llvm-project/llvm/lib/CodeGen/AtomicExpandPass.cpp

831 lines
32 KiB
C++
Raw Normal View History

//===-- AtomicExpandPass.cpp - Expand atomic instructions -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass (at IR level) to replace atomic instructions with
// target specific instruction which implement the same semantics in a way
// which better fits the target backend. This can include the use of either
// (intrinsic-based) load-linked/store-conditional loops, AtomicCmpXchg, or
// type coercions.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/AtomicExpandUtils.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "atomic-expand"
namespace {
class AtomicExpand: public FunctionPass {
const TargetMachine *TM;
const TargetLowering *TLI;
public:
static char ID; // Pass identification, replacement for typeid
explicit AtomicExpand(const TargetMachine *TM = nullptr)
: FunctionPass(ID), TM(TM), TLI(nullptr) {
initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
private:
bool bracketInstWithFences(Instruction *I, AtomicOrdering Order,
bool IsStore, bool IsLoad);
IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
bool tryExpandAtomicLoad(LoadInst *LI);
bool expandAtomicLoadToLL(LoadInst *LI);
bool expandAtomicLoadToCmpXchg(LoadInst *LI);
StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
bool expandAtomicStore(StoreInst *SI);
bool tryExpandAtomicRMW(AtomicRMWInst *AI);
bool expandAtomicOpToLLSC(
Instruction *I, Value *Addr, AtomicOrdering MemOpOrder,
std::function<Value *(IRBuilder<> &, Value *)> PerformOp);
AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
bool isIdempotentRMW(AtomicRMWInst *AI);
bool simplifyIdempotentRMW(AtomicRMWInst *AI);
};
}
char AtomicExpand::ID = 0;
char &llvm::AtomicExpandID = AtomicExpand::ID;
INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand",
"Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg",
false, false)
FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) {
return new AtomicExpand(TM);
}
bool AtomicExpand::runOnFunction(Function &F) {
if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand())
return false;
TLI = TM->getSubtargetImpl(F)->getTargetLowering();
SmallVector<Instruction *, 1> AtomicInsts;
// Changing control-flow while iterating through it is a bad idea, so gather a
// list of all atomic instructions before we start.
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
if (I->isAtomic())
AtomicInsts.push_back(&*I);
}
bool MadeChange = false;
for (auto I : AtomicInsts) {
auto LI = dyn_cast<LoadInst>(I);
auto SI = dyn_cast<StoreInst>(I);
auto RMWI = dyn_cast<AtomicRMWInst>(I);
auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) &&
"Unknown atomic instruction");
if (TLI->getInsertFencesForAtomic()) {
auto FenceOrdering = Monotonic;
bool IsStore, IsLoad;
if (LI && isAtLeastAcquire(LI->getOrdering())) {
FenceOrdering = LI->getOrdering();
LI->setOrdering(Monotonic);
IsStore = false;
IsLoad = true;
} else if (SI && isAtLeastRelease(SI->getOrdering())) {
FenceOrdering = SI->getOrdering();
SI->setOrdering(Monotonic);
IsStore = true;
IsLoad = false;
} else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) ||
isAtLeastAcquire(RMWI->getOrdering()))) {
FenceOrdering = RMWI->getOrdering();
RMWI->setOrdering(Monotonic);
IsStore = IsLoad = true;
} else if (CASI && !TLI->shouldExpandAtomicCmpXchgInIR(CASI) &&
(isAtLeastRelease(CASI->getSuccessOrdering()) ||
isAtLeastAcquire(CASI->getSuccessOrdering()))) {
// If a compare and swap is lowered to LL/SC, we can do smarter fence
// insertion, with a stronger one on the success path than on the
// failure path. As a result, fence insertion is directly done by
// expandAtomicCmpXchg in that case.
FenceOrdering = CASI->getSuccessOrdering();
CASI->setSuccessOrdering(Monotonic);
CASI->setFailureOrdering(Monotonic);
IsStore = IsLoad = true;
}
if (FenceOrdering != Monotonic) {
MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad);
}
}
if (LI) {
if (LI->getType()->isFloatingPointTy()) {
// TODO: add a TLI hook to control this so that each target can
// convert to lowering the original type one at a time.
