2010-06-09 00:52:24 +08:00
//===-- ValueObject.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
# include "lldb/Core/ValueObject.h"
// C Includes
2010-09-15 07:36:40 +08:00
# include <stdlib.h>
2010-06-09 00:52:24 +08:00
// C++ Includes
// Other libraries and framework includes
# include "llvm/Support/raw_ostream.h"
2010-09-28 09:25:32 +08:00
# include "clang/AST/Type.h"
2010-06-09 00:52:24 +08:00
// Project includes
# include "lldb/Core/DataBufferHeap.h"
2011-08-23 06:03:47 +08:00
# include "lldb/Core/DataVisualization.h"
2011-06-30 06:27:15 +08:00
# include "lldb/Core/Debugger.h"
2011-07-30 03:53:35 +08:00
# include "lldb/Core/Log.h"
2010-06-09 00:52:24 +08:00
# include "lldb/Core/StreamString.h"
# include "lldb/Core/ValueObjectChild.h"
2010-12-14 10:59:59 +08:00
# include "lldb/Core/ValueObjectConstResult.h"
2011-04-16 08:01:13 +08:00
# include "lldb/Core/ValueObjectDynamicValue.h"
2010-06-09 00:52:24 +08:00
# include "lldb/Core/ValueObjectList.h"
2011-05-06 07:32:56 +08:00
# include "lldb/Core/ValueObjectMemory.h"
2011-07-22 08:16:08 +08:00
# include "lldb/Core/ValueObjectSyntheticFilter.h"
2010-06-09 00:52:24 +08:00
2011-02-01 09:31:41 +08:00
# include "lldb/Host/Endian.h"
2011-08-13 00:42:31 +08:00
# include "lldb/Interpreter/CommandInterpreter.h"
2011-07-15 10:26:42 +08:00
# include "lldb/Interpreter/ScriptInterpreterPython.h"
2010-07-22 06:12:05 +08:00
# include "lldb/Symbol/ClangASTType.h"
2010-06-09 00:52:24 +08:00
# include "lldb/Symbol/ClangASTContext.h"
# include "lldb/Symbol/Type.h"
2010-09-11 07:12:17 +08:00
# include "lldb/Target/ExecutionContext.h"
2010-09-28 09:25:32 +08:00
# include "lldb/Target/LanguageRuntime.h"
2011-08-03 01:27:39 +08:00
# include "lldb/Target/ObjCLanguageRuntime.h"
2010-06-09 00:52:24 +08:00
# include "lldb/Target/Process.h"
# include "lldb/Target/RegisterContext.h"
2010-09-15 07:36:40 +08:00
# include "lldb/Target/Target.h"
2010-06-09 00:52:24 +08:00
# include "lldb/Target/Thread.h"
2011-07-13 06:56:10 +08:00
# include "lldb/Utility/RefCounter.h"
2010-06-09 00:52:24 +08:00
using namespace lldb ;
using namespace lldb_private ;
2011-07-13 06:56:10 +08:00
using namespace lldb_utility ;
2010-06-09 00:52:24 +08:00
2011-09-02 09:15:17 +08:00
static user_id_t g_value_obj_uid = 0 ;
2010-06-09 00:52:24 +08:00
//----------------------------------------------------------------------
// ValueObject constructor
//----------------------------------------------------------------------
2011-03-31 08:19:25 +08:00
ValueObject : : ValueObject ( ValueObject & parent ) :
2010-06-09 00:52:24 +08:00
UserID ( + + g_value_obj_uid ) , // Unique identifier for every value object
2011-03-31 08:19:25 +08:00
m_parent ( & parent ) ,
2011-04-12 03:41:40 +08:00
m_update_point ( parent . GetUpdatePoint ( ) ) ,
2010-06-09 00:52:24 +08:00
m_name ( ) ,
m_data ( ) ,
m_value ( ) ,
m_error ( ) ,
2010-09-02 10:59:18 +08:00
m_value_str ( ) ,
m_old_value_str ( ) ,
m_location_str ( ) ,
m_summary_str ( ) ,
2010-09-11 07:12:17 +08:00
m_object_desc_str ( ) ,
2011-04-23 07:53:53 +08:00
m_manager ( parent . GetManager ( ) ) ,
2010-09-02 10:59:18 +08:00
m_children ( ) ,
m_synthetic_children ( ) ,
2011-04-23 07:53:53 +08:00
m_dynamic_value ( NULL ) ,
2011-07-22 08:16:08 +08:00
m_synthetic_value ( NULL ) ,
2011-04-23 07:53:53 +08:00
m_deref_valobj ( NULL ) ,
2010-10-06 11:09:11 +08:00
m_format ( eFormatDefault ) ,
2011-07-20 04:57:44 +08:00
m_last_format_mgr_revision ( 0 ) ,
2011-08-03 07:12:24 +08:00
m_last_format_mgr_dynamic ( parent . m_last_format_mgr_dynamic ) ,
2011-07-20 04:57:44 +08:00
m_last_summary_format ( ) ,
m_forced_summary_format ( ) ,
m_last_value_format ( ) ,
2011-07-22 08:16:08 +08:00
m_last_synthetic_filter ( ) ,
2011-08-09 10:12:22 +08:00
m_user_id_of_forced_summary ( ) ,
2011-11-01 06:50:49 +08:00
m_address_type_of_ptr_or_ref_children ( eAddressTypeInvalid ) ,
2010-09-02 10:59:18 +08:00
m_value_is_valid ( false ) ,
m_value_did_change ( false ) ,
m_children_count_valid ( false ) ,
2010-12-14 10:59:59 +08:00
m_old_value_valid ( false ) ,
2011-06-30 06:27:15 +08:00
m_is_deref_of_parent ( false ) ,
2011-07-02 08:25:22 +08:00
m_is_array_item_for_pointer ( false ) ,
2011-07-06 10:13:41 +08:00
m_is_bitfield_for_scalar ( false ) ,
2011-07-22 08:16:08 +08:00
m_is_expression_path_child ( false ) ,
2011-07-30 03:53:35 +08:00
m_is_child_at_offset ( false ) ,
2012-01-08 04:58:07 +08:00
m_is_getting_summary ( false )
2010-06-09 00:52:24 +08:00
{
2011-04-23 07:53:53 +08:00
m_manager - > ManageObject ( this ) ;
2010-06-09 00:52:24 +08:00
}
//----------------------------------------------------------------------
2011-03-31 08:19:25 +08:00
// ValueObject constructor
2010-06-09 00:52:24 +08:00
//----------------------------------------------------------------------
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
ValueObject : : ValueObject ( ExecutionContextScope * exe_scope ,
AddressType child_ptr_or_ref_addr_type ) :
2011-03-31 08:19:25 +08:00
UserID ( + + g_value_obj_uid ) , // Unique identifier for every value object
m_parent ( NULL ) ,
2011-04-12 03:41:40 +08:00
m_update_point ( exe_scope ) ,
2011-03-31 08:19:25 +08:00
m_name ( ) ,
m_data ( ) ,
m_value ( ) ,
m_error ( ) ,
m_value_str ( ) ,
m_old_value_str ( ) ,
m_location_str ( ) ,
m_summary_str ( ) ,
m_object_desc_str ( ) ,
2011-04-23 07:53:53 +08:00
m_manager ( ) ,
2011-03-31 08:19:25 +08:00
m_children ( ) ,
m_synthetic_children ( ) ,
2011-04-23 07:53:53 +08:00
m_dynamic_value ( NULL ) ,
2011-07-22 08:16:08 +08:00
m_synthetic_value ( NULL ) ,
2011-04-23 07:53:53 +08:00
m_deref_valobj ( NULL ) ,
2011-03-31 08:19:25 +08:00
m_format ( eFormatDefault ) ,
2011-07-20 04:57:44 +08:00
m_last_format_mgr_revision ( 0 ) ,
2011-09-02 09:15:17 +08:00
m_last_format_mgr_dynamic ( eNoDynamicValues ) ,
2011-07-20 04:57:44 +08:00
m_last_summary_format ( ) ,
m_forced_summary_format ( ) ,
m_last_value_format ( ) ,
2011-07-22 08:16:08 +08:00
m_last_synthetic_filter ( ) ,
2011-08-09 10:12:22 +08:00
m_user_id_of_forced_summary ( ) ,
2011-11-01 06:50:49 +08:00
m_address_type_of_ptr_or_ref_children ( child_ptr_or_ref_addr_type ) ,
2011-03-31 08:19:25 +08:00
m_value_is_valid ( false ) ,
m_value_did_change ( false ) ,
m_children_count_valid ( false ) ,
m_old_value_valid ( false ) ,
2011-06-30 06:27:15 +08:00
m_is_deref_of_parent ( false ) ,
2011-07-02 08:25:22 +08:00
m_is_array_item_for_pointer ( false ) ,
2011-07-06 10:13:41 +08:00
m_is_bitfield_for_scalar ( false ) ,
2011-07-22 08:16:08 +08:00
m_is_expression_path_child ( false ) ,
2011-07-30 03:53:35 +08:00
m_is_child_at_offset ( false ) ,
2012-01-08 04:58:07 +08:00
m_is_getting_summary ( false )
2010-06-09 00:52:24 +08:00
{
2011-04-23 07:53:53 +08:00
m_manager = new ValueObjectManager ( ) ;
m_manager - > ManageObject ( this ) ;
2010-06-09 00:52:24 +08:00
}
2011-03-31 08:19:25 +08:00
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
ValueObject : : ~ ValueObject ( )
2010-06-09 00:52:24 +08:00
{
}
bool
2011-07-02 08:25:22 +08:00
ValueObject : : UpdateValueIfNeeded ( bool update_format )
2011-08-03 01:27:39 +08:00
{
return UpdateValueIfNeeded ( m_last_format_mgr_dynamic , update_format ) ;
}
bool
2011-09-02 09:15:17 +08:00
ValueObject : : UpdateValueIfNeeded ( DynamicValueType use_dynamic , bool update_format )
2010-06-09 00:52:24 +08:00
{
2011-06-30 06:27:15 +08:00
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
bool did_change_formats = false ;
2011-07-02 08:25:22 +08:00
if ( update_format )
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
did_change_formats = UpdateFormatsIfNeeded ( use_dynamic ) ;
2011-06-30 06:27:15 +08:00
2010-10-05 11:13:51 +08:00
// If this is a constant value, then our success is predicated on whether
// we have an error or not
if ( GetIsConstant ( ) )
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
{
// if you were asked to update your formatters, but did not get a chance to do it
// clear your own values (this serves the purpose of faking a stop-id for frozen
// objects (which are regarded as constant, but could have changes behind their backs
// because of the frozen-pointer depth limit)
// TODO: decouple summary from value and then remove this code and only force-clear the summary
if ( update_format & & ! did_change_formats )
m_summary_str . clear ( ) ;
2010-10-05 11:13:51 +08:00
return m_error . Success ( ) ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
}
2010-10-05 11:13:51 +08:00
2011-03-31 08:19:25 +08:00
bool first_update = m_update_point . IsFirstEvaluation ( ) ;
if ( m_update_point . NeedsUpdating ( ) )
2010-06-09 00:52:24 +08:00
{
2011-03-31 08:19:25 +08:00
m_update_point . SetUpdated ( ) ;
// Save the old value using swap to avoid a string copy which
// also will clear our m_value_str
if ( m_value_str . empty ( ) )
2010-06-09 00:52:24 +08:00
{
2011-03-31 08:19:25 +08:00
m_old_value_valid = false ;
}
else
{
m_old_value_valid = true ;
m_old_value_str . swap ( m_value_str ) ;
m_value_str . clear ( ) ;
}
2010-06-09 00:52:24 +08:00
2011-07-15 10:26:42 +08:00
ClearUserVisibleData ( ) ;
2011-03-31 08:19:25 +08:00
const bool value_was_valid = GetValueIsValid ( ) ;
SetValueDidChange ( false ) ;
2010-08-28 08:08:07 +08:00
2011-03-31 08:19:25 +08:00
m_error . Clear ( ) ;
2010-08-28 08:08:07 +08:00
2011-03-31 08:19:25 +08:00
// Call the pure virtual function to update the value
bool success = UpdateValue ( ) ;
SetValueIsValid ( success ) ;
if ( first_update )
SetValueDidChange ( false ) ;
else if ( ! m_value_did_change & & success = = false )
{
// The value wasn't gotten successfully, so we mark this
// as changed if the value used to be valid and now isn't
SetValueDidChange ( value_was_valid ) ;
2010-06-09 00:52:24 +08:00
}
}
return m_error . Success ( ) ;
}
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
bool
2011-09-02 09:15:17 +08:00
ValueObject : : UpdateFormatsIfNeeded ( DynamicValueType use_dynamic )
2011-06-30 06:27:15 +08:00
{
2011-07-30 03:53:35 +08:00
LogSP log ( lldb_private : : GetLogIfAllCategoriesSet ( LIBLLDB_LOG_TYPES ) ) ;
if ( log )
log - > Printf ( " checking for FormatManager revisions. VO named %s is at revision %d, while the format manager is at revision %d " ,
GetName ( ) . GetCString ( ) ,
2011-06-30 06:27:15 +08:00
m_last_format_mgr_revision ,
2011-08-19 00:38:26 +08:00
DataVisualization : : GetCurrentRevision ( ) ) ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
bool any_change = false ;
2011-08-09 10:12:22 +08:00
if ( HasCustomSummaryFormat ( ) & & m_update_point . GetModID ( ) ! = m_user_id_of_forced_summary )
2011-07-12 08:18:11 +08:00
{
ClearCustomSummaryFormat ( ) ;
2011-09-07 06:59:55 +08:00
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
any_change = true ;
2011-07-12 08:18:11 +08:00
}
2011-09-07 06:59:55 +08:00
2011-08-19 00:38:26 +08:00
if ( ( m_last_format_mgr_revision ! = DataVisualization : : GetCurrentRevision ( ) ) | |
2011-08-03 01:27:39 +08:00
m_last_format_mgr_dynamic ! = use_dynamic )
2011-06-30 06:27:15 +08:00
{
2011-09-10 07:33:14 +08:00
SetValueFormat ( DataVisualization : : ValueFormats : : GetFormat ( * this , eNoDynamicValues ) ) ;
SetSummaryFormat ( DataVisualization : : GetSummaryFormat ( * this , use_dynamic ) ) ;
SetSyntheticChildren ( DataVisualization : : GetSyntheticChildren ( * this , use_dynamic ) ) ;
Fixed a bug where deleting a regex summary would not immediately reflect in the variables display
The "systemwide summaries" feature has been removed and replaced with a more general and
powerful mechanism.
Categories:
- summaries can now be grouped into buckets, called "categories" (it is expected that categories
correspond to libraries and/or runtime environments)
- to add a summary to a category, you can use the -w option to type summary add and give
a category name (e.g. type summary add -f "foo" foo_t -w foo_category)
- categories are by default disabled, which means LLDB will not look into them for summaries,
to enable a category use "type category enable". once a category is enabled, LLDB will
look into that category for summaries. the rules are quite trivial: every enabled category
is searched for an exact match. if an exact match is nowhere to be found, any match is
searched for in every enabled category (whether it involves cascading, going to base classes,
...). categories are searched into the order in which they were enabled (the most recently
enabled category first, then the second most and so on..)
- by default, most commands that deal with summaries, use a category named "default" if no
explicit -w parameter is given (the observable behavior of LLDB should not change when
categories are not explicitly used)
- the systemwide summaries are now part of a "system" category
llvm-svn: 135463
2011-07-19 10:34:21 +08:00
2011-08-19 00:38:26 +08:00
m_last_format_mgr_revision = DataVisualization : : GetCurrentRevision ( ) ;
2011-08-03 01:27:39 +08:00
m_last_format_mgr_dynamic = use_dynamic ;
2011-09-07 06:59:55 +08:00
any_change = true ;
2011-06-30 06:27:15 +08:00
}
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
return any_change ;
2011-06-30 06:27:15 +08:00
}
2011-08-13 07:34:31 +08:00
void
ValueObject : : SetNeedsUpdate ( )
{
m_update_point . SetNeedsUpdate ( ) ;
// We have to clear the value string here so ConstResult children will notice if their values are
// changed by hand (i.e. with SetValueAsCString).
m_value_str . clear ( ) ;
}
2010-06-09 00:52:24 +08:00
DataExtractor &
ValueObject : : GetDataExtractor ( )
{
2011-08-03 01:27:39 +08:00
UpdateValueIfNeeded ( false ) ;
2010-06-09 00:52:24 +08:00
return m_data ;
}
const Error &
2011-07-07 00:49:27 +08:00
ValueObject : : GetError ( )
2010-06-09 00:52:24 +08:00
{
2011-08-03 01:27:39 +08:00
UpdateValueIfNeeded ( false ) ;
2010-06-09 00:52:24 +08:00
return m_error ;
}
const ConstString &
ValueObject : : GetName ( ) const
{
return m_name ;
}
const char *
2011-03-31 08:19:25 +08:00
ValueObject : : GetLocationAsCString ( )
2010-06-09 00:52:24 +08:00
{
2011-08-03 01:27:39 +08:00
if ( UpdateValueIfNeeded ( false ) )
2010-06-09 00:52:24 +08:00
{
if ( m_location_str . empty ( ) )
{
StreamString sstr ;
switch ( m_value . GetValueType ( ) )
{
default :
break ;
case Value : : eValueTypeScalar :
2010-11-13 11:52:47 +08:00
if ( m_value . GetContextType ( ) = = Value : : eContextTypeRegisterInfo )
2010-06-09 00:52:24 +08:00
{
RegisterInfo * reg_info = m_value . GetRegisterInfo ( ) ;
if ( reg_info )
{
if ( reg_info - > name )
m_location_str = reg_info - > name ;
else if ( reg_info - > alt_name )
m_location_str = reg_info - > alt_name ;
break ;
}
}
m_location_str = " scalar " ;
break ;
case Value : : eValueTypeLoadAddress :
case Value : : eValueTypeFileAddress :
case Value : : eValueTypeHostAddress :
{
uint32_t addr_nibble_size = m_data . GetAddressByteSize ( ) * 2 ;
sstr . Printf ( " 0x%*.*llx " , addr_nibble_size , addr_nibble_size , m_value . GetScalar ( ) . ULongLong ( LLDB_INVALID_ADDRESS ) ) ;
m_location_str . swap ( sstr . GetString ( ) ) ;
}
break ;
}
}
}
return m_location_str . c_str ( ) ;
}
Value &
ValueObject : : GetValue ( )
{
return m_value ;
}
const Value &
ValueObject : : GetValue ( ) const
{
return m_value ;
}
2010-11-04 09:54:29 +08:00
bool
2011-03-31 08:19:25 +08:00
ValueObject : : ResolveValue ( Scalar & scalar )
2010-11-04 09:54:29 +08:00
{
2011-08-04 09:41:02 +08:00
if ( UpdateValueIfNeeded ( false ) ) // make sure that you are up to date before returning anything
{
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
2011-08-13 07:34:31 +08:00
Value tmp_value ( m_value ) ;
scalar = tmp_value . ResolveValue ( & exe_ctx , GetClangAST ( ) ) ;
2011-12-29 09:26:56 +08:00
if ( scalar . IsValid ( ) )
{
const uint32_t bitfield_bit_size = GetBitfieldBitSize ( ) ;
if ( bitfield_bit_size )
return scalar . ExtractBitfield ( bitfield_bit_size , GetBitfieldBitOffset ( ) ) ;
return true ;
}
2011-08-04 09:41:02 +08:00
}
2011-12-29 09:26:56 +08:00
return false ;
2010-11-04 09:54:29 +08:00
}
2010-06-09 00:52:24 +08:00
bool
2010-09-02 10:59:18 +08:00
ValueObject : : GetValueIsValid ( ) const
2010-06-09 00:52:24 +08:00
{
2010-09-02 10:59:18 +08:00
return m_value_is_valid ;
2010-06-09 00:52:24 +08:00
}
void
ValueObject : : SetValueIsValid ( bool b )
{
2010-09-02 10:59:18 +08:00
m_value_is_valid = b ;
2010-06-09 00:52:24 +08:00
}
bool
2011-03-31 08:19:25 +08:00
ValueObject : : GetValueDidChange ( )
2010-06-09 00:52:24 +08:00
{
2011-03-31 08:19:25 +08:00
GetValueAsCString ( ) ;
2010-09-02 10:59:18 +08:00
return m_value_did_change ;
2010-06-09 00:52:24 +08:00
}
void
ValueObject : : SetValueDidChange ( bool value_changed )
{
2010-09-02 10:59:18 +08:00
m_value_did_change = value_changed ;
2010-06-09 00:52:24 +08:00
}
ValueObjectSP
ValueObject : : GetChildAtIndex ( uint32_t idx , bool can_create )
{
ValueObjectSP child_sp ;
2011-06-30 06:09:02 +08:00
// We may need to update our value if we are dynamic
if ( IsPossibleDynamicType ( ) )
2011-08-03 01:27:39 +08:00
UpdateValueIfNeeded ( false ) ;
2011-06-30 06:09:02 +08:00
if ( idx < GetNumChildren ( ) )
2010-06-09 00:52:24 +08:00
{
2011-06-30 06:09:02 +08:00
// Check if we have already made the child value object?
