llvm-project/libcxx/include/future

2250 lines
57 KiB
Plaintext
Raw Normal View History

2010-05-12 03:42:16 +08:00
// -*- C++ -*-
//===--------------------------- future -----------------------------------===//
//
// The LLVM Compiler Infrastructure
2010-05-12 03:42:16 +08:00
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_FUTURE
#define _LIBCPP_FUTURE
/*
future synopsis
namespace std
{
enum class future_errc
{
broken_promise,
future_already_retrieved,
promise_already_satisfied,
no_state
};
enum class launch
{
any,
async,
sync
};
enum class future_status
{
ready,
timeout,
deferred
};
template <> struct is_error_code_enum<future_errc> : public true_type { };
error_code make_error_code(future_errc e);
error_condition make_error_condition(future_errc e);
const error_category& future_category();
class future_error
: public logic_error
{
public:
future_error(error_code ec); // exposition only
const error_code& code() const throw();
const char* what() const throw();
};
template <class R>
class promise
{
public:
promise();
template <class Allocator>
promise(allocator_arg_t, const Allocator& a);
promise(promise&& rhs);
promise(const promise& rhs) = delete;
~promise();
// assignment
promise& operator=(promise&& rhs);
promise& operator=(const promise& rhs) = delete;
void swap(promise& other);
// retrieving the result
future<R> get_future();
// setting the result
void set_value(const R& r);
void set_value(R&& r);
void set_exception(exception_ptr p);
// setting the result with deferred notification
void set_value_at_thread_exit(const R& r);
void set_value_at_thread_exit(R&& r);
void set_exception_at_thread_exit(exception_ptr p);
};
template <class R>
class promise<R&>
{
public:
promise();
template <class Allocator>
promise(allocator_arg_t, const Allocator& a);
promise(promise&& rhs);
promise(const promise& rhs) = delete;
~promise();
// assignment
promise& operator=(promise&& rhs);
promise& operator=(const promise& rhs) = delete;
void swap(promise& other);
// retrieving the result
2010-08-28 04:10:19 +08:00
future<R&> get_future();
2010-05-12 03:42:16 +08:00
// setting the result
void set_value(R& r);
void set_exception(exception_ptr p);
// setting the result with deferred notification
void set_value_at_thread_exit(R&);
void set_exception_at_thread_exit(exception_ptr p);
};
template <>
class promise<void>
{
public:
promise();
template <class Allocator>
promise(allocator_arg_t, const Allocator& a);
promise(promise&& rhs);
promise(const promise& rhs) = delete;
~promise();
// assignment
promise& operator=(promise&& rhs);
promise& operator=(const promise& rhs) = delete;
void swap(promise& other);
// retrieving the result
2010-08-28 04:10:19 +08:00
future<void> get_future();
2010-05-12 03:42:16 +08:00
// setting the result
void set_value();
void set_exception(exception_ptr p);
// setting the result with deferred notification
void set_value_at_thread_exit();
void set_exception_at_thread_exit(exception_ptr p);
};
template <class R> void swap(promise<R>& x, promise<R>& y);
template <class R, class Alloc>
struct uses_allocator<promise<R>, Alloc> : public true_type {};
template <class R>
class future
{
public:
future();
future(future&&);
future(const future& rhs) = delete;
~future();
future& operator=(const future& rhs) = delete;
future& operator=(future&&);
// retrieving the value
R get();
// functions to check state
bool valid() const;
void wait() const;
template <class Rep, class Period>
future_status
wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>
future_status
wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};
template <class R>
class future<R&>
{
public:
future();
future(future&&);
future(const future& rhs) = delete;
~future();
future& operator=(const future& rhs) = delete;
future& operator=(future&&);
// retrieving the value
R& get();
// functions to check state
bool valid() const;
void wait() const;
template <class Rep, class Period>
future_status
wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>
future_status
wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};
template <>
class future<void>
{
public:
future();
future(future&&);
future(const future& rhs) = delete;
~future();
future& operator=(const future& rhs) = delete;
future& operator=(future&&);
// retrieving the value
void get();
// functions to check state
bool valid() const;
void wait() const;
template <class Rep, class Period>
future_status
wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>
future_status
wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};
template <class R>
class shared_future
{
public:
shared_future();
shared_future(const shared_future& rhs);
shared_future(future<R>&&);
shared_future(shared_future&& rhs);
~shared_future();
shared_future& operator=(const shared_future& rhs);
shared_future& operator=(shared_future&& rhs);
// retrieving the value
const R& get() const;
// functions to check state
bool valid() const;
void wait() const;
template <class Rep, class Period>