LI = convertAtomicLoadToIntegerType(LI);
assert(LI->getType()->isIntegerTy() && "invariant broken");
MadeChange = true;
}
MadeChange |= tryExpandAtomicLoad(LI);
} else if (SI) {
if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
// TODO: add a TLI hook to control this so that each target can
// convert to lowering the original type one at a time.
SI = convertAtomicStoreToIntegerType(SI);
assert(SI->getValueOperand()->getType()->isIntegerTy() &&
"invariant broken");
MadeChange = true;
}
if (TLI->shouldExpandAtomicStoreInIR(SI))
MadeChange |= expandAtomicStore(SI);
} else if (RMWI) {
// There are two different ways of expanding RMW instructions:
// - into a load if it is idempotent
// - into a Cmpxchg/LL-SC loop otherwise
// we try them in that order.
if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
MadeChange = true;
} else {
MadeChange |= tryExpandAtomicRMW(RMWI);
}
} else if (CASI) {
// TODO: when we're ready to make the change at the IR level, we can
// extend convertCmpXchgToInteger for floating point too.
assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
"unimplemented - floating point not legal at IR level");
if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
// TODO: add a TLI hook to control this so that each target can
// convert to lowering the original type one at a time.
CASI = convertCmpXchgToIntegerType(CASI);
assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
"invariant broken");
MadeChange = true;
}
if (TLI->shouldExpandAtomicCmpXchgInIR(CASI))
MadeChange |= expandAtomicCmpXchg(CASI);
}
}
return MadeChange;
}
bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order,
bool IsStore, bool IsLoad) {
IRBuilder<> Builder(I);
auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad);
auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad);
// The trailing fence is emitted before the instruction instead of after
// because there is no easy way of setting Builder insertion point after
// an instruction. So we must erase it from the BB, and insert it back
// in the right place.
// We have a guard here because not every atomic operation generates a
// trailing fence.
if (TrailingFence) {
TrailingFence->removeFromParent();
TrailingFence->insertAfter(I);
}
return (LeadingFence || TrailingFence);
}
/// Get the iX type with the same bitwidth as T.
IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
const DataLayout &DL) {
EVT VT = TLI->getValueType(DL, T);
unsigned BitWidth = VT.getStoreSizeInBits();
assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
return IntegerType::get(T->getContext(), BitWidth);
}
/// Convert an atomic load of a non-integral type to an integer load of the
/// equivalent bitwidth. See the function comment on
/// convertAtomicStoreToIntegerType for background.
LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
auto *M = LI->getModule();
Type *NewTy = getCorrespondingIntegerType(LI->getType(),
M->getDataLayout());
IRBuilder<> Builder(LI);
Value *Addr = LI->getPointerOperand();
Type *PT = PointerType::get(NewTy,
Addr->getType()->getPointerAddressSpace());
Value *NewAddr = Builder.CreateBitCast(Addr, PT);
auto *NewLI = Builder.CreateLoad(NewAddr);
NewLI->setAlignment(LI->getAlignment());
NewLI->setVolatile(LI->isVolatile());
NewLI->setAtomic(LI->getOrdering(), LI->getSynchScope());
DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
LI->replaceAllUsesWith(NewVal);
LI->eraseFromParent();
return NewLI;
}
bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
case TargetLoweringBase::AtomicExpansionKind::None:
return false;
case TargetLoweringBase::AtomicExpansionKind::LLSC:
return expandAtomicOpToLLSC(
LI, LI->getPointerOperand(), LI->getOrdering(),
[](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
case TargetLoweringBase::AtomicExpansionKind::LLOnly:
return expandAtomicLoadToLL(LI);
case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
return expandAtomicLoadToCmpXchg(LI);
}
llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
}
bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
IRBuilder<> Builder(LI);
// On some architectures, load-linked instructions are atomic for larger
// sizes than normal loads. For example, the only 64-bit load guaranteed
// to be single-copy atomic by ARM is an ldrexd (A3.5.3).