if ( can_create & & m_children [ idx ] = = NULL )
2010-06-09 00:52:24 +08:00
{
2011-06-30 06:09:02 +08:00
// No we haven't created the child at this index, so lets have our
// subclass do it and cache the result for quick future access.
m_children [ idx ] = CreateChildAtIndex ( idx , false , 0 ) ;
2011-04-16 08:01:13 +08:00
}
2011-06-30 06:09:02 +08:00
if ( m_children [ idx ] ! = NULL )
return m_children [ idx ] - > GetSP ( ) ;
2010-06-09 00:52:24 +08:00
}
return child_sp ;
}
uint32_t
ValueObject : : GetIndexOfChildWithName ( const ConstString & name )
{
bool omit_empty_base_classes = true ;
return ClangASTContext : : GetIndexOfChildWithName ( GetClangAST ( ) ,
2010-09-29 09:12:09 +08:00
GetClangType ( ) ,
2010-12-14 10:59:59 +08:00
name . GetCString ( ) ,
2010-06-09 00:52:24 +08:00
omit_empty_base_classes ) ;
}
ValueObjectSP
ValueObject : : GetChildMemberWithName ( const ConstString & name , bool can_create )
{
2011-01-09 04:28:42 +08:00
// when getting a child by name, it could be buried inside some base
2010-06-09 00:52:24 +08:00
// classes (which really aren't part of the expression path), so we
// need a vector of indexes that can get us down to the correct child
ValueObjectSP child_sp ;
2011-06-30 06:09:02 +08:00
// We may need to update our value if we are dynamic
if ( IsPossibleDynamicType ( ) )
2011-08-03 01:27:39 +08:00
UpdateValueIfNeeded ( false ) ;
2011-06-30 06:09:02 +08:00
std : : vector < uint32_t > child_indexes ;
clang : : ASTContext * clang_ast = GetClangAST ( ) ;
void * clang_type = GetClangType ( ) ;
bool omit_empty_base_classes = true ;
const size_t num_child_indexes = ClangASTContext : : GetIndexOfChildMemberWithName ( clang_ast ,
clang_type ,
name . GetCString ( ) ,
omit_empty_base_classes ,
child_indexes ) ;
if ( num_child_indexes > 0 )
2011-04-16 08:01:13 +08:00
{
2011-06-30 06:09:02 +08:00
std : : vector < uint32_t > : : const_iterator pos = child_indexes . begin ( ) ;
std : : vector < uint32_t > : : const_iterator end = child_indexes . end ( ) ;
2011-04-16 08:01:13 +08:00
2011-06-30 06:09:02 +08:00
child_sp = GetChildAtIndex ( * pos , can_create ) ;
for ( + + pos ; pos ! = end ; + + pos )
{
if ( child_sp )
2010-06-09 00:52:24 +08:00
{
2011-06-30 06:09:02 +08:00
ValueObjectSP new_child_sp ( child_sp - > GetChildAtIndex ( * pos , can_create ) ) ;
child_sp = new_child_sp ;
}
else
{
child_sp . reset ( ) ;
2011-04-16 08:01:13 +08:00
}
2011-06-30 06:09:02 +08:00
2010-06-09 00:52:24 +08:00
}
}
return child_sp ;
}
uint32_t
ValueObject : : GetNumChildren ( )
{
2010-09-02 10:59:18 +08:00
if ( ! m_children_count_valid )
2010-06-09 00:52:24 +08:00
{
SetNumChildren ( CalculateNumChildren ( ) ) ;
}
return m_children . size ( ) ;
}
void
ValueObject : : SetNumChildren ( uint32_t num_children )
{
2010-09-02 10:59:18 +08:00
m_children_count_valid = true ;
2010-06-09 00:52:24 +08:00
m_children . resize ( num_children ) ;
}
void
ValueObject : : SetName ( const ConstString & name )
{
m_name = name ;
}
2011-04-23 07:53:53 +08:00
ValueObject *
2010-06-09 00:52:24 +08:00
ValueObject : : CreateChildAtIndex ( uint32_t idx , bool synthetic_array_member , int32_t synthetic_index )
{
2011-05-07 08:10:58 +08:00
ValueObject * valobj = NULL ;
2011-04-16 08:01:13 +08:00
2011-06-30 06:09:02 +08:00
bool omit_empty_base_classes = true ;
2011-07-10 04:12:33 +08:00
bool ignore_array_bounds = synthetic_array_member ;
2011-06-30 06:09:02 +08:00
std : : string child_name_str ;
uint32_t child_byte_size = 0 ;
int32_t child_byte_offset = 0 ;
uint32_t child_bitfield_bit_size = 0 ;
uint32_t child_bitfield_bit_offset = 0 ;
bool child_is_base_class = false ;
bool child_is_deref_of_parent = false ;
const bool transparent_pointers = synthetic_array_member = = false ;
clang : : ASTContext * clang_ast = GetClangAST ( ) ;
clang_type_t clang_type = GetClangType ( ) ;
clang_type_t child_clang_type ;
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
2011-06-30 06:09:02 +08:00
child_clang_type = ClangASTContext : : GetChildClangTypeAtIndex ( & exe_ctx ,
clang_ast ,
GetName ( ) . GetCString ( ) ,
clang_type ,
idx ,
transparent_pointers ,
omit_empty_base_classes ,
2011-07-10 04:12:33 +08:00
ignore_array_bounds ,
2011-06-30 06:09:02 +08:00
child_name_str ,
child_byte_size ,
child_byte_offset ,
child_bitfield_bit_size ,
child_bitfield_bit_offset ,
child_is_base_class ,
child_is_deref_of_parent ) ;
if ( child_clang_type & & child_byte_size )
2010-06-09 00:52:24 +08:00
{
2011-06-30 06:09:02 +08:00
if ( synthetic_index )
child_byte_offset + = child_byte_size * synthetic_index ;
ConstString child_name ;
if ( ! child_name_str . empty ( ) )
child_name . SetCString ( child_name_str . c_str ( ) ) ;
valobj = new ValueObjectChild ( * this ,
clang_ast ,
child_clang_type ,
child_name ,
child_byte_size ,
child_byte_offset ,
child_bitfield_bit_size ,
child_bitfield_bit_offset ,
child_is_base_class ,
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
child_is_deref_of_parent ,
eAddressTypeInvalid ) ;
//if (valobj)
// valobj->SetAddressTypeOfChildren(eAddressTypeInvalid);
}
2011-04-16 08:01:13 +08:00
2011-04-23 07:53:53 +08:00
return valobj ;
2010-06-09 00:52:24 +08:00
}
const char *
2011-03-31 08:19:25 +08:00
ValueObject : : GetSummaryAsCString ( )
2010-06-09 00:52:24 +08:00
{
2012-01-08 04:58:07 +08:00
// Watch for recursion which can happen with summary strings and other
// variable formatting options.
if ( m_is_getting_summary )
return NULL ;
m_is_getting_summary = true ;
2011-08-03 07:12:24 +08:00
if ( UpdateValueIfNeeded ( true ) )
2011-06-30 06:27:15 +08:00
{
2010-06-09 00:52:24 +08:00
if ( m_summary_str . empty ( ) )
{
2012-02-15 10:34:21 +08:00
TypeSummaryImpl * summary_format = GetSummaryFormat ( ) . get ( ) ;
2011-07-12 08:18:11 +08:00
if ( summary_format )
2011-06-30 06:27:15 +08:00
{
2011-07-15 10:26:42 +08:00
m_summary_str = summary_format - > FormatObject ( GetSP ( ) ) ;
2011-06-30 06:27:15 +08:00
}
2011-07-15 10:26:42 +08:00
else
2010-06-09 00:52:24 +08:00
{
2011-07-15 10:26:42 +08:00
clang_type_t clang_type = GetClangType ( ) ;
2011-07-16 07:30:15 +08:00
// Do some default printout for function pointers
2011-07-15 10:26:42 +08:00
if ( clang_type )
2010-06-09 00:52:24 +08:00
{
2011-07-15 10:26:42 +08:00
StreamString sstr ;
clang_type_t elem_or_pointee_clang_type ;
const Flags type_flags ( ClangASTContext : : GetTypeInfo ( clang_type ,
GetClangAST ( ) ,
& elem_or_pointee_clang_type ) ) ;
2012-02-17 15:49:44 +08:00
if ( ClangASTContext : : IsFunctionPointerType ( clang_type ) )
2010-06-09 00:52:24 +08:00
{
2012-02-17 15:49:44 +08:00
AddressType func_ptr_address_type = eAddressTypeInvalid ;
addr_t func_ptr_address = GetPointerValue ( & func_ptr_address_type ) ;
if ( func_ptr_address ! = 0 & & func_ptr_address ! = LLDB_INVALID_ADDRESS )
2011-03-31 08:19:25 +08:00
{
2012-02-17 15:49:44 +08:00
switch ( func_ptr_address_type )
2011-07-15 10:26:42 +08:00
{
2012-02-17 15:49:44 +08:00
case eAddressTypeInvalid :
case eAddressTypeFile :
break ;
case eAddressTypeLoad :
2010-09-13 11:32:57 +08:00
{
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
2011-07-15 10:26:42 +08:00
2012-02-17 15:49:44 +08:00
Address so_addr ;
Target * target = exe_ctx . GetTargetPtr ( ) ;
if ( target & & target - > GetSectionLoadList ( ) . IsEmpty ( ) = = false )
2010-09-13 11:32:57 +08:00
{
2012-02-17 15:49:44 +08:00
if ( target - > GetSectionLoadList ( ) . ResolveLoadAddress ( func_ptr_address , so_addr ) )
2011-03-31 08:19:25 +08:00
{
2012-02-17 15:49:44 +08:00
so_addr . Dump ( & sstr ,
exe_ctx . GetBestExecutionContextScope ( ) ,
Address : : DumpStyleResolvedDescription ,
Address : : DumpStyleSectionNameOffset ) ;
2011-03-31 08:19:25 +08:00
}
2010-09-13 11:32:57 +08:00
}
2011-07-15 10:26:42 +08:00
}
2012-02-17 15:49:44 +08:00
break ;
case eAddressTypeHost :
break ;
2011-03-31 08:19:25 +08:00
}
2010-06-09 00:52:24 +08:00
}
2012-02-17 15:49:44 +08:00
if ( sstr . GetSize ( ) > 0 )
{
m_summary_str . assign ( 1 , ' ( ' ) ;
m_summary_str . append ( sstr . GetData ( ) , sstr . GetSize ( ) ) ;
m_summary_str . append ( 1 , ' ) ' ) ;
}
2010-06-09 00:52:24 +08:00
}
}
}
}
}
2012-01-08 04:58:07 +08:00
m_is_getting_summary = false ;
2010-06-09 00:52:24 +08:00
if ( m_summary_str . empty ( ) )
return NULL ;
return m_summary_str . c_str ( ) ;
}
2011-07-12 08:18:11 +08:00
bool
ValueObject : : IsCStringContainer ( bool check_pointer )
{
clang_type_t elem_or_pointee_clang_type ;
const Flags type_flags ( ClangASTContext : : GetTypeInfo ( GetClangType ( ) ,
GetClangAST ( ) ,
& elem_or_pointee_clang_type ) ) ;
bool is_char_arr_ptr ( type_flags . AnySet ( ClangASTContext : : eTypeIsArray | ClangASTContext : : eTypeIsPointer ) & &
ClangASTContext : : IsCharType ( elem_or_pointee_clang_type ) ) ;
if ( ! is_char_arr_ptr )
return false ;
if ( ! check_pointer )
return true ;
if ( type_flags . Test ( ClangASTContext : : eTypeIsArray ) )
return true ;
2011-09-02 09:15:17 +08:00
addr_t cstr_address = LLDB_INVALID_ADDRESS ;
2011-07-12 08:18:11 +08:00
AddressType cstr_address_type = eAddressTypeInvalid ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
cstr_address = GetAddressOf ( true , & cstr_address_type ) ;
2011-07-12 08:18:11 +08:00
return ( cstr_address ! = LLDB_INVALID_ADDRESS ) ;
}
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
size_t
ValueObject : : GetPointeeData ( DataExtractor & data ,
uint32_t item_idx ,
uint32_t item_count )
{
if ( ! IsPointerType ( ) & & ! IsArrayType ( ) )
return 0 ;
if ( item_count = = 0 )
return 0 ;
uint32_t stride = 0 ;
ClangASTType type ( GetClangAST ( ) ,
GetClangType ( ) ) ;
const uint64_t item_type_size = ( IsPointerType ( ) ? ClangASTType : : GetTypeByteSize ( GetClangAST ( ) , type . GetPointeeType ( ) ) :
ClangASTType : : GetTypeByteSize ( GetClangAST ( ) , type . GetArrayElementType ( stride ) ) ) ;
const uint64_t bytes = item_count * item_type_size ;
const uint64_t offset = item_idx * item_type_size ;
if ( item_idx = = 0 & & item_count = = 1 ) // simply a deref
{
if ( IsPointerType ( ) )
{
Error error ;
ValueObjectSP pointee_sp = Dereference ( error ) ;
if ( error . Fail ( ) | | pointee_sp . get ( ) = = NULL )
return 0 ;
return pointee_sp - > GetDataExtractor ( ) . Copy ( data ) ;
}
else
{
ValueObjectSP child_sp = GetChildAtIndex ( 0 , true ) ;
if ( child_sp . get ( ) = = NULL )
return 0 ;
return child_sp - > GetDataExtractor ( ) . Copy ( data ) ;
}
return true ;
}
else /* (items > 1) */
{
Error error ;
lldb_private : : DataBufferHeap * heap_buf_ptr = NULL ;
lldb : : DataBufferSP data_sp ( heap_buf_ptr = new lldb_private : : DataBufferHeap ( ) ) ;
AddressType addr_type ;
lldb : : addr_t addr = IsPointerType ( ) ? GetPointerValue ( & addr_type ) : GetAddressOf ( true , & addr_type ) ;
switch ( addr_type )
{
case eAddressTypeFile :
{
Module * module = GetModule ( ) ;
if ( module )
{
Address so_addr ;
module - > ResolveFileAddress ( addr , so_addr ) ;
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
Target * target = exe_ctx . GetTargetPtr ( ) ;
if ( target )
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
{
2012-02-17 15:49:44 +08:00
heap_buf_ptr - > SetByteSize ( bytes ) ;
size_t bytes_read = target - > ReadMemory ( so_addr , false , heap_buf_ptr - > GetBytes ( ) , bytes , error ) ;
if ( error . Success ( ) )
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
{
2012-02-17 15:49:44 +08:00
data . SetData ( data_sp ) ;
return bytes_read ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
}
}
}
}
break ;
case eAddressTypeLoad :
{
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
Process * process = exe_ctx . GetProcessPtr ( ) ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
if ( process )
{
heap_buf_ptr - > SetByteSize ( bytes ) ;
size_t bytes_read = process - > ReadMemory ( addr + offset , heap_buf_ptr - > GetBytes ( ) , bytes , error ) ;
if ( error . Success ( ) )
{
data . SetData ( data_sp ) ;
return bytes_read ;
}
}
}
break ;
case eAddressTypeHost :
{
heap_buf_ptr - > CopyData ( ( uint8_t * ) ( addr + offset ) , bytes ) ;
data . SetData ( data_sp ) ;
return bytes ;
}
break ;
case eAddressTypeInvalid :
default :
break ;
}
}
return 0 ;
}
size_t
ValueObject : : GetData ( DataExtractor & data )
{
UpdateValueIfNeeded ( false ) ;
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
Error error = m_value . GetValueAsData ( & exe_ctx , GetClangAST ( ) , data , 0 , GetModule ( ) ) ;
if ( error . Fail ( ) )
return 0 ;
data . SetAddressByteSize ( m_data . GetAddressByteSize ( ) ) ;
data . SetByteOrder ( m_data . GetByteOrder ( ) ) ;
return data . GetByteSize ( ) ;
}
// will compute strlen(str), but without consuming more than
// maxlen bytes out of str (this serves the purpose of reading
// chunks of a string without having to worry about
// missing NULL terminators in the chunk)
// of course, if strlen(str) > maxlen, the function will return
// maxlen_value (which should be != maxlen, because that allows you
// to know whether strlen(str) == maxlen or strlen(str) > maxlen)
static uint32_t
strlen_or_inf ( const char * str ,
uint32_t maxlen ,
uint32_t maxlen_value )
{
uint32_t len = 0 ;
2011-10-06 06:19:51 +08:00
if ( str )
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
{
2011-10-06 06:19:51 +08:00
while ( * str )
{
len + + ; str + + ;
if ( len > maxlen )
return maxlen_value ;
}
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
}
return len ;
}
2011-07-12 08:18:11 +08:00
void
2012-02-17 15:49:44 +08:00
ValueObject : : ReadPointedString ( Stream & s ,
Error & error ,
uint32_t max_length ,
bool honor_array ,
Format item_format )
2011-07-12 08:18:11 +08:00
{
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
Target * target = exe_ctx . GetTargetPtr ( ) ;
if ( target & & max_length = = 0 )
max_length = target - > GetMaximumSizeOfStringSummary ( ) ;
2011-07-12 08:18:11 +08:00
clang_type_t clang_type = GetClangType ( ) ;
clang_type_t elem_or_pointee_clang_type ;
const Flags type_flags ( ClangASTContext : : GetTypeInfo ( clang_type ,
GetClangAST ( ) ,
& elem_or_pointee_clang_type ) ) ;
if ( type_flags . AnySet ( ClangASTContext : : eTypeIsArray | ClangASTContext : : eTypeIsPointer ) & &
ClangASTContext : : IsCharType ( elem_or_pointee_clang_type ) )
{
2012-02-17 15:49:44 +08:00
if ( target = = NULL )
{
s < < " <no target to read from> " ;
}
else
{
addr_t cstr_address = LLDB_INVALID_ADDRESS ;
AddressType cstr_address_type = eAddressTypeInvalid ;
size_t cstr_len = 0 ;
bool capped_data = false ;
if ( type_flags . Test ( ClangASTContext : : eTypeIsArray ) )
{
// We have an array
cstr_len = ClangASTContext : : GetArraySize ( clang_type ) ;
if ( cstr_len > max_length )
{
capped_data = true ;
cstr_len = max_length ;
}
cstr_address = GetAddressOf ( true , & cstr_address_type ) ;
}
else
{
// We have a pointer
cstr_address = GetPointerValue ( & cstr_address_type ) ;
}
if ( cstr_address ! = 0 & & cstr_address ! = LLDB_INVALID_ADDRESS )
2011-07-12 08:18:11 +08:00
{
2012-02-17 15:49:44 +08:00
Address cstr_so_addr ( NULL , cstr_address ) ;
DataExtractor data ;
size_t bytes_read = 0 ;
if ( cstr_len > 0 & & honor_array )
2011-07-30 03:53:35 +08:00
{
2012-02-17 15:49:44 +08:00
// I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host
// but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this
GetPointeeData ( data , 0 , cstr_len ) ;
if ( ( bytes_read = data . GetByteSize ( ) ) > 0 )
{
s < < ' " ' ;
data . Dump ( & s ,
0 , // Start offset in "data"
item_format ,
1 , // Size of item (1 byte for a char!)
bytes_read , // How many bytes to print?
UINT32_MAX , // num per line
LLDB_INVALID_ADDRESS , // base address
0 , // bitfield bit size
0 ) ; // bitfield bit offset
if ( capped_data )
s < < " ... " ;
s < < ' " ' ;
}
2011-07-30 03:53:35 +08:00
}
else
2011-07-12 08:18:11 +08:00
{
2012-02-17 15:49:44 +08:00
cstr_len = max_length ;
const size_t k_max_buf_size = 64 ;
size_t offset = 0 ;
2011-07-12 08:18:11 +08:00
2012-02-17 15:49:44 +08:00
int cstr_len_displayed = - 1 ;
bool capped_cstr = false ;
// I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host
// but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this
while ( ( bytes_read = GetPointeeData ( data , offset , k_max_buf_size ) ) > 0 )
2011-07-12 08:18:11 +08:00
{
2012-02-17 15:49:44 +08:00
const char * cstr = data . PeekCStr ( 0 ) ;
size_t len = strlen_or_inf ( cstr , k_max_buf_size , k_max_buf_size + 1 ) ;
if ( len > k_max_buf_size )
len = k_max_buf_size ;
if ( cstr & & cstr_len_displayed < 0 )
s < < ' " ' ;
if ( cstr_len_displayed < 0 )
cstr_len_displayed = len ;
if ( len = = 0 )
break ;
cstr_len_displayed + = len ;
if ( len > bytes_read )
len = bytes_read ;
if ( len > cstr_len )
len = cstr_len ;
data . Dump ( & s ,
0 , // Start offset in "data"
item_format ,
1 , // Size of item (1 byte for a char!)
len , // How many bytes to print?
