLVM_DEBUG(dbgs() << " Invariant loads & store threshold: "
<< InvariantThreshold << "%\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "InvariantThreshold",
CurLoop->getStartLoc(),
CurLoop->getHeader())
<< "Invariant load & store "
<< NV("LoadAndStoreCounter",
((InvariantCounter * 100) / LoadAndStoreCounter))
<< " are less then defined threshold "
<< NV("Threshold", InvariantThreshold);
});
return false;
}
return true;
}
/// It checks loop is already visited or not.
/// check loop meta data, if loop revisited return true
/// else false.
bool LoopVersioningLICM::isLoopAlreadyVisited() {
// Check LoopVersioningLICM metadata into loop
if (findStringMetadataForLoop(CurLoop, LICMVersioningMetaData)) {
return true;
}
return false;
}
/// Checks legality for LoopVersioningLICM by considering following:
/// a) loop structure legality b) loop instruction legality
/// c) loop memory access legality.
/// Return true if legal else returns false.
bool LoopVersioningLICM::isLegalForVersioning() {
using namespace ore;
LLVM_DEBUG(dbgs() << "Loop: " << *CurLoop);
// Make sure not re-visiting same loop again.
if (isLoopAlreadyVisited()) {
LLVM_DEBUG(
dbgs() << " Revisiting loop in LoopVersioningLICM not allowed.\n\n");
return false;
}
// Check loop structure leagality.
if (!legalLoopStructure()) {
LLVM_DEBUG(
dbgs() << " Loop structure not suitable for LoopVersioningLICM\n\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "IllegalLoopStruct",
CurLoop->getStartLoc(),
CurLoop->getHeader())
<< " Unsafe Loop structure";
});
return false;
}
// Check loop instruction leagality.
if (!legalLoopInstructions()) {
LLVM_DEBUG(
dbgs()
<< " Loop instructions not suitable for LoopVersioningLICM\n\n");
return false;
}
// Check loop memory access leagality.
if (!legalLoopMemoryAccesses()) {
LLVM_DEBUG(
dbgs()
<< " Loop memory access not suitable for LoopVersioningLICM\n\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "IllegalLoopMemoryAccess",
CurLoop->getStartLoc(),
CurLoop->getHeader())
<< " Unsafe Loop memory access";
});
return false;
}
// Loop versioning is feasible, return true.
LLVM_DEBUG(dbgs() << " Loop Versioning found to be beneficial\n\n");
ORE->emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "IsLegalForVersioning",
CurLoop->getStartLoc(), CurLoop->getHeader())
<< " Versioned loop for LICM."
<< " Number of runtime checks we had to insert "
<< NV("RuntimeChecks", LAI->getNumRuntimePointerChecks());
});
return true;
}
/// Update loop with aggressive aliasing assumptions.
/// It marks no-alias to any pairs of memory operations by assuming
/// loop should not have any must-alias memory accesses pairs.
/// During LoopVersioningLICM legality we ignore loops having must
/// aliasing memory accesses.
void LoopVersioningLICM::setNoAliasToLoop(Loop *VerLoop) {
// Get latch terminator instruction.
Instruction *I = VerLoop->getLoopLatch()->getTerminator();
// Create alias scope domain.
MDBuilder MDB(I->getContext());
MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("LVDomain");
StringRef Name = "LVAliasScope";
SmallVector<Metadata *, 4> Scopes, NoAliases;
MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
// Iterate over each instruction of loop.
// set no-alias for all load & store instructions.
for (auto *Block : CurLoop->getBlocks()) {
for (auto &Inst : *Block) {
// Only interested in instruction that may modify or read memory.
if (!Inst.mayReadFromMemory() && !Inst.mayWriteToMemory())
continue;
Scopes.push_back(NewScope);
NoAliases.push_back(NewScope);
// Set no-alias for current instruction.
Inst.setMetadata(
LLVMContext::MD_noalias,
MDNode::concatenate(Inst.getMetadata(LLVMContext::MD_noalias),
MDNode::get(Inst.getContext(), NoAliases)));
// set alias-scope for current instruction.
Inst.setMetadata(
LLVMContext::MD_alias_scope,
MDNode::concatenate(Inst.getMetadata(LLVMContext::MD_alias_scope),
MDNode::get(Inst.getContext(), Scopes)));
}
}
}
bool LoopVersioningLICM::runOnLoop(Loop *L, LPPassManager &LPM) {
// This will automatically release all resources hold by the current
// LoopVersioningLICM object.