Value *Val =
TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
LI->replaceAllUsesWith(Val);
LI->eraseFromParent();
return true;
}
bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
IRBuilder<> Builder(LI);
AtomicOrdering Order = LI->getOrdering();
Value *Addr = LI->getPointerOperand();
Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
Constant *DummyVal = Constant::getNullValue(Ty);
Value *Pair = Builder.CreateAtomicCmpXchg(
Addr, DummyVal, DummyVal, Order,
AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
LI->replaceAllUsesWith(Loaded);
LI->eraseFromParent();
return true;
}
/// Convert an atomic store of a non-integral type to an integer store of the
/// equivalent bitwidth. We used to not support floating point or vector
/// atomics in the IR at all. The backends learned to deal with the bitcast
/// idiom because that was the only way of expressing the notion of a atomic
/// float or vector store. The long term plan is to teach each backend to
/// instruction select from the original atomic store, but as a migration
/// mechanism, we convert back to the old format which the backends understand.
/// Each backend will need individual work to recognize the new format.
StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
IRBuilder<> Builder(SI);
auto *M = SI->getModule();
Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
M->getDataLayout());
Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
Value *Addr = SI->getPointerOperand();
Type *PT = PointerType::get(NewTy,
Addr->getType()->getPointerAddressSpace());
Value *NewAddr = Builder.CreateBitCast(Addr, PT);
StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
NewSI->setAlignment(SI->getAlignment());
NewSI->setVolatile(SI->isVolatile());
NewSI->setAtomic(SI->getOrdering(), SI->getSynchScope());
DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
SI->eraseFromParent();
return NewSI;
}
bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
// This function is only called on atomic stores that are too large to be
// atomic if implemented as a native store. So we replace them by an
// atomic swap, that can be implemented for example as a ldrex/strex on ARM
// or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
// It is the responsibility of the target to only signal expansion via
// shouldExpandAtomicRMW in cases where this is required and possible.
IRBuilder<> Builder(SI);
AtomicRMWInst *AI =
Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
SI->getValueOperand(), SI->getOrdering());
SI->eraseFromParent();
// Now we have an appropriate swap instruction, lower it as usual.
return tryExpandAtomicRMW(AI);
}
static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
Value *Loaded, Value *NewVal,
AtomicOrdering MemOpOrder,
Value *&Success, Value *&NewLoaded) {
Value* Pair = Builder.CreateAtomicCmpXchg(
Addr, Loaded, NewVal, MemOpOrder,
AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
Success = Builder.CreateExtractValue(Pair, 1, "success");
NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
}
/// Emit IR to implement the given atomicrmw operation on values in registers,
/// returning the new value.
static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
Value *Loaded, Value *Inc) {
Value *NewVal;
switch (Op) {
case AtomicRMWInst::Xchg:
return Inc;
case AtomicRMWInst::Add:
return Builder.CreateAdd(Loaded, Inc, "new");
case AtomicRMWInst::Sub:
return Builder.CreateSub(Loaded, Inc, "new");
case AtomicRMWInst::And:
return Builder.CreateAnd(Loaded, Inc, "new");
case AtomicRMWInst::Nand:
return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
case AtomicRMWInst::Or:
return Builder.CreateOr(Loaded, Inc, "new");
case AtomicRMWInst::Xor:
return Builder.CreateXor(Loaded, Inc, "new");
case AtomicRMWInst::Max:
NewVal = Builder.CreateICmpSGT(Loaded, Inc);
return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
case AtomicRMWInst::Min:
NewVal = Builder.CreateICmpSLE(Loaded, Inc);
return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
case AtomicRMWInst::UMax:
NewVal = Builder.CreateICmpUGT(Loaded, Inc);
return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
case AtomicRMWInst::UMin:
NewVal = Builder.CreateICmpULE(Loaded, Inc);
return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
default:
llvm_unreachable("Unknown atomic op");
}
}
bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
case TargetLoweringBase::AtomicExpansionKind::None:
return false;
case TargetLoweringBase::AtomicExpansionKind::LLSC:
return expandAtomicOpToLLSC(AI, AI->getPointerOperand(), AI->getOrdering(),
[&](IRBuilder<> &Builder, Value *Loaded) {
return performAtomicOp(AI->getOperation(),
Builder, Loaded,
AI->getValOperand());
});
case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
return expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
default:
llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
}
}
bool AtomicExpand::expandAtomicOpToLLSC(
Instruction *I, Value *Addr, AtomicOrdering MemOpOrder,
std::function<Value *(IRBuilder<> &, Value *)> PerformOp) {
BasicBlock *BB = I->getParent();
Function *F = BB->getParent();
LLVMContext &Ctx = F->getContext();
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
//
// The standard expansion we produce is:
// [...]