UINT32_MAX , // num per line
LLDB_INVALID_ADDRESS , // base address
0 , // bitfield bit size
0 ) ; // bitfield bit offset
if ( len < k_max_buf_size )
break ;
if ( len > = cstr_len )
2011-07-12 08:18:11 +08:00
{
2012-02-17 15:49:44 +08:00
capped_cstr = true ;
break ;
2011-07-12 08:18:11 +08:00
}
2012-02-17 15:49:44 +08:00
cstr_len - = len ;
offset + = len ;
2011-07-12 08:18:11 +08:00
}
2012-02-17 15:49:44 +08:00
if ( cstr_len_displayed > = 0 )
2011-07-12 08:18:11 +08:00
{
2012-02-17 15:49:44 +08:00
s < < ' " ' ;
if ( capped_cstr )
s < < " ... " ;
2011-07-12 08:18:11 +08:00
}
}
}
2012-02-17 15:49:44 +08:00
}
2011-07-12 08:18:11 +08:00
}
else
{
error . SetErrorString ( " impossible to read a string from this object " ) ;
2011-07-30 03:53:35 +08:00
s < < " <not a string object> " ;
2011-07-12 08:18:11 +08:00
}
}
2010-09-11 07:12:17 +08:00
const char *
2011-03-31 08:19:25 +08:00
ValueObject : : GetObjectDescription ( )
2010-09-11 07:12:17 +08:00
{
2011-07-02 08:25:22 +08:00
2011-08-03 07:12:24 +08:00
if ( ! UpdateValueIfNeeded ( true ) )
2010-09-11 07:12:17 +08:00
return NULL ;
2011-07-02 08:25:22 +08:00
if ( ! m_object_desc_str . empty ( ) )
return m_object_desc_str . c_str ( ) ;
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
Process * process = exe_ctx . GetProcessPtr ( ) ;
2010-09-28 09:25:32 +08:00
if ( process = = NULL )
2010-09-11 07:12:17 +08:00
return NULL ;
2010-09-28 09:25:32 +08:00
StreamString s ;
2010-09-11 07:12:17 +08:00
2011-09-02 09:15:17 +08:00
LanguageType language = GetObjectRuntimeLanguage ( ) ;
2010-09-28 09:25:32 +08:00
LanguageRuntime * runtime = process - > GetLanguageRuntime ( language ) ;
2010-09-11 07:12:17 +08:00
2010-12-23 10:29:54 +08:00
if ( runtime = = NULL )
{
2011-03-18 08:05:18 +08:00
// Aw, hell, if the things a pointer, or even just an integer, let's try ObjC anyway...
2010-12-23 10:29:54 +08:00
clang_type_t opaque_qual_type = GetClangType ( ) ;
if ( opaque_qual_type ! = NULL )
{
2011-03-18 08:05:18 +08:00
bool is_signed ;
if ( ClangASTContext : : IsIntegerType ( opaque_qual_type , is_signed )
| | ClangASTContext : : IsPointerType ( opaque_qual_type ) )
{
2011-09-02 09:15:17 +08:00
runtime = process - > GetLanguageRuntime ( eLanguageTypeObjC ) ;
2011-03-18 08:05:18 +08:00
}
2010-12-23 10:29:54 +08:00
}
}
2011-04-01 07:01:21 +08:00
if ( runtime & & runtime - > GetObjectDescription ( s , * this ) )
2010-09-11 07:12:17 +08:00
{
m_object_desc_str . append ( s . GetData ( ) ) ;
}
2010-10-23 08:18:49 +08:00
if ( m_object_desc_str . empty ( ) )
return NULL ;
else
return m_object_desc_str . c_str ( ) ;
2010-09-11 07:12:17 +08:00
}
2010-06-09 00:52:24 +08:00
const char *
2011-03-31 08:19:25 +08:00
ValueObject : : GetValueAsCString ( )
2010-06-09 00:52:24 +08:00
{
// If our byte size is zero this is an aggregate type that has children
2010-09-29 09:12:09 +08:00
if ( ClangASTContext : : IsAggregateType ( GetClangType ( ) ) = = false )
2010-06-09 00:52:24 +08:00
{
2011-08-03 01:27:39 +08:00
if ( UpdateValueIfNeeded ( true ) )
2010-06-09 00:52:24 +08:00
{
if ( m_value_str . empty ( ) )
{
const Value : : ContextType context_type = m_value . GetContextType ( ) ;
switch ( context_type )
{
2010-11-13 11:52:47 +08:00
case Value : : eContextTypeClangType :
case Value : : eContextTypeLLDBType :
case Value : : eContextTypeVariable :
2010-06-09 00:52:24 +08:00
{
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
lldb : : Format my_format = GetFormat ( ) ;
2010-10-27 11:32:59 +08:00
clang_type_t clang_type = GetClangType ( ) ;
2010-06-09 00:52:24 +08:00
if ( clang_type )
{
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
if ( m_format = = lldb : : eFormatDefault )
2011-05-30 08:49:24 +08:00
{
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
if ( m_last_value_format )
my_format = m_last_value_format - > GetFormat ( ) ;
2011-07-15 10:26:42 +08:00
else
{
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
if ( m_is_bitfield_for_scalar )
my_format = eFormatUnsigned ;
else
my_format = ClangASTType : : GetFormat ( clang_type ) ;
2011-07-15 10:26:42 +08:00
}
2011-05-30 08:49:24 +08:00
}
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
StreamString sstr ;
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
if ( ClangASTType : : DumpTypeValue ( GetClangAST ( ) , // The clang AST
clang_type , // The clang type to display
& sstr ,
my_format , // Format to display this type with
m_data , // Data to extract from
0 , // Byte offset into "m_data"
GetByteSize ( ) , // Byte size of item in "m_data"
GetBitfieldBitSize ( ) , // Bitfield bit size
Added support for the new ".apple_objc" accelerator tables. These tables are
in the same hashed format as the ".apple_names", but they map objective C
class names to all of the methods and class functions. We need to do this
because in the DWARF the methods for Objective C are never contained in the
class definition, they are scattered about at the translation unit level and
they don't even have attributes that say the are contained within the class
itself.
Added 3 new formats which can be used to display data:
eFormatAddressInfo
eFormatHexFloat
eFormatInstruction
eFormatAddressInfo describes an address such as function+offset and file+line,
or symbol + offset, or constant data (c string, 2, 4, 8, or 16 byte constants).
The format character for this is "A", the long format is "address".
eFormatHexFloat will print out the hex float format that compilers tend to use.
The format character for this is "X", the long format is "hex float".
eFormatInstruction will print out disassembly with bytes and it will use the
current target's architecture. The format character for this is "i" (which
used to be being used for the integer format, but the integer format also has
"d", so we gave the "i" format to disassembly), the long format is
"instruction".
Mate the lldb::FormatterChoiceCriterion enumeration private as it should have
been from the start. It is very specialized and doesn't belong in the public
API.
llvm-svn: 143114
2011-10-28 01:55:14 +08:00
GetBitfieldBitOffset ( ) ,
2012-02-17 15:49:44 +08:00
exe_ctx . GetBestExecutionContextScope ( ) ) ) // Bitfield bit offset
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
m_value_str . swap ( sstr . GetString ( ) ) ;
else
{
2011-09-20 08:26:08 +08:00
m_error . SetErrorStringWithFormat ( " unsufficient data for value (only %lu of %lu bytes available) " ,
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
m_data . GetByteSize ( ) ,
GetByteSize ( ) ) ;
m_value_str . clear ( ) ;
}
2010-06-09 00:52:24 +08:00
}
}
break ;
2010-11-13 11:52:47 +08:00
case Value : : eContextTypeRegisterInfo :
2010-06-09 00:52:24 +08:00
{
const RegisterInfo * reg_info = m_value . GetRegisterInfo ( ) ;
if ( reg_info )
{
2012-01-20 05:10:56 +08:00
lldb : : Format my_format = GetFormat ( ) ;
if ( m_format = = lldb : : eFormatDefault )
{
if ( m_last_value_format )
my_format = m_last_value_format - > GetFormat ( ) ;
else
my_format = reg_info - > format ;
}
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
2010-06-09 00:52:24 +08:00
StreamString reg_sstr ;
2012-02-17 15:49:44 +08:00
m_data . Dump ( & reg_sstr ,
0 ,
my_format ,
reg_info - > byte_size ,
1 ,
UINT32_MAX ,
LLDB_INVALID_ADDRESS ,
0 ,
0 ,
exe_ctx . GetBestExecutionContextScope ( ) ) ;
2010-06-09 00:52:24 +08:00
m_value_str . swap ( reg_sstr . GetString ( ) ) ;
}
}
break ;
2010-07-10 04:39:50 +08:00
default :
break ;
2010-06-09 00:52:24 +08:00
}
}
2010-09-02 10:59:18 +08:00
if ( ! m_value_did_change & & m_old_value_valid )
{
// The value was gotten successfully, so we consider the
// value as changed if the value string differs
SetValueDidChange ( m_old_value_str ! = m_value_str ) ;
}
2010-06-09 00:52:24 +08:00
}
}
if ( m_value_str . empty ( ) )
return NULL ;
return m_value_str . c_str ( ) ;
}
2011-08-03 01:27:39 +08:00
// if > 8bytes, 0 is returned. this method should mostly be used
// to read address values out of pointers
2011-08-22 10:49:39 +08:00
uint64_t
ValueObject : : GetValueAsUnsigned ( uint64_t fail_value )
2011-08-03 01:27:39 +08:00
{
// If our byte size is zero this is an aggregate type that has children
if ( ClangASTContext : : IsAggregateType ( GetClangType ( ) ) = = false )
{
2011-08-22 10:49:39 +08:00
Scalar scalar ;
if ( ResolveValue ( scalar ) )
return scalar . GetRawBits64 ( fail_value ) ;
2011-08-03 01:27:39 +08:00
}
2011-08-22 10:49:39 +08:00
return fail_value ;
2011-08-03 01:27:39 +08:00
}
2011-08-04 10:34:29 +08:00
bool
ValueObject : : GetPrintableRepresentation ( Stream & s ,
ValueObjectRepresentationStyle val_obj_display ,
2011-09-02 09:15:17 +08:00
Format custom_format )
2011-07-02 08:25:22 +08:00
{
2011-07-13 06:56:10 +08:00
2011-09-02 09:15:17 +08:00
if ( custom_format ! = eFormatInvalid )
2011-07-02 08:25:22 +08:00
SetFormat ( custom_format ) ;
const char * return_value ;
2011-08-05 07:37:18 +08:00
std : : string alloc_mem ;
2011-07-02 08:25:22 +08:00
switch ( val_obj_display )
{
case eDisplayValue :
return_value = GetValueAsCString ( ) ;
break ;
2012-01-08 04:58:07 +08:00
2011-07-02 08:25:22 +08:00
case eDisplaySummary :
2012-01-08 04:58:07 +08:00
return_value = GetSummaryAsCString ( ) ;
break ;
2011-07-02 08:25:22 +08:00
case eDisplayLanguageSpecific :
return_value = GetObjectDescription ( ) ;
break ;
2012-01-08 04:58:07 +08:00
2011-07-15 10:26:42 +08:00
case eDisplayLocation :
return_value = GetLocationAsCString ( ) ;
break ;
2012-01-08 04:58:07 +08:00
2011-08-04 10:34:29 +08:00
case eDisplayChildrenCount :
2012-01-08 04:58:07 +08:00
{
alloc_mem . resize ( 512 ) ;
return_value = & alloc_mem [ 0 ] ;
int count = GetNumChildren ( ) ;
snprintf ( ( char * ) return_value , 512 , " %d " , count ) ;
}
2011-08-04 10:34:29 +08:00
break ;
2012-01-08 04:58:07 +08:00
2011-08-20 05:13:46 +08:00
case eDisplayType :
return_value = GetTypeName ( ) . AsCString ( ) ;
break ;
2012-01-08 04:58:07 +08:00
2011-08-04 10:34:29 +08:00
default :
break ;
2011-07-02 08:25:22 +08:00
}
2011-09-07 06:59:55 +08:00
if ( ! return_value )
2011-07-06 10:13:41 +08:00
{
if ( val_obj_display = = eDisplayValue )
2011-09-07 06:59:55 +08:00
return_value = GetSummaryAsCString ( ) ;
2011-07-06 10:13:41 +08:00
else if ( val_obj_display = = eDisplaySummary )
2011-07-23 01:03:19 +08:00
{
if ( ClangASTContext : : IsAggregateType ( GetClangType ( ) ) = = true )
{
2011-08-04 10:34:29 +08:00
// this thing has no value, and it seems to have no summary
// some combination of unitialized data and other factors can also
2011-09-07 06:59:55 +08:00
// raise this condition, so let's print a nice generic description
2011-08-20 05:13:46 +08:00
{
alloc_mem . resize ( 684 ) ;
return_value = & alloc_mem [ 0 ] ;
snprintf ( ( char * ) return_value , 684 , " %s @ %s " , GetTypeName ( ) . AsCString ( ) , GetLocationAsCString ( ) ) ;
}
2011-07-23 01:03:19 +08:00
}
else
return_value = GetValueAsCString ( ) ;
}
2011-07-06 10:13:41 +08:00
}
2011-07-02 08:25:22 +08:00
2011-08-04 10:34:29 +08:00
if ( return_value )
s . PutCString ( return_value ) ;
else
2011-08-24 05:26:09 +08:00
{
if ( m_error . Fail ( ) )
s . Printf ( " <%s> " , m_error . AsCString ( ) ) ;
else if ( val_obj_display = = eDisplaySummary )
s . PutCString ( " <no summary available> " ) ;
else if ( val_obj_display = = eDisplayValue )
s . PutCString ( " <no value available> " ) ;
else if ( val_obj_display = = eDisplayLanguageSpecific )
s . PutCString ( " <not a valid Objective-C object> " ) ; // edit this if we have other runtimes that support a description
else
s . PutCString ( " <no printable representation> " ) ;
}
2011-08-04 10:34:29 +08:00
// we should only return false here if we could not do *anything*
// even if we have an error message as output, that's a success
// from our callers' perspective, so return true
return true ;
2011-07-06 10:13:41 +08:00
}
2011-07-02 08:25:22 +08:00
2011-08-20 05:13:46 +08:00
// if any more "special cases" are added to ValueObject::DumpPrintableRepresentation() please keep
// this call up to date by returning true for your new special cases. We will eventually move
// to checking this call result before trying to display special cases
bool
ValueObject : : HasSpecialCasesForPrintableRepresentation ( ValueObjectRepresentationStyle val_obj_display ,
2011-09-02 09:15:17 +08:00
Format custom_format )
2011-08-20 05:13:46 +08:00
{
clang_type_t elem_or_pointee_type ;
Flags flags ( ClangASTContext : : GetTypeInfo ( GetClangType ( ) , GetClangAST ( ) , & elem_or_pointee_type ) ) ;
if ( flags . AnySet ( ClangASTContext : : eTypeIsArray | ClangASTContext : : eTypeIsPointer )
& & val_obj_display = = ValueObject : : eDisplayValue )
{
if ( IsCStringContainer ( true ) & &
2011-09-02 09:15:17 +08:00
( custom_format = = eFormatCString | |
custom_format = = eFormatCharArray | |
custom_format = = eFormatChar | |
custom_format = = eFormatVectorOfChar ) )
2011-08-20 05:13:46 +08:00
return true ;
if ( flags . Test ( ClangASTContext : : eTypeIsArray ) )
{
2011-09-02 09:15:17 +08:00
if ( ( custom_format = = eFormatBytes ) | |
( custom_format = = eFormatBytesWithASCII ) )
2011-08-20 05:13:46 +08:00
return true ;
2011-09-02 09:15:17 +08:00
if ( ( custom_format = = eFormatVectorOfChar ) | |
( custom_format = = eFormatVectorOfFloat32 ) | |
( custom_format = = eFormatVectorOfFloat64 ) | |
( custom_format = = eFormatVectorOfSInt16 ) | |
( custom_format = = eFormatVectorOfSInt32 ) | |
( custom_format = = eFormatVectorOfSInt64 ) | |
( custom_format = = eFormatVectorOfSInt8 ) | |
( custom_format = = eFormatVectorOfUInt128 ) | |
( custom_format = = eFormatVectorOfUInt16 ) | |
( custom_format = = eFormatVectorOfUInt32 ) | |
( custom_format = = eFormatVectorOfUInt64 ) | |
( custom_format = = eFormatVectorOfUInt8 ) )
2011-08-20 05:13:46 +08:00
return true ;
}
}
return false ;
}
2011-07-06 10:13:41 +08:00
bool
ValueObject : : DumpPrintableRepresentation ( Stream & s ,
ValueObjectRepresentationStyle val_obj_display ,
2011-09-02 09:15:17 +08:00
Format custom_format ,
2011-08-19 00:38:26 +08:00
bool only_special )
2011-07-06 10:13:41 +08:00
{
2011-07-13 06:56:10 +08:00
clang_type_t elem_or_pointee_type ;
Flags flags ( ClangASTContext : : GetTypeInfo ( GetClangType ( ) , GetClangAST ( ) , & elem_or_pointee_type ) ) ;
2011-07-12 08:18:11 +08:00
2011-07-13 06:56:10 +08:00
if ( flags . AnySet ( ClangASTContext : : eTypeIsArray | ClangASTContext : : eTypeIsPointer )
& & val_obj_display = = ValueObject : : eDisplayValue )
2011-07-12 08:18:11 +08:00
{
2011-07-13 06:56:10 +08:00
// when being asked to get a printable display an array or pointer type directly,
// try to "do the right thing"
if ( IsCStringContainer ( true ) & &
2011-09-02 09:15:17 +08:00
( custom_format = = eFormatCString | |
custom_format = = eFormatCharArray | |
custom_format = = eFormatChar | |
custom_format = = eFormatVectorOfChar ) ) // print char[] & char* directly
2011-07-13 06:56:10 +08:00
{
Error error ;
ReadPointedString ( s ,
error ,
0 ,
2011-09-02 09:15:17 +08:00
( custom_format = = eFormatVectorOfChar ) | |
( custom_format = = eFormatCharArray ) ) ;
2011-07-13 06:56:10 +08:00
return ! error . Fail ( ) ;
}
2011-09-02 09:15:17 +08:00
if ( custom_format = = eFormatEnum )
2011-07-13 06:56:10 +08:00
return false ;
// this only works for arrays, because I have no way to know when
// the pointed memory ends, and no special \0 end of data marker
if ( flags . Test ( ClangASTContext : : eTypeIsArray ) )
{
2011-09-02 09:15:17 +08:00
if ( ( custom_format = = eFormatBytes ) | |
( custom_format = = eFormatBytesWithASCII ) )
2011-07-13 06:56:10 +08:00
{
uint32_t count = GetNumChildren ( ) ;
s < < ' [ ' ;
for ( uint32_t low = 0 ; low < count ; low + + )
{
if ( low )
s < < ' , ' ;
ValueObjectSP child = GetChildAtIndex ( low , true ) ;
if ( ! child . get ( ) )
{
2011-07-23 01:03:19 +08:00
s < < " <invalid child> " ;
2011-07-13 06:56:10 +08:00
continue ;
}
child - > DumpPrintableRepresentation ( s , ValueObject : : eDisplayValue , custom_format ) ;
}
s < < ' ] ' ;
return true ;
}
2011-09-02 09:15:17 +08:00
if ( ( custom_format = = eFormatVectorOfChar ) | |
( custom_format = = eFormatVectorOfFloat32 ) | |
( custom_format = = eFormatVectorOfFloat64 ) | |
( custom_format = = eFormatVectorOfSInt16 ) | |
( custom_format = = eFormatVectorOfSInt32 ) | |
( custom_format = = eFormatVectorOfSInt64 ) | |
( custom_format = = eFormatVectorOfSInt8 ) | |
( custom_format = = eFormatVectorOfUInt128 ) | |
( custom_format = = eFormatVectorOfUInt16 ) | |
( custom_format = = eFormatVectorOfUInt32 ) | |
( custom_format = = eFormatVectorOfUInt64 ) | |
( custom_format = = eFormatVectorOfUInt8 ) ) // arrays of bytes, bytes with ASCII or any vector format should be printed directly
2011-07-13 06:56:10 +08:00
{
uint32_t count = GetNumChildren ( ) ;
2011-09-02 09:15:17 +08:00
Format format = FormatManager : : GetSingleItemFormat ( custom_format ) ;
2011-07-13 06:56:10 +08:00
s < < ' [ ' ;
for ( uint32_t low = 0 ; low < count ; low + + )
{
if ( low )
s < < ' , ' ;
ValueObjectSP child = GetChildAtIndex ( low , true ) ;
if ( ! child . get ( ) )
{
2011-07-23 01:03:19 +08:00
s < < " <invalid child> " ;
2011-07-13 06:56:10 +08:00
continue ;
}
child - > DumpPrintableRepresentation ( s , ValueObject : : eDisplayValue , format ) ;
}
s < < ' ] ' ;
return true ;
}
}
2011-09-02 09:15:17 +08:00
if ( ( custom_format = = eFormatBoolean ) | |
( custom_format = = eFormatBinary ) | |
( custom_format = = eFormatChar ) | |
( custom_format = = eFormatCharPrintable ) | |
( custom_format = = eFormatComplexFloat ) | |
( custom_format = = eFormatDecimal ) | |
( custom_format = = eFormatHex ) | |
( custom_format = = eFormatFloat ) | |
( custom_format = = eFormatOctal ) | |
( custom_format = = eFormatOSType ) | |
( custom_format = = eFormatUnicode16 ) | |
( custom_format = = eFormatUnicode32 ) | |
( custom_format = = eFormatUnsigned ) | |
( custom_format = = eFormatPointer ) | |
( custom_format = = eFormatComplexInteger ) | |
( custom_format = = eFormatComplex ) | |
( custom_format = = eFormatDefault ) ) // use the [] operator
2011-07-13 06:56:10 +08:00
return false ;
2011-07-12 08:18:11 +08:00
}
2011-08-19 00:38:26 +08:00
if ( only_special )
return false ;
2011-08-04 10:34:29 +08:00
bool var_success = GetPrintableRepresentation ( s , val_obj_display , custom_format ) ;
2011-07-16 07:30:15 +08:00
if ( custom_format ! = eFormatInvalid )
2011-07-13 06:56:10 +08:00
SetFormat ( eFormatDefault ) ;
return var_success ;
2011-07-02 08:25:22 +08:00
}
2010-10-27 11:32:59 +08:00
addr_t
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
ValueObject : : GetAddressOf ( bool scalar_is_load_address , AddressType * address_type )
2010-10-27 11:32:59 +08:00
{
2011-08-03 01:27:39 +08:00
if ( ! UpdateValueIfNeeded ( false ) )
2011-04-16 08:01:13 +08:00
return LLDB_INVALID_ADDRESS ;
2010-10-27 11:32:59 +08:00
switch ( m_value . GetValueType ( ) )
{
case Value : : eValueTypeScalar :
if ( scalar_is_load_address )
{
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
if ( address_type )
* address_type = eAddressTypeLoad ;
2010-10-27 11:32:59 +08:00
return m_value . GetScalar ( ) . ULongLong ( LLDB_INVALID_ADDRESS ) ;
}
break ;
case Value : : eValueTypeLoadAddress :
case Value : : eValueTypeFileAddress :
case Value : : eValueTypeHostAddress :
{
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
if ( address_type )
* address_type = m_value . GetValueAddressType ( ) ;
2010-10-27 11:32:59 +08:00
return m_value . GetScalar ( ) . ULongLong ( LLDB_INVALID_ADDRESS ) ;
}
break ;
}
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
if ( address_type )
* address_type = eAddressTypeInvalid ;
2010-10-27 11:32:59 +08:00
return LLDB_INVALID_ADDRESS ;
}
2010-09-13 11:32:57 +08:00
addr_t
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
ValueObject : : GetPointerValue ( AddressType * address_type )
2010-09-13 11:32:57 +08:00
{
2011-09-02 09:15:17 +08:00
addr_t address = LLDB_INVALID_ADDRESS ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
if ( address_type )
* address_type = eAddressTypeInvalid ;
2011-04-16 08:01:13 +08:00
2011-08-03 01:27:39 +08:00
if ( ! UpdateValueIfNeeded ( false ) )
2011-04-16 08:01:13 +08:00
return address ;
2010-10-27 11:32:59 +08:00
switch ( m_value . GetValueType ( ) )
2010-09-13 11:32:57 +08:00
{
case Value : : eValueTypeScalar :
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
address = m_value . GetScalar ( ) . ULongLong ( LLDB_INVALID_ADDRESS ) ;
2010-09-13 11:32:57 +08:00
break ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
case Value : : eValueTypeHostAddress :
2010-09-13 11:32:57 +08:00
case Value : : eValueTypeLoadAddress :
case Value : : eValueTypeFileAddress :
{
uint32_t data_offset = 0 ;
address = m_data . GetPointer ( & data_offset ) ;
}
break ;
}
2010-12-14 10:59:59 +08:00
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
if ( address_type )
* address_type = GetAddressTypeOfChildren ( ) ;
2010-12-14 10:59:59 +08:00
2010-09-13 11:32:57 +08:00
return address ;
}
2010-06-09 00:52:24 +08:00
bool
2011-03-31 08:19:25 +08:00
ValueObject : : SetValueFromCString ( const char * value_str )
2010-06-09 00:52:24 +08:00
{
// Make sure our value is up to date first so that our location and location
// type is valid.