AutoResetter Resetter(*this);
if (skipLoop(L))
return false;
[Unroll/UnrollAndJam/Vectorizer/Distribute] Add followup loop attributes. When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g. #pragma clang loop unroll_and_jam(enable) #pragma clang loop distribute(enable) is the same as #pragma clang loop distribute(enable) #pragma clang loop unroll_and_jam(enable) and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used. This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance, !0 = !{!0, !1, !2} !1 = !{!"llvm.loop.unroll_and_jam.enable"} !2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3} !3 = !{!"llvm.loop.distribute.enable"} defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop. Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account. For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations. Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated. To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied. With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling). Reviewed By: hfinkel, dmgreen Differential Revision: https://reviews.llvm.org/D49281 Differential Revision: https://reviews.llvm.org/D55288 llvm-svn: 348944
2018-12-13 01:32:52 +08:00
// Do not do the transformation if disabled by metadata.
if (hasLICMVersioningTransformation(L) & TM_Disable)
return false;
// Get Analysis information.
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
LAI = nullptr;
// Set Current Loop
CurLoop = L;
CurAST.reset(new AliasSetTracker(*AA));
// Loop over the body of this loop, construct AST.
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
for (auto *Block : L->getBlocks()) {
if (LI->getLoopFor(Block) == L) // Ignore blocks in subloop.
CurAST->add(*Block); // Incorporate the specified basic block
}
bool Changed = false;
// Check feasiblity of LoopVersioningLICM.
// If versioning found to be feasible and beneficial then proceed
// else simply return, by cleaning up memory.
if (isLegalForVersioning()) {
// Do loop versioning.
// Create memcheck for memory accessed inside loop.
// Clone original loop, and set blocks properly.
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LoopVersioning LVer(*LAI, CurLoop, LI, DT, SE, true);
LVer.versionLoop();
// Set Loop Versioning metaData for original loop.
addStringMetadataToLoop(LVer.getNonVersionedLoop(), LICMVersioningMetaData);
// Set Loop Versioning metaData for version loop.
addStringMetadataToLoop(LVer.getVersionedLoop(), LICMVersioningMetaData);
// Set "llvm.mem.parallel_loop_access" metaData to versioned loop.
Introduce llvm.loop.parallel_accesses and llvm.access.group metadata. The current llvm.mem.parallel_loop_access metadata has a problem in that it uses LoopIDs. LoopID unfortunately is not loop identifier. It is neither unique (there's even a regression test assigning the some LoopID to multiple loops; can otherwise happen if passes such as LoopVersioning make copies of entire loops) nor persistent (every time a property is removed/added from a LoopID's MDNode, it will also receive a new LoopID; this happens e.g. when calling Loop::setLoopAlreadyUnrolled()). Since most loop transformation passes change the loop attributes (even if it just to mark that a loop should not be processed again as llvm.loop.isvectorized does, for the versioned and unversioned loop), the parallel access information is lost for any subsequent pass. This patch unlinks LoopIDs and parallel accesses. llvm.mem.parallel_loop_access metadata on instruction is replaced by llvm.access.group metadata. llvm.access.group points to a distinct MDNode with no operands (avoiding the problem to ever need to add/remove operands), called "access group". Alternatively, it can point to a list of access groups. The LoopID then has an attribute llvm.loop.parallel_accesses with all the access groups that are parallel (no dependencies carries by this loop). This intentionally avoid any kind of "ID". Loops that are clones/have their attributes modifies retain the llvm.loop.parallel_accesses attribute. Access instructions that a cloned point to the same access group. It is not necessary for each access to have it's own "ID" MDNode, but those memory access instructions with the same behavior can be grouped together. The behavior of llvm.mem.parallel_loop_access is not changed by this patch, but should be considered deprecated. Differential Revision: https://reviews.llvm.org/D52116 llvm-svn: 349725
2018-12-20 12:58:07 +08:00
// FIXME: "llvm.mem.parallel_loop_access" annotates memory access
// instructions, not loops.
addStringMetadataToLoop(LVer.getVersionedLoop(),
"llvm.mem.parallel_loop_access");
// Update version loop with aggressive aliasing assumption.
setNoAliasToLoop(LVer.getVersionedLoop());
Changed = true;
}
return Changed;
}
char LoopVersioningLICM::ID = 0;
INITIALIZE_PASS_BEGIN(LoopVersioningLICM, "loop-versioning-licm",
"Loop Versioning For LICM", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopVersioningLICM, "loop-versioning-licm",
"Loop Versioning For LICM", false, false)
Pass *llvm::createLoopVersioningLICMPass() { return new LoopVersioningLICM(); }