// fence?
// atomicrmw.start:
// %loaded = @load.linked(%addr)
// %new = some_op iN %loaded, %incr
// %stored = @store_conditional(%new, %addr)
// %try_again = icmp i32 ne %stored, 0
// br i1 %try_again, label %loop, label %atomicrmw.end
// atomicrmw.end:
// fence?
// [...]
BasicBlock *ExitBB = BB->splitBasicBlock(I->getIterator(), "atomicrmw.end");
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
// This grabs the DebugLoc from I.
IRBuilder<> Builder(I);
// The split call above "helpfully" added a branch at the end of BB (to the
// wrong place), but we might want a fence too. It's easiest to just remove
// the branch entirely.
std::prev(BB->end())->eraseFromParent();
Builder.SetInsertPoint(BB);
Builder.CreateBr(LoopBB);
// Start the main loop block now that we've taken care of the preliminaries.
Builder.SetInsertPoint(LoopBB);
Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
Value *NewVal = PerformOp(Builder, Loaded);
Value *StoreSuccess =
TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
Value *TryAgain = Builder.CreateICmpNE(
StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
I->replaceAllUsesWith(Loaded);
I->eraseFromParent();
return true;
}
/// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
/// the equivalent bitwidth. We used to not support pointer cmpxchg in the
/// IR. As a migration step, we convert back to what use to be the standard
/// way to represent a pointer cmpxchg so that we can update backends one by
/// one.
AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
auto *M = CI->getModule();
Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
M->getDataLayout());
IRBuilder<> Builder(CI);
Value *Addr = CI->getPointerOperand();
Type *PT = PointerType::get(NewTy,
Addr->getType()->getPointerAddressSpace());
Value *NewAddr = Builder.CreateBitCast(Addr, PT);
Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
CI->getSuccessOrdering(),
CI->getFailureOrdering(),
CI->getSynchScope());
NewCI->setVolatile(CI->isVolatile());
NewCI->setWeak(CI->isWeak());
DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
Value *Succ = Builder.CreateExtractValue(NewCI, 1);
OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
Value *Res = UndefValue::get(CI->getType());
Res = Builder.CreateInsertValue(Res, OldVal, 0);
Res = Builder.CreateInsertValue(Res, Succ, 1);
CI->replaceAllUsesWith(Res);
CI->eraseFromParent();
return NewCI;
}
bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
AtomicOrdering FailureOrder = CI->getFailureOrdering();
Value *Addr = CI->getPointerOperand();
BasicBlock *BB = CI->getParent();
Function *F = BB->getParent();
LLVMContext &Ctx = F->getContext();
// If getInsertFencesForAtomic() returns true, then the target does not want
// to deal with memory orders, and emitLeading/TrailingFence should take care
// of everything. Otherwise, emitLeading/TrailingFence are no-op and we
// should preserve the ordering.
AtomicOrdering MemOpOrder =
TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder;
// In implementations which use a barrier to achieve release semantics, we can
// delay emitting this barrier until we know a store is actually going to be
// attempted. The cost of this delay is that we need 2 copies of the block
// emitting the load-linked, affecting code size.
//
// Ideally, this logic would be unconditional except for the minsize check
// since in other cases the extra blocks naturally collapse down to the
// minimal loop. Unfortunately, this puts too much stress on later
// optimisations so we avoid emitting the extra logic in those cases too.
bool HasReleasedLoadBB = !CI->isWeak() && TLI->getInsertFencesForAtomic() &&
SuccessOrder != Monotonic &&
SuccessOrder != Acquire && !F->optForMinSize();
// There's no overhead for sinking the release barrier in a weak cmpxchg, so
// do it even on minsize.
bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak();
// Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
//
// The full expansion we produce is:
// [...]