2011-08-03 01:27:39 +08:00
if ( ! UpdateValueIfNeeded ( false ) )
2010-06-09 00:52:24 +08:00
return false ;
uint32_t count = 0 ;
2011-09-02 09:15:17 +08:00
Encoding encoding = ClangASTType : : GetEncoding ( GetClangType ( ) , count ) ;
2010-06-09 00:52:24 +08:00
2010-07-14 08:18:15 +08:00
const size_t byte_size = GetByteSize ( ) ;
2010-06-09 00:52:24 +08:00
2011-08-13 07:34:31 +08:00
Value : : ValueType value_type = m_value . GetValueType ( ) ;
if ( value_type = = Value : : eValueTypeScalar )
{
// If the value is already a scalar, then let the scalar change itself:
m_value . GetScalar ( ) . SetValueFromCString ( value_str , encoding , byte_size ) ;
}
else if ( byte_size < = Scalar : : GetMaxByteSize ( ) )
{
// If the value fits in a scalar, then make a new scalar and again let the
// scalar code do the conversion, then figure out where to put the new value.
Scalar new_scalar ;
Error error ;
error = new_scalar . SetValueFromCString ( value_str , encoding , byte_size ) ;
if ( error . Success ( ) )
2010-06-09 00:52:24 +08:00
{
2011-08-09 10:12:22 +08:00
switch ( value_type )
{
2012-02-17 15:49:44 +08:00
case Value : : eValueTypeLoadAddress :
2011-08-13 07:34:31 +08:00
{
// If it is a load address, then the scalar value is the storage location
// of the data, and we have to shove this value down to that load location.
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
Process * process = exe_ctx . GetProcessPtr ( ) ;
if ( process )
2011-08-13 07:34:31 +08:00
{
2011-09-02 09:15:17 +08:00
addr_t target_addr = m_value . GetScalar ( ) . GetRawBits64 ( LLDB_INVALID_ADDRESS ) ;
2012-02-17 15:49:44 +08:00
size_t bytes_written = process - > WriteScalarToMemory ( target_addr ,
new_scalar ,
byte_size ,
error ) ;
2011-08-13 07:34:31 +08:00
if ( ! error . Success ( ) | | bytes_written ! = byte_size )
return false ;
}
}
2011-08-09 10:12:22 +08:00
break ;
2012-02-17 15:49:44 +08:00
case Value : : eValueTypeHostAddress :
2011-08-13 07:34:31 +08:00
{
// If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data.
DataExtractor new_data ;
new_data . SetByteOrder ( m_data . GetByteOrder ( ) ) ;
DataBufferSP buffer_sp ( new DataBufferHeap ( byte_size , 0 ) ) ;
m_data . SetData ( buffer_sp , 0 ) ;
bool success = new_scalar . GetData ( new_data ) ;
if ( success )
{
2012-02-17 15:49:44 +08:00
new_data . CopyByteOrderedData ( 0 ,
byte_size ,
const_cast < uint8_t * > ( m_data . GetDataStart ( ) ) ,
byte_size ,
m_data . GetByteOrder ( ) ) ;
2011-08-13 07:34:31 +08:00
}
m_value . GetScalar ( ) = ( uintptr_t ) m_data . GetDataStart ( ) ;
}
2011-08-09 10:12:22 +08:00
break ;
2012-02-17 15:49:44 +08:00
case Value : : eValueTypeFileAddress :
case Value : : eValueTypeScalar :
2011-08-13 07:34:31 +08:00
break ;
2011-08-09 10:12:22 +08:00
}
2010-06-09 00:52:24 +08:00
}
else
{
2011-08-13 07:34:31 +08:00
return false ;
2010-06-09 00:52:24 +08:00
}
2011-08-13 07:34:31 +08:00
}
else
{
// We don't support setting things bigger than a scalar at present.
2010-06-09 00:52:24 +08:00
return false ;
}
2011-08-13 07:34:31 +08:00
// If we have reached this point, then we have successfully changed the value.
SetNeedsUpdate ( ) ;
return true ;
2010-06-09 00:52:24 +08:00
}
2012-02-04 10:27:34 +08:00
bool
ValueObject : : GetDeclaration ( Declaration & decl )
{
decl . Clear ( ) ;
return false ;
}
2011-09-02 09:15:17 +08:00
LanguageType
2010-09-28 09:25:32 +08:00
ValueObject : : GetObjectRuntimeLanguage ( )
{
2011-08-03 01:27:39 +08:00
return ClangASTType : : GetMinimumLanguage ( GetClangAST ( ) ,
GetClangType ( ) ) ;
2010-09-28 09:25:32 +08:00
}
2010-06-09 00:52:24 +08:00
void
2011-04-23 07:53:53 +08:00
ValueObject : : AddSyntheticChild ( const ConstString & key , ValueObject * valobj )
2010-06-09 00:52:24 +08:00
{
2011-04-23 07:53:53 +08:00
m_synthetic_children [ key ] = valobj ;
2010-06-09 00:52:24 +08:00
}
ValueObjectSP
ValueObject : : GetSyntheticChild ( const ConstString & key ) const
{
ValueObjectSP synthetic_child_sp ;
2011-04-23 07:53:53 +08:00
std : : map < ConstString , ValueObject * > : : const_iterator pos = m_synthetic_children . find ( key ) ;
2010-06-09 00:52:24 +08:00
if ( pos ! = m_synthetic_children . end ( ) )
2011-04-23 07:53:53 +08:00
synthetic_child_sp = pos - > second - > GetSP ( ) ;
2010-06-09 00:52:24 +08:00
return synthetic_child_sp ;
}
bool
ValueObject : : IsPointerType ( )
{
2010-09-29 09:12:09 +08:00
return ClangASTContext : : IsPointerType ( GetClangType ( ) ) ;
2010-06-09 00:52:24 +08:00
}
2011-07-10 04:12:33 +08:00
bool
ValueObject : : IsArrayType ( )
{
return ClangASTContext : : IsArrayType ( GetClangType ( ) ) ;
}
2011-07-06 10:13:41 +08:00
bool
ValueObject : : IsScalarType ( )
{
return ClangASTContext : : IsScalarType ( GetClangType ( ) ) ;
}
2011-03-18 08:05:18 +08:00
bool
ValueObject : : IsIntegerType ( bool & is_signed )
{
return ClangASTContext : : IsIntegerType ( GetClangType ( ) , is_signed ) ;
}
2010-10-27 11:32:59 +08:00
2010-06-09 00:52:24 +08:00
bool
ValueObject : : IsPointerOrReferenceType ( )
{
2011-05-30 08:49:24 +08:00
return ClangASTContext : : IsPointerOrReferenceType ( GetClangType ( ) ) ;
}
bool
ValueObject : : IsPossibleCPlusPlusDynamicType ( )
{
return ClangASTContext : : IsPossibleCPlusPlusDynamicType ( GetClangAST ( ) , GetClangType ( ) ) ;
2010-06-09 00:52:24 +08:00
}
2011-06-30 06:09:02 +08:00
bool
ValueObject : : IsPossibleDynamicType ( )
{
return ClangASTContext : : IsPossibleDynamicType ( GetClangAST ( ) , GetClangType ( ) ) ;
}
2011-09-02 09:15:17 +08:00
ValueObjectSP
2011-08-20 05:13:46 +08:00
ValueObject : : GetSyntheticArrayMember ( int32_t index , bool can_create )
{
if ( IsArrayType ( ) )
return GetSyntheticArrayMemberFromArray ( index , can_create ) ;
if ( IsPointerType ( ) )
return GetSyntheticArrayMemberFromPointer ( index , can_create ) ;
return ValueObjectSP ( ) ;
}
2010-06-09 00:52:24 +08:00
ValueObjectSP
ValueObject : : GetSyntheticArrayMemberFromPointer ( int32_t index , bool can_create )
{
ValueObjectSP synthetic_child_sp ;
if ( IsPointerType ( ) )
{
char index_str [ 64 ] ;
snprintf ( index_str , sizeof ( index_str ) , " [%i] " , index ) ;
ConstString index_const_str ( index_str ) ;
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild ( index_const_str ) ;
if ( ! synthetic_child_sp )
{
2011-04-23 07:53:53 +08:00
ValueObject * synthetic_child ;
2010-06-09 00:52:24 +08:00
// We haven't made a synthetic array member for INDEX yet, so
// lets make one and cache it for any future reference.
2011-04-23 07:53:53 +08:00
synthetic_child = CreateChildAtIndex ( 0 , true , index ) ;
2010-06-09 00:52:24 +08:00
// Cache the value if we got one back...
2011-04-23 07:53:53 +08:00
if ( synthetic_child )
{
AddSyntheticChild ( index_const_str , synthetic_child ) ;
synthetic_child_sp = synthetic_child - > GetSP ( ) ;
2011-07-30 03:53:35 +08:00
synthetic_child_sp - > SetName ( ConstString ( index_str ) ) ;
2011-07-02 08:25:22 +08:00
synthetic_child_sp - > m_is_array_item_for_pointer = true ;
2011-04-23 07:53:53 +08:00
}
2010-06-09 00:52:24 +08:00
}
}
return synthetic_child_sp ;
}
2010-09-23 10:01:19 +08:00
2011-07-10 04:12:33 +08:00
// This allows you to create an array member using and index
// that doesn't not fall in the normal bounds of the array.
// Many times structure can be defined as:
// struct Collection
// {
// uint32_t item_count;
// Item item_array[0];
// };
// The size of the "item_array" is 1, but many times in practice
// there are more items in "item_array".
ValueObjectSP
ValueObject : : GetSyntheticArrayMemberFromArray ( int32_t index , bool can_create )
{
ValueObjectSP synthetic_child_sp ;
if ( IsArrayType ( ) )
{
char index_str [ 64 ] ;
snprintf ( index_str , sizeof ( index_str ) , " [%i] " , index ) ;
ConstString index_const_str ( index_str ) ;
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild ( index_const_str ) ;
if ( ! synthetic_child_sp )
{
ValueObject * synthetic_child ;
// We haven't made a synthetic array member for INDEX yet, so
// lets make one and cache it for any future reference.
synthetic_child = CreateChildAtIndex ( 0 , true , index ) ;
// Cache the value if we got one back...
if ( synthetic_child )
{
AddSyntheticChild ( index_const_str , synthetic_child ) ;
synthetic_child_sp = synthetic_child - > GetSP ( ) ;
2011-07-30 03:53:35 +08:00
synthetic_child_sp - > SetName ( ConstString ( index_str ) ) ;
2011-07-10 04:12:33 +08:00
synthetic_child_sp - > m_is_array_item_for_pointer = true ;
}
}
}
return synthetic_child_sp ;
}
2011-07-06 10:13:41 +08:00
ValueObjectSP
ValueObject : : GetSyntheticBitFieldChild ( uint32_t from , uint32_t to , bool can_create )
{
ValueObjectSP synthetic_child_sp ;
if ( IsScalarType ( ) )
{
char index_str [ 64 ] ;
snprintf ( index_str , sizeof ( index_str ) , " [%i-%i] " , from , to ) ;
ConstString index_const_str ( index_str ) ;
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild ( index_const_str ) ;
if ( ! synthetic_child_sp )
{
ValueObjectChild * synthetic_child ;
// We haven't made a synthetic array member for INDEX yet, so
// lets make one and cache it for any future reference.
synthetic_child = new ValueObjectChild ( * this ,
GetClangAST ( ) ,
GetClangType ( ) ,
index_const_str ,
GetByteSize ( ) ,
0 ,
to - from + 1 ,
from ,
false ,
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
false ,
eAddressTypeInvalid ) ;
2011-07-06 10:13:41 +08:00
// Cache the value if we got one back...
if ( synthetic_child )
{
AddSyntheticChild ( index_const_str , synthetic_child ) ;
synthetic_child_sp = synthetic_child - > GetSP ( ) ;
2011-07-30 03:53:35 +08:00
synthetic_child_sp - > SetName ( ConstString ( index_str ) ) ;
2011-07-06 10:13:41 +08:00
synthetic_child_sp - > m_is_bitfield_for_scalar = true ;
}
}
}
return synthetic_child_sp ;
2011-08-20 05:13:46 +08:00
}
2011-09-02 09:15:17 +08:00
ValueObjectSP
2011-08-20 05:13:46 +08:00
ValueObject : : GetSyntheticArrayRangeChild ( uint32_t from , uint32_t to , bool can_create )
{
ValueObjectSP synthetic_child_sp ;
if ( IsArrayType ( ) | | IsPointerType ( ) )
{
char index_str [ 64 ] ;
snprintf ( index_str , sizeof ( index_str ) , " [%i-%i] " , from , to ) ;
ConstString index_const_str ( index_str ) ;
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild ( index_const_str ) ;
if ( ! synthetic_child_sp )
{
ValueObjectSynthetic * synthetic_child ;
// We haven't made a synthetic array member for INDEX yet, so
// lets make one and cache it for any future reference.
2012-02-15 10:34:21 +08:00
SyntheticArrayView * view = new SyntheticArrayView ( SyntheticChildren : : Flags ( ) ) ;
2011-08-20 05:13:46 +08:00
view - > AddRange ( from , to ) ;
SyntheticChildrenSP view_sp ( view ) ;
synthetic_child = new ValueObjectSynthetic ( * this , view_sp ) ;
// Cache the value if we got one back...
if ( synthetic_child )
{
AddSyntheticChild ( index_const_str , synthetic_child ) ;
synthetic_child_sp = synthetic_child - > GetSP ( ) ;
synthetic_child_sp - > SetName ( ConstString ( index_str ) ) ;
synthetic_child_sp - > m_is_bitfield_for_scalar = true ;
}
}
}
return synthetic_child_sp ;
2011-07-06 10:13:41 +08:00
}
2011-09-02 09:15:17 +08:00
ValueObjectSP
2011-07-30 03:53:35 +08:00
ValueObject : : GetSyntheticChildAtOffset ( uint32_t offset , const ClangASTType & type , bool can_create )
{
ValueObjectSP synthetic_child_sp ;
char name_str [ 64 ] ;
snprintf ( name_str , sizeof ( name_str ) , " @%i " , offset ) ;
ConstString name_const_str ( name_str ) ;
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild ( name_const_str ) ;
if ( synthetic_child_sp . get ( ) )
return synthetic_child_sp ;
if ( ! can_create )
2011-09-02 09:15:17 +08:00
return ValueObjectSP ( ) ;
2011-07-30 03:53:35 +08:00
ValueObjectChild * synthetic_child = new ValueObjectChild ( * this ,
type . GetASTContext ( ) ,
type . GetOpaqueQualType ( ) ,
name_const_str ,
type . GetTypeByteSize ( ) ,
offset ,
0 ,
0 ,
false ,
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
false ,
eAddressTypeInvalid ) ;
2011-07-30 03:53:35 +08:00
if ( synthetic_child )
{
AddSyntheticChild ( name_const_str , synthetic_child ) ;
synthetic_child_sp = synthetic_child - > GetSP ( ) ;
synthetic_child_sp - > SetName ( name_const_str ) ;
synthetic_child_sp - > m_is_child_at_offset = true ;
}
return synthetic_child_sp ;
}
2011-07-22 08:16:08 +08:00
// your expression path needs to have a leading . or ->
// (unless it somehow "looks like" an array, in which case it has
// a leading [ symbol). while the [ is meaningful and should be shown
// to the user, . and -> are just parser design, but by no means
// added information for the user.. strip them off
static const char *
SkipLeadingExpressionPathSeparators ( const char * expression )
{
if ( ! expression | | ! expression [ 0 ] )
return expression ;
if ( expression [ 0 ] = = ' . ' )
return expression + 1 ;
if ( expression [ 0 ] = = ' - ' & & expression [ 1 ] = = ' > ' )
return expression + 2 ;
return expression ;
}
2011-09-02 09:15:17 +08:00
ValueObjectSP
2011-07-22 08:16:08 +08:00
ValueObject : : GetSyntheticExpressionPathChild ( const char * expression , bool can_create )
{
ValueObjectSP synthetic_child_sp ;
ConstString name_const_string ( expression ) ;
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild ( name_const_string ) ;
if ( ! synthetic_child_sp )
{
// We haven't made a synthetic array member for expression yet, so
// lets make one and cache it for any future reference.
synthetic_child_sp = GetValueForExpressionPath ( expression ) ;
// Cache the value if we got one back...
if ( synthetic_child_sp . get ( ) )
{
AddSyntheticChild ( name_const_string , synthetic_child_sp . get ( ) ) ;
2011-07-30 03:53:35 +08:00
synthetic_child_sp - > SetName ( ConstString ( SkipLeadingExpressionPathSeparators ( expression ) ) ) ;
2011-07-22 08:16:08 +08:00
synthetic_child_sp - > m_is_expression_path_child = true ;
}
}
return synthetic_child_sp ;
}
void
2011-09-02 09:15:17 +08:00
ValueObject : : CalculateSyntheticValue ( SyntheticValueType use_synthetic )
2011-07-22 08:16:08 +08:00
{
2011-09-02 09:15:17 +08:00
if ( use_synthetic = = eNoSyntheticFilter )
2011-07-22 08:16:08 +08:00
return ;
2011-08-03 01:27:39 +08:00
UpdateFormatsIfNeeded ( m_last_format_mgr_dynamic ) ;
2011-07-22 08:16:08 +08:00
if ( m_last_synthetic_filter . get ( ) = = NULL )
return ;
2011-07-24 08:14:56 +08:00
if ( m_synthetic_value = = NULL )
m_synthetic_value = new ValueObjectSynthetic ( * this , m_last_synthetic_filter ) ;
2011-07-22 08:16:08 +08:00
}
2011-04-16 08:01:13 +08:00
void
2011-09-02 09:15:17 +08:00
ValueObject : : CalculateDynamicValue ( DynamicValueType use_dynamic )
2010-09-23 10:01:19 +08:00
{
2011-09-02 09:15:17 +08:00
if ( use_dynamic = = eNoDynamicValues )
2011-05-04 11:43:18 +08:00
return ;
2011-04-23 07:53:53 +08:00
if ( ! m_dynamic_value & & ! IsDynamic ( ) )
2011-04-16 08:01:13 +08:00
{
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
Process * process = exe_ctx . GetProcessPtr ( ) ;
if ( process )
2011-04-16 08:01:13 +08:00
{
2012-02-17 15:49:44 +08:00
bool worth_having_dynamic_value = false ;
2011-04-16 08:01:13 +08:00
2012-02-17 15:49:44 +08:00
// FIXME: Process should have some kind of "map over Runtimes" so we don't have to
// hard code this everywhere.
