llvm-project/clang/test/Parser/attributes.c

99 lines
3.4 KiB
C
Raw Normal View History

// RUN: %clang_cc1 -fsyntax-only -verify %s -pedantic -std=c99
2006-10-17 11:00:45 +08:00
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
int __attribute__(()) x;
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
__inline void __attribute__((__always_inline__, __nodebug__))
foo(void) {
2006-10-17 11:00:45 +08:00
}
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
__attribute__(()) y; // expected-warning {{defaults to 'int'}}
// PR2796
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
int (__attribute__(()) *z)(long y);
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
void f1(__attribute__(()) int x);
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
int f2(y, __attribute__(()) x); // expected-error {{expected identifier}}
// This is parsed as a normal argument list (with two args that are implicit
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
// int) because the __attribute__ is a declspec.
void f3(__attribute__(()) x, // expected-warning {{defaults to 'int'}}
y); // expected-warning {{defaults to 'int'}}
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
void f4(__attribute__(())); // expected-error {{expected parameter declarator}}
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
// This is ok, the __attribute__ applies to the pointer.
int baz(int (__attribute__(()) *x)(long y));
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
void g1(void (*f1)(__attribute__(()) int x));
void g2(int (*f2)(y, __attribute__(()) x)); // expected-error {{expected identifier}}
void g3(void (*f3)(__attribute__(()) x, int y)); // expected-warning {{defaults to 'int'}}
void g4(void (*f4)(__attribute__(()))); // expected-error {{expected parameter declarator}}
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
void (*h1)(void (*f1)(__attribute__(()) int x));
void (*h2)(int (*f2)(y, __attribute__(()) x)); // expected-error {{expected identifier}}
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
void (*h3)(void (*f3)(__attribute__(()) x)); // expected-warning {{defaults to 'int'}}
void (*h4)(void (*f4)(__attribute__(()))); // expected-error {{expected parameter declarator}}
// rdar://6131260
int foo42(void) {
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
int x, __attribute__((unused)) y, z;
return 0;
}
// rdar://6096491
Simplify the scheme used for keywords, and change the classification scheme to be more useful. The new scheme introduces a set of categories that should be more readable, and also reflects what we want to consider as an extension more accurately. Specifically, it makes the "what is a keyword" determination accurately reflect whether the keyword is a GNU or Microsoft extension. I also introduced separate flags for keyword aliases; this is useful because the classification of the aliases is mostly unrelated to the classification of the original keyword. This patch treats anything that's in the implementation namespace (prefixed with "__", or "_X" where "X" is any upper-case letter) as a keyword without marking it as an extension. This is consistent with the standards in that an implementation is allowed to define arbitrary extensions in the implementation namespace without violating the standard. This gets rid of all the nasty "extension used" warnings for stuff like __attribute__ in -pedantic mode. We still warn for extensions outside of the the implementation namespace, like typeof. If someone wants to implement -Wextensions or something like that, we could add additional information to the keyword table. This also removes processing for the unused "Boolean" language option; such an extension isn't supported on any other C implementation, so I don't see any point to adding it. The changes to test/CodeGen/inline.c are required because previously, we weren't actually disabling the "inline" keyword in -std=c89 mode. I'll remove Boolean and NoExtensions from LangOptions in a follow-up commit. llvm-svn: 70281
2009-04-28 11:13:54 +08:00
void __attribute__((noreturn)) d0(void), __attribute__((noreturn)) d1(void);
void d2(void) __attribute__((noreturn)), d3(void) __attribute__((noreturn));
// PR6287
void __attribute__((returns_twice)) returns_twice_test();
int aligned(int);
int __attribute__((vec_type_hint(char, aligned(16) )) missing_rparen_1; // expected-error 2{{expected ')'}} expected-note {{to match}} expected-warning {{does not declare anything}}
int __attribute__((mode(x aligned(16) )) missing_rparen_2; // expected-error {{expected ')'}}
int __attribute__((format(printf, 0 aligned(16) )) missing_rparen_3; // expected-error {{expected ')'}}
int testFundef1(int *a) __attribute__((nonnull(1))) { // \
// expected-warning {{GCC does not allow 'nonnull' attribute in this position on a function definition}}
return *a;
}
// noreturn is lifted to type qualifier
void testFundef2() __attribute__((noreturn)) { // \
// expected-warning {{GCC does not allow 'noreturn' attribute in this position on a function definition}}
testFundef2();
}
int testFundef3(int *a) __attribute__((nonnull(1), // \
// expected-warning {{GCC does not allow 'nonnull' attribute in this position on a function definition}}
pure)) { // \
// expected-warning {{GCC does not allow 'pure' attribute in this position on a function definition}}
return *a;
}
int testFundef4(int *a) __attribute__((nonnull(1))) // \
// expected-warning {{GCC does not allow 'nonnull' attribute in this position on a function definition}}
__attribute((pure)) { // \
// expected-warning {{GCC does not allow 'pure' attribute in this position on a function definition}}
return *a;
}
// GCC allows these
void testFundef5() __attribute__(()) { }
__attribute__((pure)) int testFundef6(int a) { return a; }