// cmpxchg.start:
// %unreleasedload = @load.linked(%addr)
// %should_store = icmp eq %unreleasedload, %desired
// br i1 %should_store, label %cmpxchg.fencedstore,
// label %cmpxchg.nostore
// cmpxchg.releasingstore:
// fence?
// br label cmpxchg.trystore
// cmpxchg.trystore:
// %loaded.trystore = phi [%unreleasedload, %releasingstore],
// [%releasedload, %cmpxchg.releasedload]
// %stored = @store_conditional(%new, %addr)
// %success = icmp eq i32 %stored, 0
// br i1 %success, label %cmpxchg.success,
// label %cmpxchg.releasedload/%cmpxchg.failure
// cmpxchg.releasedload:
// %releasedload = @load.linked(%addr)
// %should_store = icmp eq %releasedload, %desired
// br i1 %should_store, label %cmpxchg.trystore,
// label %cmpxchg.failure
// cmpxchg.success:
// fence?
// br label %cmpxchg.end
// cmpxchg.nostore:
// %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
// [%releasedload,
// %cmpxchg.releasedload/%cmpxchg.trystore]
// @load_linked_fail_balance()?
// br label %cmpxchg.failure
// cmpxchg.failure:
// fence?
// br label %cmpxchg.end
// cmpxchg.end:
// %loaded = phi [%loaded.nostore, %cmpxchg.failure],
// [%loaded.trystore, %cmpxchg.trystore]
// %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
// %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
// %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
// [...]
BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
auto ReleasedLoadBB =
BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
auto TryStoreBB =
BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
auto ReleasingStoreBB =
BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
// This grabs the DebugLoc from CI
IRBuilder<> Builder(CI);
// The split call above "helpfully" added a branch at the end of BB (to the
// wrong place), but we might want a fence too. It's easiest to just remove
// the branch entirely.
std::prev(BB->end())->eraseFromParent();
Builder.SetInsertPoint(BB);
if (UseUnconditionalReleaseBarrier)
TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true,
/*IsLoad=*/true);
Builder.CreateBr(StartBB);
// Start the main loop block now that we've taken care of the preliminaries.
Builder.SetInsertPoint(StartBB);
Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
Value *ShouldStore = Builder.CreateICmpEQ(
UnreleasedLoad, CI->getCompareOperand(), "should_store");
// If the cmpxchg doesn't actually need any ordering when it fails, we can
// jump straight past that fence instruction (if it exists).
Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
Builder.SetInsertPoint(ReleasingStoreBB);
if (!UseUnconditionalReleaseBarrier)
TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true,
/*IsLoad=*/true);
Builder.CreateBr(TryStoreBB);
Builder.SetInsertPoint(TryStoreBB);
Value *StoreSuccess = TLI->emitStoreConditional(
Builder, CI->getNewValOperand(), Addr, MemOpOrder);
StoreSuccess = Builder.CreateICmpEQ(
StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
Builder.CreateCondBr(StoreSuccess, SuccessBB,
CI->isWeak() ? FailureBB : RetryBB);
Builder.SetInsertPoint(ReleasedLoadBB);
Value *SecondLoad;
if (HasReleasedLoadBB) {
SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(),
"should_store");
// If the cmpxchg doesn't actually need any ordering when it fails, we can
// jump straight past that fence instruction (if it exists).
Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
} else
Builder.CreateUnreachable();
// Make sure later instructions don't get reordered with a fence if
// necessary.
Builder.SetInsertPoint(SuccessBB);
TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true,
/*IsLoad=*/true);
Builder.CreateBr(ExitBB);
Builder.SetInsertPoint(NoStoreBB);
// In the failing case, where we don't execute the store-conditional, the
// target might want to balance out the load-linked with a dedicated
// instruction (e.g., on ARM, clearing the exclusive monitor).
TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
Builder.CreateBr(FailureBB);
Builder.SetInsertPoint(FailureBB);
TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true,
/*IsLoad=*/true);
Builder.CreateBr(ExitBB);
// Finally, we have control-flow based knowledge of whether the cmpxchg
// succeeded or not. We expose this to later passes by converting any
// subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
// PHI.