LanguageType known_type = GetObjectRuntimeLanguage ( ) ;
if ( known_type ! = eLanguageTypeUnknown & & known_type ! = eLanguageTypeC )
2011-04-16 08:01:13 +08:00
{
2012-02-17 15:49:44 +08:00
LanguageRuntime * runtime = process - > GetLanguageRuntime ( known_type ) ;
if ( runtime )
worth_having_dynamic_value = runtime - > CouldHaveDynamicValue ( * this ) ;
}
else
{
LanguageRuntime * cpp_runtime = process - > GetLanguageRuntime ( eLanguageTypeC_plus_plus ) ;
if ( cpp_runtime )
worth_having_dynamic_value = cpp_runtime - > CouldHaveDynamicValue ( * this ) ;
if ( ! worth_having_dynamic_value )
{
LanguageRuntime * objc_runtime = process - > GetLanguageRuntime ( eLanguageTypeObjC ) ;
if ( objc_runtime )
worth_having_dynamic_value = objc_runtime - > CouldHaveDynamicValue ( * this ) ;
}
2011-04-16 08:01:13 +08:00
}
2011-04-23 07:53:53 +08:00
2012-02-17 15:49:44 +08:00
if ( worth_having_dynamic_value )
m_dynamic_value = new ValueObjectDynamicValue ( * this , use_dynamic ) ;
}
2011-04-16 08:01:13 +08:00
}
}
2011-04-23 07:53:53 +08:00
ValueObjectSP
2011-05-04 11:43:18 +08:00
ValueObject : : GetDynamicValue ( DynamicValueType use_dynamic )
2011-04-16 08:01:13 +08:00
{
2011-09-02 09:15:17 +08:00
if ( use_dynamic = = eNoDynamicValues )
2011-05-04 11:43:18 +08:00
return ValueObjectSP ( ) ;
if ( ! IsDynamic ( ) & & m_dynamic_value = = NULL )
2011-04-16 08:01:13 +08:00
{
2011-05-04 11:43:18 +08:00
CalculateDynamicValue ( use_dynamic ) ;
2011-04-16 08:01:13 +08:00
}
2011-04-23 07:53:53 +08:00
if ( m_dynamic_value )
return m_dynamic_value - > GetSP ( ) ;
else
return ValueObjectSP ( ) ;
2010-09-23 10:01:19 +08:00
}
2010-10-05 08:00:42 +08:00
2011-12-09 03:44:08 +08:00
ValueObjectSP
ValueObject : : GetStaticValue ( )
{
return GetSP ( ) ;
}
2011-07-22 08:16:08 +08:00
// GetDynamicValue() returns a NULL SharedPointer if the object is not dynamic
// or we do not really want a dynamic VO. this method instead returns this object
// itself when making it synthetic has no meaning. this makes it much simpler
// to replace the SyntheticValue for the ValueObject
ValueObjectSP
ValueObject : : GetSyntheticValue ( SyntheticValueType use_synthetic )
{
2011-09-02 09:15:17 +08:00
if ( use_synthetic = = eNoSyntheticFilter )
2011-07-22 08:16:08 +08:00
return GetSP ( ) ;
2011-08-03 01:27:39 +08:00
UpdateFormatsIfNeeded ( m_last_format_mgr_dynamic ) ;
2011-07-22 08:16:08 +08:00
if ( m_last_synthetic_filter . get ( ) = = NULL )
return GetSP ( ) ;
CalculateSyntheticValue ( use_synthetic ) ;
if ( m_synthetic_value )
return m_synthetic_value - > GetSP ( ) ;
else
return GetSP ( ) ;
}
2011-08-09 09:04:56 +08:00
bool
ValueObject : : HasSyntheticValue ( )
{
UpdateFormatsIfNeeded ( m_last_format_mgr_dynamic ) ;
if ( m_last_synthetic_filter . get ( ) = = NULL )
return false ;
2011-09-02 09:15:17 +08:00
CalculateSyntheticValue ( eUseSyntheticFilter ) ;
2011-08-09 09:04:56 +08:00
if ( m_synthetic_value )
return true ;
else
return false ;
}
2011-01-21 09:59:00 +08:00
bool
ValueObject : : GetBaseClassPath ( Stream & s )
{
if ( IsBaseClass ( ) )
{
2011-04-16 08:01:13 +08:00
bool parent_had_base_class = GetParent ( ) & & GetParent ( ) - > GetBaseClassPath ( s ) ;
2011-01-21 09:59:00 +08:00
clang_type_t clang_type = GetClangType ( ) ;
std : : string cxx_class_name ;
bool this_had_base_class = ClangASTContext : : GetCXXClassName ( clang_type , cxx_class_name ) ;
if ( this_had_base_class )
{
if ( parent_had_base_class )
s . PutCString ( " :: " ) ;
s . PutCString ( cxx_class_name . c_str ( ) ) ;
}
return parent_had_base_class | | this_had_base_class ;
}
return false ;
}
ValueObject *
ValueObject : : GetNonBaseClassParent ( )
{
2011-04-16 08:01:13 +08:00
if ( GetParent ( ) )
2011-01-21 09:59:00 +08:00
{
2011-04-16 08:01:13 +08:00
if ( GetParent ( ) - > IsBaseClass ( ) )
return GetParent ( ) - > GetNonBaseClassParent ( ) ;
2011-01-21 09:59:00 +08:00
else
2011-04-16 08:01:13 +08:00
return GetParent ( ) ;
2011-01-21 09:59:00 +08:00
}
return NULL ;
}
2010-10-05 08:00:42 +08:00
2010-10-15 06:52:14 +08:00
void
2011-06-30 06:27:15 +08:00
ValueObject : : GetExpressionPath ( Stream & s , bool qualify_cxx_base_classes , GetExpressionPathFormat epformat )
2010-10-15 06:52:14 +08:00
{
2011-01-21 09:59:00 +08:00
const bool is_deref_of_parent = IsDereferenceOfParent ( ) ;
2011-08-19 00:38:26 +08:00
if ( is_deref_of_parent & & epformat = = eDereferencePointers )
{
2011-06-30 06:27:15 +08:00
// this is the original format of GetExpressionPath() producing code like *(a_ptr).memberName, which is entirely
// fine, until you put this into StackFrame::GetValueForVariableExpressionPath() which prefers to see a_ptr->memberName.
// the eHonorPointers mode is meant to produce strings in this latter format
s . PutCString ( " *( " ) ;
}
2011-01-21 09:59:00 +08:00
2011-06-30 06:27:15 +08:00
ValueObject * parent = GetParent ( ) ;
if ( parent )
parent - > GetExpressionPath ( s , qualify_cxx_base_classes , epformat ) ;
2011-07-02 08:25:22 +08:00
// if we are a deref_of_parent just because we are synthetic array
// members made up to allow ptr[%d] syntax to work in variable
// printing, then add our name ([%d]) to the expression path
2011-07-16 07:30:15 +08:00
if ( m_is_array_item_for_pointer & & epformat = = eHonorPointers )
2011-07-02 08:25:22 +08:00
s . PutCString ( m_name . AsCString ( ) ) ;
2011-06-30 06:27:15 +08:00
2011-01-21 09:59:00 +08:00
if ( ! IsBaseClass ( ) )
{
if ( ! is_deref_of_parent )
2010-10-15 06:52:14 +08:00
{
2011-01-21 09:59:00 +08:00
ValueObject * non_base_class_parent = GetNonBaseClassParent ( ) ;
if ( non_base_class_parent )
2010-10-15 06:52:14 +08:00
{
2011-01-21 09:59:00 +08:00
clang_type_t non_base_class_parent_clang_type = non_base_class_parent - > GetClangType ( ) ;
if ( non_base_class_parent_clang_type )
{
const uint32_t non_base_class_parent_type_info = ClangASTContext : : GetTypeInfo ( non_base_class_parent_clang_type , NULL , NULL ) ;
2011-07-16 07:30:15 +08:00
if ( parent & & parent - > IsDereferenceOfParent ( ) & & epformat = = eHonorPointers )
2011-01-21 09:59:00 +08:00
{
s . PutCString ( " -> " ) ;
}
2011-06-30 06:27:15 +08:00
else
{
if ( non_base_class_parent_type_info & ClangASTContext : : eTypeIsPointer )
{
s . PutCString ( " -> " ) ;
}
else if ( ( non_base_class_parent_type_info & ClangASTContext : : eTypeHasChildren ) & &
! ( non_base_class_parent_type_info & ClangASTContext : : eTypeIsArray ) )
{
s . PutChar ( ' . ' ) ;
}
2011-01-21 09:59:00 +08:00
}
}
2010-10-15 06:52:14 +08:00
}
2011-01-21 09:59:00 +08:00
const char * name = GetName ( ) . GetCString ( ) ;
if ( name )
2010-10-15 06:52:14 +08:00
{
2011-01-21 09:59:00 +08:00
if ( qualify_cxx_base_classes )
{
if ( GetBaseClassPath ( s ) )
s . PutCString ( " :: " ) ;
}
s . PutCString ( name ) ;
2010-10-15 06:52:14 +08:00
}
}
}
2011-08-19 00:38:26 +08:00
if ( is_deref_of_parent & & epformat = = eDereferencePointers )
{
2011-01-21 09:59:00 +08:00
s . PutChar ( ' ) ' ) ;
2011-06-30 06:27:15 +08:00
}
2010-10-15 06:52:14 +08:00
}
2011-09-02 09:15:17 +08:00
ValueObjectSP
2011-07-08 10:51:01 +08:00
ValueObject : : GetValueForExpressionPath ( const char * expression ,
const char * * first_unparsed ,
ExpressionPathScanEndReason * reason_to_stop ,
ExpressionPathEndResultType * final_value_type ,
const GetValueForExpressionPathOptions & options ,
ExpressionPathAftermath * final_task_on_target )
{
const char * dummy_first_unparsed ;
ExpressionPathScanEndReason dummy_reason_to_stop ;
ExpressionPathEndResultType dummy_final_value_type ;
ExpressionPathAftermath dummy_final_task_on_target = ValueObject : : eNothing ;
ValueObjectSP ret_val = GetValueForExpressionPath_Impl ( expression ,
first_unparsed ? first_unparsed : & dummy_first_unparsed ,
reason_to_stop ? reason_to_stop : & dummy_reason_to_stop ,
final_value_type ? final_value_type : & dummy_final_value_type ,
options ,
final_task_on_target ? final_task_on_target : & dummy_final_task_on_target ) ;
if ( ! final_task_on_target | | * final_task_on_target = = ValueObject : : eNothing )
{
return ret_val ;
}
if ( ret_val . get ( ) & & * final_value_type = = ePlain ) // I can only deref and takeaddress of plain objects
{
if ( * final_task_on_target = = ValueObject : : eDereference )
{
Error error ;
ValueObjectSP final_value = ret_val - > Dereference ( error ) ;
if ( error . Fail ( ) | | ! final_value . get ( ) )
{
* reason_to_stop = ValueObject : : eDereferencingFailed ;
* final_value_type = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
else
{
* final_task_on_target = ValueObject : : eNothing ;
return final_value ;
}
}
if ( * final_task_on_target = = ValueObject : : eTakeAddress )
{
Error error ;
ValueObjectSP final_value = ret_val - > AddressOf ( error ) ;
if ( error . Fail ( ) | | ! final_value . get ( ) )
{
* reason_to_stop = ValueObject : : eTakingAddressFailed ;
* final_value_type = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
else
{
* final_task_on_target = ValueObject : : eNothing ;
return final_value ;
}
}
}
return ret_val ; // final_task_on_target will still have its original value, so you know I did not do it
}
2011-07-12 08:18:11 +08:00
int
ValueObject : : GetValuesForExpressionPath ( const char * expression ,
2011-09-02 09:15:17 +08:00
ValueObjectListSP & list ,
2011-07-12 08:18:11 +08:00
const char * * first_unparsed ,
ExpressionPathScanEndReason * reason_to_stop ,
ExpressionPathEndResultType * final_value_type ,
const GetValueForExpressionPathOptions & options ,
ExpressionPathAftermath * final_task_on_target )
{
const char * dummy_first_unparsed ;
ExpressionPathScanEndReason dummy_reason_to_stop ;
ExpressionPathEndResultType dummy_final_value_type ;
ExpressionPathAftermath dummy_final_task_on_target = ValueObject : : eNothing ;
ValueObjectSP ret_val = GetValueForExpressionPath_Impl ( expression ,
first_unparsed ? first_unparsed : & dummy_first_unparsed ,
reason_to_stop ? reason_to_stop : & dummy_reason_to_stop ,
final_value_type ? final_value_type : & dummy_final_value_type ,
options ,
final_task_on_target ? final_task_on_target : & dummy_final_task_on_target ) ;
if ( ! ret_val . get ( ) ) // if there are errors, I add nothing to the list
return 0 ;
if ( * reason_to_stop ! = eArrayRangeOperatorMet )
{
// I need not expand a range, just post-process the final value and return
if ( ! final_task_on_target | | * final_task_on_target = = ValueObject : : eNothing )
{
list - > Append ( ret_val ) ;
return 1 ;
}
if ( ret_val . get ( ) & & * final_value_type = = ePlain ) // I can only deref and takeaddress of plain objects
{
if ( * final_task_on_target = = ValueObject : : eDereference )
{
Error error ;
ValueObjectSP final_value = ret_val - > Dereference ( error ) ;
if ( error . Fail ( ) | | ! final_value . get ( ) )
{
* reason_to_stop = ValueObject : : eDereferencingFailed ;
* final_value_type = ValueObject : : eInvalid ;
return 0 ;
}
else
{
* final_task_on_target = ValueObject : : eNothing ;
list - > Append ( final_value ) ;
return 1 ;
}
}
if ( * final_task_on_target = = ValueObject : : eTakeAddress )
{
Error error ;
ValueObjectSP final_value = ret_val - > AddressOf ( error ) ;
if ( error . Fail ( ) | | ! final_value . get ( ) )
{
* reason_to_stop = ValueObject : : eTakingAddressFailed ;
* final_value_type = ValueObject : : eInvalid ;
return 0 ;
}
else
{
* final_task_on_target = ValueObject : : eNothing ;
list - > Append ( final_value ) ;
return 1 ;
}
}
}
}
else
{
return ExpandArraySliceExpression ( first_unparsed ? * first_unparsed : dummy_first_unparsed ,
first_unparsed ? first_unparsed : & dummy_first_unparsed ,
ret_val ,
list ,
reason_to_stop ? reason_to_stop : & dummy_reason_to_stop ,
final_value_type ? final_value_type : & dummy_final_value_type ,
options ,
final_task_on_target ? final_task_on_target : & dummy_final_task_on_target ) ;
}
// in any non-covered case, just do the obviously right thing
list - > Append ( ret_val ) ;
return 1 ;
}
2011-09-02 09:15:17 +08:00
ValueObjectSP
2011-07-08 10:51:01 +08:00
ValueObject : : GetValueForExpressionPath_Impl ( const char * expression_cstr ,
const char * * first_unparsed ,
ExpressionPathScanEndReason * reason_to_stop ,
ExpressionPathEndResultType * final_result ,
const GetValueForExpressionPathOptions & options ,
ExpressionPathAftermath * what_next )
{
ValueObjectSP root = GetSP ( ) ;
if ( ! root . get ( ) )
return ValueObjectSP ( ) ;
* first_unparsed = expression_cstr ;
while ( true )
{
const char * expression_cstr = * first_unparsed ; // hide the top level expression_cstr
2011-09-02 09:15:17 +08:00
clang_type_t root_clang_type = root - > GetClangType ( ) ;
clang_type_t pointee_clang_type ;
2011-07-12 08:18:11 +08:00
Flags root_clang_type_info , pointee_clang_type_info ;
root_clang_type_info = Flags ( ClangASTContext : : GetTypeInfo ( root_clang_type , GetClangAST ( ) , & pointee_clang_type ) ) ;
if ( pointee_clang_type )
pointee_clang_type_info = Flags ( ClangASTContext : : GetTypeInfo ( pointee_clang_type , GetClangAST ( ) , NULL ) ) ;
2011-07-08 10:51:01 +08:00
if ( ! expression_cstr | | * expression_cstr = = ' \0 ' )
{
* reason_to_stop = ValueObject : : eEndOfString ;
return root ;
}
switch ( * expression_cstr )
{
case ' - ' :
{
if ( options . m_check_dot_vs_arrow_syntax & &
2011-07-12 08:18:11 +08:00
root_clang_type_info . Test ( ClangASTContext : : eTypeIsPointer ) ) // if you are trying to use -> on a non-pointer and I must catch the error
2011-07-08 10:51:01 +08:00
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eArrowInsteadOfDot ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
2011-07-12 08:18:11 +08:00
if ( root_clang_type_info . Test ( ClangASTContext : : eTypeIsObjC ) & & // if yo are trying to extract an ObjC IVar when this is forbidden
root_clang_type_info . Test ( ClangASTContext : : eTypeIsPointer ) & &
2011-07-08 10:51:01 +08:00
options . m_no_fragile_ivar )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eFragileIVarNotAllowed ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
if ( expression_cstr [ 1 ] ! = ' > ' )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eUnexpectedSymbol ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
expression_cstr + + ; // skip the -
}
case ' . ' : // or fallthrough from ->
{
if ( options . m_check_dot_vs_arrow_syntax & & * expression_cstr = = ' . ' & &
2011-07-12 08:18:11 +08:00
root_clang_type_info . Test ( ClangASTContext : : eTypeIsPointer ) ) // if you are trying to use . on a pointer and I must catch the error
2011-07-08 10:51:01 +08:00
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eDotInsteadOfArrow ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
expression_cstr + + ; // skip .
const char * next_separator = strpbrk ( expression_cstr + 1 , " -.[ " ) ;
ConstString child_name ;
if ( ! next_separator ) // if no other separator just expand this last layer
{
child_name . SetCString ( expression_cstr ) ;
2011-08-12 01:08:01 +08:00
ValueObjectSP child_valobj_sp = root - > GetChildMemberWithName ( child_name , true ) ;
if ( child_valobj_sp . get ( ) ) // we know we are done, so just return
2011-07-08 10:51:01 +08:00
{
* first_unparsed = ' \0 ' ;
* reason_to_stop = ValueObject : : eEndOfString ;
* final_result = ValueObject : : ePlain ;
2011-08-12 01:08:01 +08:00
return child_valobj_sp ;
}
else if ( options . m_no_synthetic_children = = false ) // let's try with synthetic children
{
2011-12-03 06:48:25 +08:00
child_valobj_sp = root - > GetSyntheticValue ( eNoSyntheticFilter ) - > GetChildMemberWithName ( child_name , true ) ;
2011-08-12 01:08:01 +08:00
}
// if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP,
// so we hit the "else" branch, and return an error
if ( child_valobj_sp . get ( ) ) // if it worked, just return
{
* first_unparsed = ' \0 ' ;
* reason_to_stop = ValueObject : : eEndOfString ;
* final_result = ValueObject : : ePlain ;
return child_valobj_sp ;
2011-07-08 10:51:01 +08:00
}
else
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eNoSuchChild ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
}
else // other layers do expand
{
child_name . SetCStringWithLength ( expression_cstr , next_separator - expression_cstr ) ;
2011-08-12 01:08:01 +08:00
ValueObjectSP child_valobj_sp = root - > GetChildMemberWithName ( child_name , true ) ;
if ( child_valobj_sp . get ( ) ) // store the new root and move on
{
root = child_valobj_sp ;
* first_unparsed = next_separator ;
* final_result = ValueObject : : ePlain ;
continue ;
}
else if ( options . m_no_synthetic_children = = false ) // let's try with synthetic children
{
2011-09-02 09:15:17 +08:00
child_valobj_sp = root - > GetSyntheticValue ( eUseSyntheticFilter ) - > GetChildMemberWithName ( child_name , true ) ;
2011-08-12 01:08:01 +08:00
}
// if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP,
// so we hit the "else" branch, and return an error
if ( child_valobj_sp . get ( ) ) // if it worked, move on
2011-07-08 10:51:01 +08:00
{
2011-08-12 01:08:01 +08:00
root = child_valobj_sp ;
2011-07-08 10:51:01 +08:00
* first_unparsed = next_separator ;
* final_result = ValueObject : : ePlain ;
continue ;
}
else
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eNoSuchChild ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
}
break ;
}
case ' [ ' :
{
2011-07-12 08:18:11 +08:00
if ( ! root_clang_type_info . Test ( ClangASTContext : : eTypeIsArray ) & & ! root_clang_type_info . Test ( ClangASTContext : : eTypeIsPointer ) ) // if this is not a T[] nor a T*
2011-07-08 10:51:01 +08:00
{
2011-08-09 09:04:56 +08:00
if ( ! root_clang_type_info . Test ( ClangASTContext : : eTypeIsScalar ) ) // if this is not even a scalar...
2011-07-08 10:51:01 +08:00
{
2011-08-09 09:04:56 +08:00
if ( options . m_no_synthetic_children ) // ...only chance left is synthetic
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eRangeOperatorInvalid ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
2011-07-08 10:51:01 +08:00
}
else if ( ! options . m_allow_bitfields_syntax ) // if this is a scalar, check that we can expand bitfields
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eRangeOperatorNotAllowed ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
}
if ( * ( expression_cstr + 1 ) = = ' ] ' ) // if this is an unbounded range it only works for arrays
{
2011-07-12 08:18:11 +08:00
if ( ! root_clang_type_info . Test ( ClangASTContext : : eTypeIsArray ) )
2011-07-08 10:51:01 +08:00
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eEmptyRangeNotAllowed ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
else // even if something follows, we cannot expand unbounded ranges, just let the caller do it
{
* first_unparsed = expression_cstr + 2 ;
* reason_to_stop = ValueObject : : eArrayRangeOperatorMet ;
* final_result = ValueObject : : eUnboundedRange ;
return root ;
}
}
const char * separator_position = : : strchr ( expression_cstr + 1 , ' - ' ) ;
const char * close_bracket_position = : : strchr ( expression_cstr + 1 , ' ] ' ) ;
if ( ! close_bracket_position ) // if there is no ], this is a syntax error
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eUnexpectedSymbol ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
if ( ! separator_position | | separator_position > close_bracket_position ) // if no separator, this is either [] or [N]
{
char * end = NULL ;
unsigned long index = : : strtoul ( expression_cstr + 1 , & end , 0 ) ;
if ( ! end | | end ! = close_bracket_position ) // if something weird is in our way return an error
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eUnexpectedSymbol ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
if ( end - expression_cstr = = 1 ) // if this is [], only return a valid value for arrays
{
2011-07-12 08:18:11 +08:00
if ( root_clang_type_info . Test ( ClangASTContext : : eTypeIsArray ) )
2011-07-08 10:51:01 +08:00
{
* first_unparsed = expression_cstr + 2 ;
* reason_to_stop = ValueObject : : eArrayRangeOperatorMet ;
* final_result = ValueObject : : eUnboundedRange ;
return root ;
}
else
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eEmptyRangeNotAllowed ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
}
// from here on we do have a valid index
2011-07-12 08:18:11 +08:00
if ( root_clang_type_info . Test ( ClangASTContext : : eTypeIsArray ) )
2011-07-08 10:51:01 +08:00
{
2011-07-10 04:12:33 +08:00
ValueObjectSP child_valobj_sp = root - > GetChildAtIndex ( index , true ) ;
if ( ! child_valobj_sp )
child_valobj_sp = root - > GetSyntheticArrayMemberFromArray ( index , true ) ;
2011-08-09 09:04:56 +08:00
if ( ! child_valobj_sp )
2011-09-02 09:15:17 +08:00
if ( root - > HasSyntheticValue ( ) & & root - > GetSyntheticValue ( eUseSyntheticFilter ) - > GetNumChildren ( ) > index )
child_valobj_sp = root - > GetSyntheticValue ( eUseSyntheticFilter ) - > GetChildAtIndex ( index , true ) ;
2011-07-10 04:12:33 +08:00
if ( child_valobj_sp )
{
root = child_valobj_sp ;
* first_unparsed = end + 1 ; // skip ]
* final_result = ValueObject : : ePlain ;
continue ;
}
else
2011-07-08 10:51:01 +08:00
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eNoSuchChild ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
}
2011-07-12 08:18:11 +08:00
else if ( root_clang_type_info . Test ( ClangASTContext : : eTypeIsPointer ) )
2011-07-08 10:51:01 +08:00
{
if ( * what_next = = ValueObject : : eDereference & & // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
2011-07-12 08:18:11 +08:00
pointee_clang_type_info . Test ( ClangASTContext : : eTypeIsScalar ) )
2011-07-08 10:51:01 +08:00
{
Error error ;
root = root - > Dereference ( error ) ;
if ( error . Fail ( ) | | ! root . get ( ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eDereferencingFailed ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
else
{
* what_next = eNothing ;
continue ;
}
}
else
{
2011-08-09 09:04:56 +08:00
if ( ClangASTType : : GetMinimumLanguage ( root - > GetClangAST ( ) ,
2011-09-02 09:15:17 +08:00
root - > GetClangType ( ) ) = = eLanguageTypeObjC
2011-08-09 09:04:56 +08:00
& &
ClangASTContext : : IsPointerType ( ClangASTType : : GetPointeeType ( root - > GetClangType ( ) ) ) = = false
& &
root - > HasSyntheticValue ( )
& &
options . m_no_synthetic_children = = false )
{
2011-09-02 09:15:17 +08:00
root = root - > GetSyntheticValue ( eUseSyntheticFilter ) - > GetChildAtIndex ( index , true ) ;
2011-08-09 09:04:56 +08:00
}
else
root = root - > GetSyntheticArrayMemberFromPointer ( index , true ) ;
2011-07-08 10:51:01 +08:00
if ( ! root . get ( ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eNoSuchChild ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
else
{
* first_unparsed = end + 1 ; // skip ]
* final_result = ValueObject : : ePlain ;
continue ;
}
}
}
2011-08-09 09:04:56 +08:00
else if ( ClangASTContext : : IsScalarType ( root_clang_type ) )
2011-07-08 10:51:01 +08:00
{
root = root - > GetSyntheticBitFieldChild ( index , index , true ) ;
if ( ! root . get ( ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eNoSuchChild ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing
{
* first_unparsed = end + 1 ; // skip ]
* reason_to_stop = ValueObject : : eBitfieldRangeOperatorMet ;
* final_result = ValueObject : : eBitfield ;
return root ;
}
}
2011-08-12 01:08:01 +08:00
else if ( root - > HasSyntheticValue ( ) & & options . m_no_synthetic_children = = false )
2011-08-09 09:04:56 +08:00
{
2011-09-02 09:15:17 +08:00
root = root - > GetSyntheticValue ( eUseSyntheticFilter ) - > GetChildAtIndex ( index , true ) ;
2011-08-09 09:04:56 +08:00
if ( ! root . get ( ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eNoSuchChild ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
2011-08-12 01:08:01 +08:00
else
{
* first_unparsed = end + 1 ; // skip ]
* final_result = ValueObject : : ePlain ;
continue ;
}
2011-08-09 09:04:56 +08:00
}
else
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eNoSuchChild ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
2011-07-08 10:51:01 +08:00
}
else // we have a low and a high index
{
char * end = NULL ;
unsigned long index_lower = : : strtoul ( expression_cstr + 1 , & end , 0 ) ;
if ( ! end | | end ! = separator_position ) // if something weird is in our way return an error
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eUnexpectedSymbol ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
unsigned long index_higher = : : strtoul ( separator_position + 1 , & end , 0 ) ;
if ( ! end | | end ! = close_bracket_position ) // if something weird is in our way return an error
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eUnexpectedSymbol ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
if ( index_lower > index_higher ) // swap indices if required
{
unsigned long temp = index_lower ;
index_lower = index_higher ;
index_higher = temp ;
}
2011-07-12 08:18:11 +08:00
if ( root_clang_type_info . Test ( ClangASTContext : : eTypeIsScalar ) ) // expansion only works for scalars
2011-07-08 10:51:01 +08:00
{
root = root - > GetSyntheticBitFieldChild ( index_lower , index_higher , true ) ;
if ( ! root . get ( ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eNoSuchChild ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
else
{
* first_unparsed = end + 1 ; // skip ]
* reason_to_stop = ValueObject : : eBitfieldRangeOperatorMet ;
* final_result = ValueObject : : eBitfield ;
return root ;
}
}
2011-07-12 08:18:11 +08:00
else if ( root_clang_type_info . Test ( ClangASTContext : : eTypeIsPointer ) & & // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
2011-07-08 10:51:01 +08:00
* what_next = = ValueObject : : eDereference & &
2011-07-12 08:18:11 +08:00
pointee_clang_type_info . Test ( ClangASTContext : : eTypeIsScalar ) )
2011-07-08 10:51:01 +08:00
{
Error error ;
root = root - > Dereference ( error ) ;
if ( error . Fail ( ) | | ! root . get ( ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eDereferencingFailed ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
}
else
{
* what_next = ValueObject : : eNothing ;
continue ;
}
}
else
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eArrayRangeOperatorMet ;
* final_result = ValueObject : : eBoundedRange ;
return root ;
}
}
break ;
}
default : // some non-separator is in the way
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eUnexpectedSymbol ;
* final_result = ValueObject : : eInvalid ;
return ValueObjectSP ( ) ;
break ;
}
}
}
}
2011-07-12 08:18:11 +08:00
int
ValueObject : : ExpandArraySliceExpression ( const char * expression_cstr ,
const char * * first_unparsed ,
2011-09-02 09:15:17 +08:00
ValueObjectSP root ,
ValueObjectListSP & list ,
2011-07-12 08:18:11 +08:00
ExpressionPathScanEndReason * reason_to_stop ,
ExpressionPathEndResultType * final_result ,
const GetValueForExpressionPathOptions & options ,
ExpressionPathAftermath * what_next )
{
if ( ! root . get ( ) )
return 0 ;
* first_unparsed = expression_cstr ;
while ( true )
{
const char * expression_cstr = * first_unparsed ; // hide the top level expression_cstr
2011-09-02 09:15:17 +08:00
clang_type_t root_clang_type = root - > GetClangType ( ) ;
clang_type_t pointee_clang_type ;
2011-07-12 08:18:11 +08:00
Flags root_clang_type_info , pointee_clang_type_info ;
root_clang_type_info = Flags ( ClangASTContext : : GetTypeInfo ( root_clang_type , GetClangAST ( ) , & pointee_clang_type ) ) ;
if ( pointee_clang_type )
pointee_clang_type_info = Flags ( ClangASTContext : : GetTypeInfo ( pointee_clang_type , GetClangAST ( ) , NULL ) ) ;
if ( ! expression_cstr | | * expression_cstr = = ' \0 ' )
{
* reason_to_stop = ValueObject : : eEndOfString ;
list - > Append ( root ) ;
return 1 ;
}
switch ( * expression_cstr )
{
case ' [ ' :
{
if ( ! root_clang_type_info . Test ( ClangASTContext : : eTypeIsArray ) & & ! root_clang_type_info . Test ( ClangASTContext : : eTypeIsPointer ) ) // if this is not a T[] nor a T*
{
if ( ! root_clang_type_info . Test ( ClangASTContext : : eTypeIsScalar ) ) // if this is not even a scalar, this syntax is just plain wrong!
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eRangeOperatorInvalid ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
else if ( ! options . m_allow_bitfields_syntax ) // if this is a scalar, check that we can expand bitfields
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eRangeOperatorNotAllowed ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
}
if ( * ( expression_cstr + 1 ) = = ' ] ' ) // if this is an unbounded range it only works for arrays
{
if ( ! root_clang_type_info . Test ( ClangASTContext : : eTypeIsArray ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eEmptyRangeNotAllowed ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
else // expand this into list
{
int max_index = root - > GetNumChildren ( ) - 1 ;
for ( int index = 0 ; index < max_index ; index + + )
{
ValueObjectSP child =
root - > GetChildAtIndex ( index , true ) ;
list - > Append ( child ) ;
}
* first_unparsed = expression_cstr + 2 ;
* reason_to_stop = ValueObject : : eRangeOperatorExpanded ;
* final_result = ValueObject : : eValueObjectList ;
return max_index ; // tell me number of items I added to the VOList
}
}
const char * separator_position = : : strchr ( expression_cstr + 1 , ' - ' ) ;
const char * close_bracket_position = : : strchr ( expression_cstr + 1 , ' ] ' ) ;
if ( ! close_bracket_position ) // if there is no ], this is a syntax error
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eUnexpectedSymbol ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
if ( ! separator_position | | separator_position > close_bracket_position ) // if no separator, this is either [] or [N]
{
char * end = NULL ;
unsigned long index = : : strtoul ( expression_cstr + 1 , & end , 0 ) ;
if ( ! end | | end ! = close_bracket_position ) // if something weird is in our way return an error
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eUnexpectedSymbol ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
if ( end - expression_cstr = = 1 ) // if this is [], only return a valid value for arrays
{
if ( root_clang_type_info . Test ( ClangASTContext : : eTypeIsArray ) )
{
int max_index = root - > GetNumChildren ( ) - 1 ;
for ( int index = 0 ; index < max_index ; index + + )
{
ValueObjectSP child =
root - > GetChildAtIndex ( index , true ) ;
list - > Append ( child ) ;
}
* first_unparsed = expression_cstr + 2 ;
* reason_to_stop = ValueObject : : eRangeOperatorExpanded ;
* final_result = ValueObject : : eValueObjectList ;
return max_index ; // tell me number of items I added to the VOList
}
else
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eEmptyRangeNotAllowed ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
}
// from here on we do have a valid index
if ( root_clang_type_info . Test ( ClangASTContext : : eTypeIsArray ) )
{
root = root - > GetChildAtIndex ( index , true ) ;
if ( ! root . get ( ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eNoSuchChild ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
else
{
list - > Append ( root ) ;
* first_unparsed = end + 1 ; // skip ]
* reason_to_stop = ValueObject : : eRangeOperatorExpanded ;
* final_result = ValueObject : : eValueObjectList ;
return 1 ;
}
}
else if ( root_clang_type_info . Test ( ClangASTContext : : eTypeIsPointer ) )
{
if ( * what_next = = ValueObject : : eDereference & & // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
pointee_clang_type_info . Test ( ClangASTContext : : eTypeIsScalar ) )
{
Error error ;
root = root - > Dereference ( error ) ;
if ( error . Fail ( ) | | ! root . get ( ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eDereferencingFailed ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
else
{
* what_next = eNothing ;
continue ;
}
}
else
{
root = root - > GetSyntheticArrayMemberFromPointer ( index , true ) ;
if ( ! root . get ( ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eNoSuchChild ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
else
{
list - > Append ( root ) ;
* first_unparsed = end + 1 ; // skip ]
* reason_to_stop = ValueObject : : eRangeOperatorExpanded ;
* final_result = ValueObject : : eValueObjectList ;
return 1 ;
}
}
}
else /*if (ClangASTContext::IsScalarType(root_clang_type))*/
{
root = root - > GetSyntheticBitFieldChild ( index , index , true ) ;
if ( ! root . get ( ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eNoSuchChild ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing
{
list - > Append ( root ) ;
* first_unparsed = end + 1 ; // skip ]
* reason_to_stop = ValueObject : : eRangeOperatorExpanded ;
* final_result = ValueObject : : eValueObjectList ;
return 1 ;
}
}
}
else // we have a low and a high index
{
char * end = NULL ;
unsigned long index_lower = : : strtoul ( expression_cstr + 1 , & end , 0 ) ;
if ( ! end | | end ! = separator_position ) // if something weird is in our way return an error
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eUnexpectedSymbol ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
unsigned long index_higher = : : strtoul ( separator_position + 1 , & end , 0 ) ;
if ( ! end | | end ! = close_bracket_position ) // if something weird is in our way return an error
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eUnexpectedSymbol ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
if ( index_lower > index_higher ) // swap indices if required
{
unsigned long temp = index_lower ;
index_lower = index_higher ;
index_higher = temp ;
}
if ( root_clang_type_info . Test ( ClangASTContext : : eTypeIsScalar ) ) // expansion only works for scalars
{
root = root - > GetSyntheticBitFieldChild ( index_lower , index_higher , true ) ;
if ( ! root . get ( ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eNoSuchChild ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
else
{
list - > Append ( root ) ;
* first_unparsed = end + 1 ; // skip ]
* reason_to_stop = ValueObject : : eRangeOperatorExpanded ;
* final_result = ValueObject : : eValueObjectList ;
return 1 ;
}
}
else if ( root_clang_type_info . Test ( ClangASTContext : : eTypeIsPointer ) & & // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
* what_next = = ValueObject : : eDereference & &
pointee_clang_type_info . Test ( ClangASTContext : : eTypeIsScalar ) )
{
Error error ;
root = root - > Dereference ( error ) ;
if ( error . Fail ( ) | | ! root . get ( ) )
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eDereferencingFailed ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
}
else
{
* what_next = ValueObject : : eNothing ;
continue ;
}
}
else
{
2011-07-20 03:48:13 +08:00
for ( unsigned long index = index_lower ;
2011-07-12 08:18:11 +08:00
index < = index_higher ; index + + )
{
ValueObjectSP child =
root - > GetChildAtIndex ( index , true ) ;
list - > Append ( child ) ;
}
* first_unparsed = end + 1 ;
* reason_to_stop = ValueObject : : eRangeOperatorExpanded ;
* final_result = ValueObject : : eValueObjectList ;
return index_higher - index_lower + 1 ; // tell me number of items I added to the VOList
}
}
break ;
}
default : // some non-[ separator, or something entirely wrong, is in the way
{
* first_unparsed = expression_cstr ;
* reason_to_stop = ValueObject : : eUnexpectedSymbol ;
* final_result = ValueObject : : eInvalid ;
return 0 ;
break ;
}
}
}
}
2010-10-05 08:00:42 +08:00
void
ValueObject : : DumpValueObject
(
Stream & s ,
ValueObject * valobj ,
const char * root_valobj_name ,
uint32_t ptr_depth ,
uint32_t curr_depth ,
uint32_t max_depth ,
bool show_types ,
bool show_location ,
bool use_objc ,
2011-09-02 09:15:17 +08:00
DynamicValueType use_dynamic ,
2011-07-22 08:16:08 +08:00
bool use_synth ,
2010-10-15 06:52:14 +08:00
bool scope_already_checked ,
2011-07-16 09:22:04 +08:00
bool flat_output ,
2011-08-12 10:00:06 +08:00
uint32_t omit_summary_depth ,
2012-01-27 05:08:30 +08:00
bool ignore_cap ,
Format format_override // Normally the format is in the valobj, but we might want to override this
2010-10-05 08:00:42 +08:00
)
{
2011-05-30 08:49:24 +08:00
if ( valobj )
2010-10-05 08:00:42 +08:00
{
2011-08-03 01:27:39 +08:00
bool update_success = valobj - > UpdateValueIfNeeded ( use_dynamic , true ) ;
2011-05-30 08:49:24 +08:00
2011-09-02 09:15:17 +08:00
if ( update_success & & use_dynamic ! = eNoDynamicValues )
2011-04-16 08:01:13 +08:00
{
2011-05-04 11:43:18 +08:00
ValueObject * dynamic_value = valobj - > GetDynamicValue ( use_dynamic ) . get ( ) ;
2011-04-16 08:01:13 +08:00
if ( dynamic_value )
valobj = dynamic_value ;
}
2010-10-15 06:52:14 +08:00
clang_type_t clang_type = valobj - > GetClangType ( ) ;
2010-10-27 11:32:59 +08:00
const Flags type_flags ( ClangASTContext : : GetTypeInfo ( clang_type , NULL , NULL ) ) ;
2010-10-15 06:52:14 +08:00
const char * err_cstr = NULL ;
2010-10-27 11:32:59 +08:00
const bool has_children = type_flags . Test ( ClangASTContext : : eTypeHasChildren ) ;
const bool has_value = type_flags . Test ( ClangASTContext : : eTypeHasValue ) ;
2010-10-15 06:52:14 +08:00
const bool print_valobj = flat_output = = false | | has_value ;
if ( print_valobj )
2010-10-05 08:00:42 +08:00
{
2010-10-15 06:52:14 +08:00
if ( show_location )
{
2011-03-31 08:19:25 +08:00
s . Printf ( " %s: " , valobj - > GetLocationAsCString ( ) ) ;
2010-10-15 06:52:14 +08:00
}
2010-10-05 08:00:42 +08:00
2010-10-15 06:52:14 +08:00
s . Indent ( ) ;
2010-10-05 08:00:42 +08:00
2010-11-02 09:50:16 +08:00
// Always show the type for the top level items.