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
// Setup the builder so we can create any PHIs we need.
Value *Loaded;
if (!HasReleasedLoadBB)
Loaded = UnreleasedLoad;
else {
Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin());
PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB);
TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin());
PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB);
NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
Builder.SetInsertPoint(ExitBB, ++ExitBB->begin());
PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB);
ExitLoaded->addIncoming(NoStoreLoaded, FailureBB);
Loaded = ExitLoaded;
}
// Look for any users of the cmpxchg that are just comparing the loaded value
// against the desired one, and replace them with the CFG-derived version.
SmallVector<ExtractValueInst *, 2> PrunedInsts;
for (auto User : CI->users()) {
ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
if (!EV)
continue;
assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
"weird extraction from { iN, i1 }");
if (EV->getIndices()[0] == 0)
EV->replaceAllUsesWith(Loaded);
else
EV->replaceAllUsesWith(Success);
PrunedInsts.push_back(EV);
}
// We can remove the instructions now we're no longer iterating through them.
for (auto EV : PrunedInsts)
EV->eraseFromParent();
if (!CI->use_empty()) {
// Some use of the full struct return that we don't understand has happened,
// so we've got to reconstruct it properly.
Value *Res;
Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
Res = Builder.CreateInsertValue(Res, Success, 1);
CI->replaceAllUsesWith(Res);
}
CI->eraseFromParent();
return true;
}
bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
if(!C)
return false;
AtomicRMWInst::BinOp Op = RMWI->getOperation();
switch(Op) {
case AtomicRMWInst::Add:
case AtomicRMWInst::Sub:
case AtomicRMWInst::Or:
case AtomicRMWInst::Xor:
return C->isZero();
case AtomicRMWInst::And:
return C->isMinusOne();
// FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
default:
return false;
}
}
bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
tryExpandAtomicLoad(ResultingLoad);
return true;
}
return false;
}
bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
CreateCmpXchgInstFun CreateCmpXchg) {
assert(AI);
AtomicOrdering MemOpOrder =
AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering();
Value *Addr = AI->getPointerOperand();
BasicBlock *BB = AI->getParent();
Function *F = BB->getParent();
LLVMContext &Ctx = F->getContext();
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
//
// The standard expansion we produce is:
// [...]
// %init_loaded = load atomic iN* %addr
// br label %loop
// loop:
// %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
// %new = some_op iN %loaded, %incr
// %pair = cmpxchg iN* %addr, iN %loaded, iN %new
// %new_loaded = extractvalue { iN, i1 } %pair, 0
// %success = extractvalue { iN, i1 } %pair, 1
// br i1 %success, label %atomicrmw.end, label %loop
// atomicrmw.end:
// [...]
BasicBlock *ExitBB = BB->splitBasicBlock(AI->getIterator(), "atomicrmw.end");
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
// This grabs the DebugLoc from AI.
IRBuilder<> Builder(AI);
// The split call above "helpfully" added a branch at the end of BB (to the
// wrong place), but we want a load. It's easiest to just remove
// the branch entirely.
std::prev(BB->end())->eraseFromParent();
Builder.SetInsertPoint(BB);
LoadInst *InitLoaded = Builder.CreateLoad(Addr);
// Atomics require at least natural alignment.
InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits() / 8);
Builder.CreateBr(LoopBB);
// Start the main loop block now that we've taken care of the preliminaries.
Builder.SetInsertPoint(LoopBB);
PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded");
Loaded->addIncoming(InitLoaded, BB);
Value *NewVal =
performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
Value *NewLoaded = nullptr;
Value *Success = nullptr;
CreateCmpXchg(Builder, Addr, Loaded, NewVal, MemOpOrder,
Success, NewLoaded);
assert(Success && NewLoaded);
Loaded->addIncoming(NewLoaded, LoopBB);
Builder.CreateCondBr(Success, ExitBB, LoopBB);
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
AI->replaceAllUsesWith(NewLoaded);
AI->eraseFromParent();
return true;
}