2011-01-21 09:59:00 +08:00
if ( show_types | | ( curr_depth = = 0 & & ! flat_output ) )
2011-08-03 01:27:39 +08:00
{
2011-08-03 10:18:51 +08:00
const char * typeName = valobj - > GetTypeName ( ) . AsCString ( " <invalid type> " ) ;
s . Printf ( " (%s " , typeName ) ;
// only show dynamic types if the user really wants to see types
2011-09-02 09:15:17 +08:00
if ( show_types & & use_dynamic ! = eNoDynamicValues & &
2011-08-03 10:18:51 +08:00
( /*strstr(typeName, "id") == typeName ||*/
2011-09-02 09:15:17 +08:00
ClangASTType : : GetMinimumLanguage ( valobj - > GetClangAST ( ) , valobj - > GetClangType ( ) ) = = eLanguageTypeObjC ) )
2011-08-03 01:27:39 +08:00
{
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( valobj - > GetExecutionContextRef ( ) ) ;
Process * process = exe_ctx . GetProcessPtr ( ) ;
2011-08-03 01:27:39 +08:00
if ( process = = NULL )
2011-08-03 10:18:51 +08:00
s . Printf ( " , dynamic type: unknown) " ) ;
2011-08-03 01:27:39 +08:00
else
{
ObjCLanguageRuntime * runtime = process - > GetObjCLanguageRuntime ( ) ;
if ( runtime = = NULL )
2011-08-03 10:18:51 +08:00
s . Printf ( " , dynamic type: unknown) " ) ;
2011-08-03 01:27:39 +08:00
else
{
ObjCLanguageRuntime : : ObjCISA isa = runtime - > GetISA ( * valobj ) ;
if ( ! runtime - > IsValidISA ( isa ) )
2011-08-03 10:18:51 +08:00
s . Printf ( " , dynamic type: unknown) " ) ;
2011-08-03 01:27:39 +08:00
else
s . Printf ( " , dynamic type: %s) " ,
runtime - > GetActualTypeName ( isa ) . GetCString ( ) ) ;
}
}
}
else
s . Printf ( " ) " ) ;
}
2010-10-05 08:00:42 +08:00
2010-10-15 06:52:14 +08:00
if ( flat_output )
{
A few of the issue I have been trying to track down and fix have been due to
the way LLDB lazily gets complete definitions for types within the debug info.
When we run across a class/struct/union definition in the DWARF, we will only
parse the full definition if we need to. This works fine for top level types
that are assigned directly to variables and arguments, but when we have a
variable with a class, lets say "A" for this example, that has a member:
"B *m_b". Initially we don't need to hunt down a definition for this class
unless we are ever asked to do something with it ("expr m_b->getDecl()" for
example). With my previous approach to lazy type completion, we would be able
to take a "A *a" and get a complete type for it, but we wouldn't be able to
then do an "a->m_b->getDecl()" unless we always expanded all types within a
class prior to handing out the type. Expanding everything is very costly and
it would be great if there were a better way.
A few months ago I worked with the llvm/clang folks to have the
ExternalASTSource class be able to complete classes if there weren't completed
yet:
class ExternalASTSource {
....
virtual void
CompleteType (clang::TagDecl *Tag);
virtual void
CompleteType (clang::ObjCInterfaceDecl *Class);
};
This was great, because we can now have the class that is producing the AST
(SymbolFileDWARF and SymbolFileDWARFDebugMap) sign up as external AST sources
and the object that creates the forward declaration types can now also
complete them anywhere within the clang type system.
This patch makes a few major changes:
- lldb_private::Module classes now own the AST context. Previously the TypeList
objects did.
- The DWARF parsers now sign up as an external AST sources so they can complete
types.
- All of the pure clang type system wrapper code we have in LLDB (ClangASTContext,
ClangASTType, and more) can now be iterating through children of any type,
and if a class/union/struct type (clang::RecordType or ObjC interface)
is found that is incomplete, we can ask the AST to get the definition.
- The SymbolFileDWARFDebugMap class now will create and use a single AST that
all child SymbolFileDWARF classes will share (much like what happens when
we have a complete linked DWARF for an executable).
We will need to modify some of the ClangUserExpression code to take more
advantage of this completion ability in the near future. Meanwhile we should
be better off now that we can be accessing any children of variables through
pointers and always be able to resolve the clang type if needed.
llvm-svn: 123613
2011-01-17 11:46:26 +08:00
// If we are showing types, also qualify the C++ base classes
const bool qualify_cxx_base_classes = show_types ;
valobj - > GetExpressionPath ( s , qualify_cxx_base_classes ) ;
2010-10-15 06:52:14 +08:00
s . PutCString ( " = " ) ;
}
else
{
const char * name_cstr = root_valobj_name ? root_valobj_name : valobj - > GetName ( ) . AsCString ( " " ) ;
s . Printf ( " %s = " , name_cstr ) ;
}
2011-03-31 08:19:25 +08:00
if ( ! scope_already_checked & & ! valobj - > IsInScope ( ) )
2010-10-15 06:52:14 +08:00
{
2011-05-30 08:49:24 +08:00
err_cstr = " out of scope " ;
2010-10-15 06:52:14 +08:00
}
2010-10-05 08:00:42 +08:00
}
2012-01-27 05:08:30 +08:00
std : : string value_str ;
2010-10-15 06:52:14 +08:00
const char * val_cstr = NULL ;
2011-06-30 06:27:15 +08:00
const char * sum_cstr = NULL ;
2012-02-15 10:34:21 +08:00
TypeSummaryImpl * entry = valobj - > GetSummaryFormat ( ) . get ( ) ;
2010-10-15 06:52:14 +08:00
2011-07-16 09:22:04 +08:00
if ( omit_summary_depth > 0 )
entry = NULL ;
2012-01-27 05:08:30 +08:00
Format orig_format = kNumFormats ;
2010-10-15 06:52:14 +08:00
if ( err_cstr = = NULL )
{
2012-01-27 05:08:30 +08:00
if ( format_override ! = eFormatDefault )
{
orig_format = valobj - > GetFormat ( ) ;
valobj - > SetFormat ( format_override ) ;
}
2011-03-31 08:19:25 +08:00
val_cstr = valobj - > GetValueAsCString ( ) ;
2012-01-27 05:08:30 +08:00
if ( val_cstr )
{
// Cache the value in our own storage as running summaries might
// change our value from underneath us
value_str = val_cstr ;
}
if ( orig_format ! = kNumFormats & & orig_format ! = format_override )
{
valobj - > SetFormat ( orig_format ) ;
orig_format = kNumFormats ;
}
2010-10-15 06:52:14 +08:00
err_cstr = valobj - > GetError ( ) . AsCString ( ) ;
}
2010-10-05 08:00:42 +08:00
if ( err_cstr )
{
2011-05-30 08:49:24 +08:00
s . Printf ( " <%s> \n " , err_cstr ) ;
2010-10-05 08:00:42 +08:00
}
else
{
2010-10-27 11:32:59 +08:00
const bool is_ref = type_flags . Test ( ClangASTContext : : eTypeIsReference ) ;
2010-10-15 06:52:14 +08:00
if ( print_valobj )
{
2012-01-27 05:08:30 +08:00
if ( omit_summary_depth = = 0 )
sum_cstr = valobj - > GetSummaryAsCString ( ) ;
2010-10-05 08:00:42 +08:00
2012-01-27 05:08:30 +08:00
// Make sure we have a value and make sure the summary didn't
// specify that the value should not be printed
if ( ! value_str . empty ( ) & & ( entry = = NULL | | entry - > DoesPrintValue ( ) | | sum_cstr = = NULL ) )
s . Printf ( " %s " , value_str . c_str ( ) ) ;
2010-10-05 08:00:42 +08:00
2011-07-16 07:30:15 +08:00
if ( sum_cstr )
2011-07-02 08:25:22 +08:00
{
// for some reason, using %@ (ObjC description) in a summary string, makes
// us believe we need to reset ourselves, thus invalidating the content of
// sum_cstr. Thus, IF we had a valid sum_cstr before, but it is now empty
// let us recalculate it!
if ( sum_cstr [ 0 ] = = ' \0 ' )
s . Printf ( " %s " , valobj - > GetSummaryAsCString ( ) ) ;
else
s . Printf ( " %s " , sum_cstr ) ;
}
2010-10-15 06:52:14 +08:00
if ( use_objc )
{
2011-03-31 08:19:25 +08:00
const char * object_desc = valobj - > GetObjectDescription ( ) ;
2010-10-15 06:52:14 +08:00
if ( object_desc )
s . Printf ( " %s \n " , object_desc ) ;
else
2010-10-23 08:18:49 +08:00
s . Printf ( " [no Objective-C description available] \n " ) ;
2010-10-15 06:52:14 +08:00
return ;
2011-07-02 08:25:22 +08:00
}
2010-10-05 08:00:42 +08:00
}
if ( curr_depth < max_depth )
{
2010-10-27 11:32:59 +08:00
// We will show children for all concrete types. We won't show
// pointer contents unless a pointer depth has been specified.
// We won't reference contents unless the reference is the
// root object (depth of zero).
bool print_children = true ;
// Use a new temporary pointer depth in case we override the
// current pointer depth below...
uint32_t curr_ptr_depth = ptr_depth ;
const bool is_ptr = type_flags . Test ( ClangASTContext : : eTypeIsPointer ) ;
if ( is_ptr | | is_ref )
{
// We have a pointer or reference whose value is an address.
// Make sure that address is not NULL
2011-03-25 05:19:54 +08:00
AddressType ptr_address_type ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
if ( valobj - > GetPointerValue ( & ptr_address_type ) = = 0 )
2010-10-27 11:32:59 +08:00
print_children = false ;
else if ( is_ref & & curr_depth = = 0 )
{
// If this is the root object (depth is zero) that we are showing
// and it is a reference, and no pointer depth has been supplied
// print out what it references. Don't do this at deeper depths
// otherwise we can end up with infinite recursion...
curr_ptr_depth = 1 ;
}
if ( curr_ptr_depth = = 0 )
print_children = false ;
}
2010-10-05 08:00:42 +08:00
2011-07-02 08:25:22 +08:00
if ( print_children & & ( ! entry | | entry - > DoesPrintChildren ( ) | | ! sum_cstr ) )
2010-10-05 08:00:42 +08:00
{
2012-02-17 15:49:44 +08:00
ValueObjectSP synth_valobj = valobj - > GetSyntheticValue ( use_synth ?
eUseSyntheticFilter :
eNoSyntheticFilter ) ;
2011-08-18 06:13:59 +08:00
uint32_t num_children = synth_valobj - > GetNumChildren ( ) ;
2011-08-12 10:00:06 +08:00
bool print_dotdotdot = false ;
2010-10-15 06:52:14 +08:00
if ( num_children )
2010-10-05 08:00:42 +08:00
{
2010-10-15 06:52:14 +08:00
if ( flat_output )
2010-10-05 08:00:42 +08:00
{
2010-10-15 06:52:14 +08:00
if ( print_valobj )
s . EOL ( ) ;
}
else
{
if ( print_valobj )
2010-10-29 12:59:35 +08:00
s . PutCString ( is_ref ? " : { \n " : " { \n " ) ;
2010-10-15 06:52:14 +08:00
s . IndentMore ( ) ;
}
2011-08-12 10:00:06 +08:00
2012-02-17 15:49:44 +08:00
uint32_t max_num_children = valobj - > GetTargetSP ( ) - > GetMaximumNumberOfChildrenToDisplay ( ) ;
2011-08-12 10:00:06 +08:00
if ( num_children > max_num_children & & ! ignore_cap )
{
num_children = max_num_children ;
print_dotdotdot = true ;
}
2010-10-15 06:52:14 +08:00
for ( uint32_t idx = 0 ; idx < num_children ; + + idx )
{
2011-08-18 06:13:59 +08:00
ValueObjectSP child_sp ( synth_valobj - > GetChildAtIndex ( idx , true ) ) ;
2010-10-15 06:52:14 +08:00
if ( child_sp . get ( ) )
{
DumpValueObject ( s ,
child_sp . get ( ) ,
NULL ,
2010-10-27 11:32:59 +08:00
( is_ptr | | is_ref ) ? curr_ptr_depth - 1 : curr_ptr_depth ,
2010-10-15 06:52:14 +08:00
curr_depth + 1 ,
max_depth ,
show_types ,
show_location ,
false ,
2011-04-16 08:01:13 +08:00
use_dynamic ,
2011-07-22 08:16:08 +08:00
use_synth ,
2010-10-15 06:52:14 +08:00
true ,
2011-07-16 09:22:04 +08:00
flat_output ,
2011-08-12 10:00:06 +08:00
omit_summary_depth > 1 ? omit_summary_depth - 1 : 0 ,
2012-01-27 05:08:30 +08:00
ignore_cap ,
format_override ) ;
2010-10-15 06:52:14 +08:00
}
}
if ( ! flat_output )
{
2011-08-12 10:00:06 +08:00
if ( print_dotdotdot )
2011-08-13 00:42:31 +08:00
{
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( valobj - > GetExecutionContextRef ( ) ) ;
Target * target = exe_ctx . GetTargetPtr ( ) ;
if ( target )
target - > GetDebugger ( ) . GetCommandInterpreter ( ) . ChildrenTruncated ( ) ;
2011-08-12 10:00:06 +08:00
s . Indent ( " ... \n " ) ;
2011-08-13 00:42:31 +08:00
}
2010-10-15 06:52:14 +08:00
s . IndentLess ( ) ;
s . Indent ( " } \n " ) ;
2010-10-05 08:00:42 +08:00
}
}
2010-10-15 06:52:14 +08:00
else if ( has_children )
{
// Aggregate, no children...
if ( print_valobj )
2010-10-27 11:32:59 +08:00
s . PutCString ( " {} \n " ) ;
2010-10-15 06:52:14 +08:00
}
else
{
if ( print_valobj )
s . EOL ( ) ;
}
2010-10-05 08:00:42 +08:00
}
2010-10-15 06:52:14 +08:00
else
{
2010-10-05 08:00:42 +08:00
s . EOL ( ) ;
}
}
else
{
2010-10-15 06:52:14 +08:00
if ( has_children & & print_valobj )
2010-10-05 08:00:42 +08:00
{
2010-10-15 06:52:14 +08:00
s . PutCString ( " {...} \n " ) ;
2010-10-05 08:00:42 +08:00
}
}
}
}
}
2010-12-14 10:59:59 +08:00
ValueObjectSP
2011-03-31 08:19:25 +08:00
ValueObject : : CreateConstantValue ( const ConstString & name )
2010-12-14 10:59:59 +08:00
{
ValueObjectSP valobj_sp ;
2011-08-03 01:27:39 +08:00
if ( UpdateValueIfNeeded ( false ) & & m_error . Success ( ) )
2010-12-14 10:59:59 +08:00
{
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
clang : : ASTContext * ast = GetClangAST ( ) ;
DataExtractor data ;
data . SetByteOrder ( m_data . GetByteOrder ( ) ) ;
data . SetAddressByteSize ( m_data . GetAddressByteSize ( ) ) ;
m_error = m_value . GetValueAsData ( & exe_ctx , ast , data , 0 , GetModule ( ) ) ;
valobj_sp = ValueObjectConstResult : : Create ( exe_ctx . GetBestExecutionContextScope ( ) ,
ast ,
GetClangType ( ) ,
name ,
data ,
GetAddressOf ( ) ) ;
2010-12-14 10:59:59 +08:00
}
2011-03-31 08:19:25 +08:00
if ( ! valobj_sp )
2010-12-14 10:59:59 +08:00
{
2011-04-23 07:53:53 +08:00
valobj_sp = ValueObjectConstResult : : Create ( NULL , m_error ) ;
2010-12-14 10:59:59 +08:00
}
return valobj_sp ;
}
2011-09-02 09:15:17 +08:00
ValueObjectSP
2010-12-21 04:49:23 +08:00
ValueObject : : Dereference ( Error & error )
2010-12-14 10:59:59 +08:00
{
2011-04-23 07:53:53 +08:00
if ( m_deref_valobj )
return m_deref_valobj - > GetSP ( ) ;
2011-04-16 08:01:13 +08:00
2010-12-15 13:08:08 +08:00
const bool is_pointer_type = IsPointerType ( ) ;
if ( is_pointer_type )
2010-12-14 10:59:59 +08:00
{
bool omit_empty_base_classes = true ;
2011-07-10 04:12:33 +08:00
bool ignore_array_bounds = false ;
2010-12-14 10:59:59 +08:00
std : : string child_name_str ;
uint32_t child_byte_size = 0 ;
int32_t child_byte_offset = 0 ;
uint32_t child_bitfield_bit_size = 0 ;
uint32_t child_bitfield_bit_offset = 0 ;
bool child_is_base_class = false ;
2011-01-21 09:59:00 +08:00
bool child_is_deref_of_parent = false ;
2010-12-14 10:59:59 +08:00
const bool transparent_pointers = false ;
clang : : ASTContext * clang_ast = GetClangAST ( ) ;
clang_type_t clang_type = GetClangType ( ) ;
clang_type_t child_clang_type ;
2011-06-25 06:03:24 +08:00
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
2011-06-25 06:03:24 +08:00
child_clang_type = ClangASTContext : : GetChildClangTypeAtIndex ( & exe_ctx ,
clang_ast ,
2010-12-14 10:59:59 +08:00
GetName ( ) . GetCString ( ) ,
clang_type ,
0 ,
transparent_pointers ,
omit_empty_base_classes ,
2011-07-10 04:12:33 +08:00
ignore_array_bounds ,
2010-12-14 10:59:59 +08:00
child_name_str ,
child_byte_size ,
child_byte_offset ,
child_bitfield_bit_size ,
child_bitfield_bit_offset ,
2011-01-21 09:59:00 +08:00
child_is_base_class ,
child_is_deref_of_parent ) ;
2011-01-10 05:07:35 +08:00
if ( child_clang_type & & child_byte_size )
2010-12-14 10:59:59 +08:00
{
ConstString child_name ;
if ( ! child_name_str . empty ( ) )
child_name . SetCString ( child_name_str . c_str ( ) ) ;
2011-04-23 07:53:53 +08:00
m_deref_valobj = new ValueObjectChild ( * this ,
clang_ast ,
child_clang_type ,
child_name ,
child_byte_size ,
child_byte_offset ,
child_bitfield_bit_size ,
child_bitfield_bit_offset ,
child_is_base_class ,
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
child_is_deref_of_parent ,
eAddressTypeInvalid ) ;
2010-12-14 10:59:59 +08:00
}
}
2010-12-15 13:08:08 +08:00
2011-04-23 07:53:53 +08:00
if ( m_deref_valobj )
2010-12-15 13:08:08 +08:00
{
error . Clear ( ) ;
2011-04-23 07:53:53 +08:00
return m_deref_valobj - > GetSP ( ) ;
2010-12-15 13:08:08 +08:00
}
2010-12-14 10:59:59 +08:00
else
{
2010-12-15 13:08:08 +08:00
StreamString strm ;
A few of the issue I have been trying to track down and fix have been due to
the way LLDB lazily gets complete definitions for types within the debug info.
When we run across a class/struct/union definition in the DWARF, we will only
parse the full definition if we need to. This works fine for top level types
that are assigned directly to variables and arguments, but when we have a
variable with a class, lets say "A" for this example, that has a member:
"B *m_b". Initially we don't need to hunt down a definition for this class
unless we are ever asked to do something with it ("expr m_b->getDecl()" for
example). With my previous approach to lazy type completion, we would be able
to take a "A *a" and get a complete type for it, but we wouldn't be able to
then do an "a->m_b->getDecl()" unless we always expanded all types within a
class prior to handing out the type. Expanding everything is very costly and
it would be great if there were a better way.
A few months ago I worked with the llvm/clang folks to have the
ExternalASTSource class be able to complete classes if there weren't completed
yet:
class ExternalASTSource {
....
virtual void
CompleteType (clang::TagDecl *Tag);
virtual void
CompleteType (clang::ObjCInterfaceDecl *Class);
};
This was great, because we can now have the class that is producing the AST
(SymbolFileDWARF and SymbolFileDWARFDebugMap) sign up as external AST sources
and the object that creates the forward declaration types can now also
complete them anywhere within the clang type system.
This patch makes a few major changes:
- lldb_private::Module classes now own the AST context. Previously the TypeList
objects did.
- The DWARF parsers now sign up as an external AST sources so they can complete
types.
- All of the pure clang type system wrapper code we have in LLDB (ClangASTContext,
ClangASTType, and more) can now be iterating through children of any type,
and if a class/union/struct type (clang::RecordType or ObjC interface)
is found that is incomplete, we can ask the AST to get the definition.
- The SymbolFileDWARFDebugMap class now will create and use a single AST that
all child SymbolFileDWARF classes will share (much like what happens when
we have a complete linked DWARF for an executable).
We will need to modify some of the ClangUserExpression code to take more
advantage of this completion ability in the near future. Meanwhile we should
be better off now that we can be accessing any children of variables through
pointers and always be able to resolve the clang type if needed.
llvm-svn: 123613
2011-01-17 11:46:26 +08:00
GetExpressionPath ( strm , true ) ;
2010-12-15 13:08:08 +08:00
if ( is_pointer_type )
error . SetErrorStringWithFormat ( " dereference failed: (%s) %s " , GetTypeName ( ) . AsCString ( " <invalid type> " ) , strm . GetString ( ) . c_str ( ) ) ;
else
error . SetErrorStringWithFormat ( " not a pointer type: (%s) %s " , GetTypeName ( ) . AsCString ( " <invalid type> " ) , strm . GetString ( ) . c_str ( ) ) ;
2011-04-23 07:53:53 +08:00
return ValueObjectSP ( ) ;
2010-12-14 10:59:59 +08:00
}
}
2011-09-02 09:15:17 +08:00
ValueObjectSP
2010-12-15 13:08:08 +08:00
ValueObject : : AddressOf ( Error & error )
2010-12-14 10:59:59 +08:00
{
2011-04-16 08:01:13 +08:00
if ( m_addr_of_valobj_sp )
return m_addr_of_valobj_sp ;
2011-03-25 05:19:54 +08:00
AddressType address_type = eAddressTypeInvalid ;
2010-12-14 10:59:59 +08:00
const bool scalar_is_load_address = false ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
addr_t addr = GetAddressOf ( scalar_is_load_address , & address_type ) ;
2010-12-15 13:08:08 +08:00
error . Clear ( ) ;
2010-12-14 10:59:59 +08:00
if ( addr ! = LLDB_INVALID_ADDRESS )
{
switch ( address_type )
{
2010-12-15 13:08:08 +08:00
default :
2010-12-14 10:59:59 +08:00
case eAddressTypeInvalid :
2010-12-15 13:08:08 +08:00
{
StreamString expr_path_strm ;
A few of the issue I have been trying to track down and fix have been due to
the way LLDB lazily gets complete definitions for types within the debug info.
When we run across a class/struct/union definition in the DWARF, we will only
parse the full definition if we need to. This works fine for top level types
that are assigned directly to variables and arguments, but when we have a
variable with a class, lets say "A" for this example, that has a member:
"B *m_b". Initially we don't need to hunt down a definition for this class
unless we are ever asked to do something with it ("expr m_b->getDecl()" for
example). With my previous approach to lazy type completion, we would be able
to take a "A *a" and get a complete type for it, but we wouldn't be able to
then do an "a->m_b->getDecl()" unless we always expanded all types within a
class prior to handing out the type. Expanding everything is very costly and
it would be great if there were a better way.
A few months ago I worked with the llvm/clang folks to have the
ExternalASTSource class be able to complete classes if there weren't completed
yet:
class ExternalASTSource {
....
virtual void
CompleteType (clang::TagDecl *Tag);
virtual void
CompleteType (clang::ObjCInterfaceDecl *Class);
};
This was great, because we can now have the class that is producing the AST
(SymbolFileDWARF and SymbolFileDWARFDebugMap) sign up as external AST sources
and the object that creates the forward declaration types can now also
complete them anywhere within the clang type system.
This patch makes a few major changes:
- lldb_private::Module classes now own the AST context. Previously the TypeList
objects did.
- The DWARF parsers now sign up as an external AST sources so they can complete
types.
- All of the pure clang type system wrapper code we have in LLDB (ClangASTContext,
ClangASTType, and more) can now be iterating through children of any type,
and if a class/union/struct type (clang::RecordType or ObjC interface)
is found that is incomplete, we can ask the AST to get the definition.
- The SymbolFileDWARFDebugMap class now will create and use a single AST that
all child SymbolFileDWARF classes will share (much like what happens when
we have a complete linked DWARF for an executable).
We will need to modify some of the ClangUserExpression code to take more
advantage of this completion ability in the near future. Meanwhile we should
be better off now that we can be accessing any children of variables through
pointers and always be able to resolve the clang type if needed.
llvm-svn: 123613
2011-01-17 11:46:26 +08:00
GetExpressionPath ( expr_path_strm , true ) ;
2010-12-15 13:08:08 +08:00
error . SetErrorStringWithFormat ( " '%s' is not in memory " , expr_path_strm . GetString ( ) . c_str ( ) ) ;
}
2010-12-14 10:59:59 +08:00
break ;
2010-12-15 13:08:08 +08:00
2010-12-14 10:59:59 +08:00
case eAddressTypeFile :
case eAddressTypeLoad :
case eAddressTypeHost :
{
clang : : ASTContext * ast = GetClangAST ( ) ;
clang_type_t clang_type = GetClangType ( ) ;
if ( ast & & clang_type )
{
std : : string name ( 1 , ' & ' ) ;
name . append ( m_name . AsCString ( " " ) ) ;
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
m_addr_of_valobj_sp = ValueObjectConstResult : : Create ( exe_ctx . GetBestExecutionContextScope ( ) ,
2011-04-23 07:53:53 +08:00
ast ,
ClangASTContext : : CreatePointerType ( ast , clang_type ) ,
ConstString ( name . c_str ( ) ) ,
addr ,
eAddressTypeInvalid ,
m_data . GetAddressByteSize ( ) ) ;
2010-12-14 10:59:59 +08:00
}
}
break ;
}
}
2011-04-16 08:01:13 +08:00
return m_addr_of_valobj_sp ;
2010-12-14 10:59:59 +08:00
}
2012-02-03 13:34:10 +08:00
ValueObjectSP
ValueObject : : Cast ( const ClangASTType & clang_ast_type )
{
2012-02-04 10:27:34 +08:00
return ValueObjectCast : : Create ( * this , GetName ( ) , clang_ast_type ) ;
2012-02-03 13:34:10 +08:00
}
2011-05-06 07:32:56 +08:00
2011-09-02 09:15:17 +08:00
ValueObjectSP
2011-05-06 07:32:56 +08:00
ValueObject : : CastPointerType ( const char * name , ClangASTType & clang_ast_type )
{
2011-09-02 09:15:17 +08:00
ValueObjectSP valobj_sp ;
2011-05-06 07:32:56 +08:00
AddressType address_type ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
addr_t ptr_value = GetPointerValue ( & address_type ) ;
2011-05-06 07:32:56 +08:00
if ( ptr_value ! = LLDB_INVALID_ADDRESS )
{
Address ptr_addr ( NULL , ptr_value ) ;
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
valobj_sp = ValueObjectMemory : : Create ( exe_ctx . GetBestExecutionContextScope ( ) ,
2011-05-06 07:32:56 +08:00
name ,
ptr_addr ,
clang_ast_type ) ;
}
return valobj_sp ;
}
2011-09-02 09:15:17 +08:00
ValueObjectSP
2011-05-06 07:32:56 +08:00
ValueObject : : CastPointerType ( const char * name , TypeSP & type_sp )
{
2011-09-02 09:15:17 +08:00
ValueObjectSP valobj_sp ;
2011-05-06 07:32:56 +08:00
AddressType address_type ;
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
addr_t ptr_value = GetPointerValue ( & address_type ) ;
2011-05-06 07:32:56 +08:00
if ( ptr_value ! = LLDB_INVALID_ADDRESS )
{
Address ptr_addr ( NULL , ptr_value ) ;
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( GetExecutionContextRef ( ) ) ;
valobj_sp = ValueObjectMemory : : Create ( exe_ctx . GetBestExecutionContextScope ( ) ,
2011-05-06 07:32:56 +08:00
name ,
ptr_addr ,
type_sp ) ;
}
return valobj_sp ;
}
2011-03-31 08:19:25 +08:00
ValueObject : : EvaluationPoint : : EvaluationPoint ( ) :
2012-02-17 15:49:44 +08:00
m_mod_id ( ) ,
m_exe_ctx_ref ( ) ,
m_needs_update ( true ) ,
m_first_update ( true )
2011-03-31 08:19:25 +08:00
{
}
ValueObject : : EvaluationPoint : : EvaluationPoint ( ExecutionContextScope * exe_scope , bool use_selected ) :
2012-02-17 15:49:44 +08:00
m_mod_id ( ) ,
m_exe_ctx_ref ( ) ,
2011-03-31 08:19:25 +08:00
m_needs_update ( true ) ,
2012-02-17 15:49:44 +08:00
m_first_update ( true )
2011-03-31 08:19:25 +08:00
{
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( exe_scope ) ;
TargetSP target_sp ( exe_ctx . GetTargetSP ( ) ) ;
if ( target_sp )
2011-03-31 08:19:25 +08:00
{
2012-02-17 15:49:44 +08:00
m_exe_ctx_ref . SetTargetSP ( target_sp ) ;
ProcessSP process_sp ( exe_ctx . GetProcessSP ( ) ) ;
if ( ! process_sp )
process_sp = target_sp - > GetProcessSP ( ) ;
2011-03-31 08:19:25 +08:00
2012-02-17 15:49:44 +08:00
if ( process_sp )
2011-03-31 08:19:25 +08:00
{
2012-02-17 15:49:44 +08:00
m_mod_id = process_sp - > GetModID ( ) ;
m_exe_ctx_ref . SetProcessSP ( process_sp ) ;
2011-08-09 10:12:22 +08:00
2012-02-17 15:49:44 +08:00
ThreadSP thread_sp ( exe_ctx . GetThreadSP ( ) ) ;
2011-03-31 08:19:25 +08:00
2012-02-17 15:49:44 +08:00
if ( ! thread_sp )
2011-03-31 08:19:25 +08:00
{
if ( use_selected )
2012-02-17 15:49:44 +08:00
thread_sp = process_sp - > GetThreadList ( ) . GetSelectedThread ( ) ;
2011-03-31 08:19:25 +08:00
}
2012-02-17 15:49:44 +08:00
if ( thread_sp )
2011-03-31 08:19:25 +08:00
{
2012-02-17 15:49:44 +08:00
m_exe_ctx_ref . SetThreadSP ( thread_sp ) ;
2011-09-22 12:58:26 +08:00
2012-02-17 15:49:44 +08:00
StackFrameSP frame_sp ( exe_ctx . GetFrameSP ( ) ) ;
if ( ! frame_sp )
2011-03-31 08:19:25 +08:00
{
if ( use_selected )
2012-02-17 15:49:44 +08:00
frame_sp = thread_sp - > GetSelectedFrame ( ) ;
2011-03-31 08:19:25 +08:00
}
2012-02-17 15:49:44 +08:00
if ( frame_sp )
m_exe_ctx_ref . SetFrameSP ( frame_sp ) ;
2011-03-31 08:19:25 +08:00
}
}
}
}
ValueObject : : EvaluationPoint : : EvaluationPoint ( const ValueObject : : EvaluationPoint & rhs ) :
2012-02-17 15:49:44 +08:00
m_mod_id ( ) ,
m_exe_ctx_ref ( rhs . m_exe_ctx_ref ) ,
m_needs_update ( true ) ,
m_first_update ( true )
2011-03-31 08:19:25 +08:00
{
}
ValueObject : : EvaluationPoint : : ~ EvaluationPoint ( )
{
}
// This function checks the EvaluationPoint against the current process state. If the current
// state matches the evaluation point, or the evaluation point is already invalid, then we return
// false, meaning "no change". If the current state is different, we update our state, and return
// true meaning "yes, change". If we did see a change, we also set m_needs_update to true, so
// future calls to NeedsUpdate will return true.
2011-12-10 09:49:43 +08:00
// exe_scope will be set to the current execution context scope.
2011-03-31 08:19:25 +08:00
bool
2012-02-17 15:49:44 +08:00
ValueObject : : EvaluationPoint : : SyncWithProcessState ( )
2011-03-31 08:19:25 +08:00
{
2011-12-17 09:35:57 +08:00
// Start with the target, if it is NULL, then we're obviously not going to get any further:
2012-02-17 15:49:44 +08:00
ExecutionContext exe_ctx ( m_exe_ctx_ref . Lock ( ) ) ;
2011-12-17 09:35:57 +08:00
2012-02-17 15:49:44 +08:00
if ( exe_ctx . GetTargetPtr ( ) = = NULL )
2011-12-17 09:35:57 +08:00
return false ;
2011-03-31 08:19:25 +08:00
// If we don't have a process nothing can change.
2012-02-17 15:49:44 +08:00
Process * process = exe_ctx . GetProcessPtr ( ) ;
if ( process = = NULL )
2011-03-31 08:19:25 +08:00
return false ;
2011-12-17 09:35:57 +08:00
2011-03-31 08:19:25 +08:00
// If our stop id is the current stop ID, nothing has changed:
2012-02-17 15:49:44 +08:00
ProcessModID current_mod_id = process - > GetModID ( ) ;
2011-08-09 10:12:22 +08:00
2011-04-16 08:01:13 +08:00
// If the current stop id is 0, either we haven't run yet, or the process state has been cleared.
// In either case, we aren't going to be able to sync with the process state.
2011-08-09 10:12:22 +08:00
if ( current_mod_id . GetStopID ( ) = = 0 )
2011-04-16 08:01:13 +08:00
return false ;
2011-12-10 09:49:43 +08:00
bool changed ;
2011-08-13 05:40:01 +08:00
if ( m_mod_id . IsValid ( ) )
{
if ( m_mod_id = = current_mod_id )
{
2012-01-13 06:42:34 +08:00
// Everything is already up to date in this object, no need to
2011-08-13 05:40:01 +08:00
// update the execution context scope.
2011-12-10 09:49:43 +08:00
changed = false ;
2011-08-13 05:40:01 +08:00
}
2011-12-10 09:49:43 +08:00
else
{
m_mod_id = current_mod_id ;
m_needs_update = true ;
changed = true ;
}
2011-08-13 05:40:01 +08:00
}
2011-03-31 08:19:25 +08:00
2011-12-17 09:35:57 +08:00
// Now re-look up the thread and frame in case the underlying objects have gone away & been recreated.
// That way we'll be sure to return a valid exe_scope.
// If we used to have a thread or a frame but can't find it anymore, then mark ourselves as invalid.
2011-03-31 08:19:25 +08:00
2012-02-17 15:49:44 +08:00
if ( m_exe_ctx_ref . HasThreadRef ( ) )
2011-03-31 08:19:25 +08:00
{
2012-02-17 15:49:44 +08:00
ThreadSP thread_sp ( m_exe_ctx_ref . GetThreadSP ( ) ) ;
if ( thread_sp )
2011-03-31 08:19:25 +08:00
{
2012-02-17 15:49:44 +08:00
if ( m_exe_ctx_ref . HasFrameRef ( ) )
2011-03-31 08:19:25 +08:00
{
2012-02-17 15:49:44 +08:00
StackFrameSP frame_sp ( m_exe_ctx_ref . GetFrameSP ( ) ) ;
if ( ! frame_sp )
{
// We used to have a frame, but now it is gone
2011-03-31 08:19:25 +08:00
SetInvalid ( ) ;
2012-02-17 15:49:44 +08:00
}
2011-03-31 08:19:25 +08:00
}
}
2012-02-17 15:49:44 +08:00
else
{
// We used to have a thread, but now it is gone
SetInvalid ( ) ;
}
2011-03-31 08:19:25 +08:00
}
2011-12-10 09:49:43 +08:00
return changed ;
2011-03-31 08:19:25 +08:00
}
2011-05-03 02:13:59 +08:00
void
ValueObject : : EvaluationPoint : : SetUpdated ( )
{
2012-02-17 15:49:44 +08:00
ProcessSP process_sp ( m_exe_ctx_ref . GetProcessSP ( ) ) ;
if ( process_sp )
m_mod_id = process_sp - > GetModID ( ) ;
2011-05-03 02:13:59 +08:00
m_first_update = false ;
m_needs_update = false ;
}
2012-02-17 15:49:44 +08:00
//bool
//ValueObject::EvaluationPoint::SetContext (ExecutionContextScope *exe_scope)
//{
// if (!IsValid())
// return false;
//
// bool needs_update = false;
//
// // The target has to be non-null, and the
// Target *target = exe_scope->CalculateTarget();
// if (target != NULL)
// {
// Target *old_target = m_target_sp.get();
// assert (target == old_target);
// Process *process = exe_scope->CalculateProcess();
// if (process != NULL)
// {
// // FOR NOW - assume you can't update variable objects across process boundaries.
// Process *old_process = m_process_sp.get();
// assert (process == old_process);
// ProcessModID current_mod_id = process->GetModID();
// if (m_mod_id != current_mod_id)
// {
// needs_update = true;
// m_mod_id = current_mod_id;
// }
// // See if we're switching the thread or stack context. If no thread is given, this is
// // being evaluated in a global context.
// Thread *thread = exe_scope->CalculateThread();
// if (thread != NULL)
// {
// user_id_t new_thread_index = thread->GetIndexID();
// if (new_thread_index != m_thread_id)
// {
// needs_update = true;
// m_thread_id = new_thread_index;
// m_stack_id.Clear();
// }
//
// StackFrame *new_frame = exe_scope->CalculateStackFrame();
// if (new_frame != NULL)
// {
// if (new_frame->GetStackID() != m_stack_id)
// {
// needs_update = true;
// m_stack_id = new_frame->GetStackID();
// }
// }
// else
// {
// m_stack_id.Clear();
// needs_update = true;
// }
// }
// else
// {
// // If this had been given a thread, and now there is none, we should update.
// // Otherwise we don't have to do anything.
// if (m_thread_id != LLDB_INVALID_UID)
// {
// m_thread_id = LLDB_INVALID_UID;
// m_stack_id.Clear();
// needs_update = true;
// }
// }
// }
// else
// {
// // If there is no process, then we don't need to update anything.
// // But if we're switching from having a process to not, we should try to update.
// if (m_process_sp.get() != NULL)
// {
// needs_update = true;
// m_process_sp.reset();
// m_thread_id = LLDB_INVALID_UID;
// m_stack_id.Clear();
// }
// }
// }
// else
// {
// // If there's no target, nothing can change so we don't need to update anything.
// // But if we're switching from having a target to not, we should try to update.
// if (m_target_sp.get() != NULL)
// {
// needs_update = true;
// m_target_sp.reset();
// m_process_sp.reset();
// m_thread_id = LLDB_INVALID_UID;
// m_stack_id.Clear();
// }
// }
// if (!m_needs_update)
// m_needs_update = needs_update;
//
// return needs_update;
//}
2011-07-15 10:26:42 +08:00
void
ValueObject : : ClearUserVisibleData ( )
{
m_location_str . clear ( ) ;
m_value_str . clear ( ) ;
m_summary_str . clear ( ) ;
m_object_desc_str . clear ( ) ;
2012-01-08 04:58:07 +08:00
m_is_getting_summary = false ;
2011-07-20 03:48:13 +08:00
}
Redesign of the interaction between Python and frozen objects:
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
2011-09-07 03:20:51 +08:00
SymbolContextScope *
ValueObject : : GetSymbolContextScope ( )
{
if ( m_parent )
{
if ( ! m_parent - > IsPointerOrReferenceType ( ) )
return m_parent - > GetSymbolContextScope ( ) ;
}
return NULL ;
}