future_status
wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>
future_status
wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};
template <class R>
class shared_future<R&>
{
public:
shared_future();
shared_future(const shared_future& rhs);
shared_future(future<R&>&&);
2010-05-12 03:42:16 +08:00
shared_future(shared_future&& rhs);
~shared_future();
shared_future& operator=(const shared_future& rhs);
shared_future& operator=(shared_future&& rhs);
// retrieving the value
R& get() const;
// functions to check state
bool valid() const;
void wait() const;
template <class Rep, class Period>
future_status
wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>
future_status
wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};
template <>
class shared_future<void>
{
public:
shared_future();
shared_future(const shared_future& rhs);
shared_future(future<void>&&);
2010-05-12 03:42:16 +08:00
shared_future(shared_future&& rhs);
~shared_future();
shared_future& operator=(const shared_future& rhs);
shared_future& operator=(shared_future&& rhs);
// retrieving the value
void get() const;
// functions to check state
bool valid() const;
void wait() const;
template <class Rep, class Period>
future_status
wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>
future_status
wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};
template <class R>
class atomic_future
{
public:
atomic_future();
atomic_future(const atomic_future& rhs);
atomic_future(future<R>&&);
~atomic_future();
atomic_future& operator=(const atomic_future& rhs);
// retrieving the value
const R& get() const;
// functions to check state
bool valid() const;
void wait() const;
template <class Rep, class Period>
future_status
wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>
future_status
wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};
template <class R>
class atomic_future<R&>
{
public:
atomic_future();
atomic_future(const atomic_future& rhs);
atomic_future(future<R>&&);
~atomic_future();
atomic_future& operator=(const atomic_future& rhs);
// retrieving the value
R& get() const;
// functions to check state
bool valid() const;
void wait() const;
template <class Rep, class Period>
future_status
wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>
future_status
wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};
template <>
class atomic_future<void>
{
public:
atomic_future();
atomic_future(const atomic_future& rhs);
atomic_future(future<R>&&);
~atomic_future();
atomic_future& operator=(const atomic_future& rhs);
// retrieving the value
void get() const;
// functions to check state
bool valid() const;
void wait() const;
template <class Rep, class Period>
future_status
wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>
future_status
wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};
template <class F, class... Args>
future<typename result_of<F(Args...)>::type>
async(F&& f, Args&&... args);
template <class F, class... Args>
future<typename result_of<F(Args...)>::type>
async(launch policy, F&& f, Args&&... args);
template <class> class packaged_task; // undefined
2010-05-12 03:42:16 +08:00
template <class R, class... ArgTypes>
class packaged_task<R(ArgTypes...)>
{
public:
typedef R result_type;
// construction and destruction
packaged_task();
template <class F>
explicit packaged_task(F&& f);
template <class F, class Allocator>
explicit packaged_task(allocator_arg_t, const Allocator& a, F&& f);
~packaged_task();
// no copy
packaged_task(packaged_task&) = delete;
packaged_task& operator=(packaged_task&) = delete;
// move support
packaged_task(packaged_task&& other);
packaged_task& operator=(packaged_task&& other);
void swap(packaged_task& other);
explicit operator bool() const;
// result retrieval
future<R> get_future();
// execution
void operator()(ArgTypes... );
void make_ready_at_thread_exit(ArgTypes...);
void reset();
};
template <class R>
void swap(packaged_task<R(ArgTypes...)&, packaged_task<R(ArgTypes...)>&);
template <class R, class Alloc> struct uses_allocator<packaged_task<R>, Alloc>;
} // std
*/
#include <__config>
#include <system_error>
2010-08-28 04:10:19 +08:00
#include <memory>
#include <chrono>
#include <exception>
#include <__mutex_base>
#include <thread>
2010-05-12 03:42:16 +08:00
#pragma GCC system_header
_LIBCPP_BEGIN_NAMESPACE_STD
//enum class future_errc
struct future_errc
{
enum _ {
broken_promise,
future_already_retrieved,
promise_already_satisfied,
no_state
};
_ __v_;
future_errc(_ __v) : __v_(__v) {}
operator int() const {return __v_;}
};
template <> struct is_error_code_enum<future_errc> : public true_type {};
2010-05-12 03:42:16 +08:00
//enum class launch
struct launch
{
enum _ {
any,
async,
sync
};
_ __v_;
launch(_ __v) : __v_(__v) {}
operator int() const {return __v_;}
};
//enum class future_status
struct future_status
{
enum _ {
ready,
timeout,
deferred
};
_ __v_;
future_status(_ __v) : __v_(__v) {}
operator int() const {return __v_;}
};
const error_category& future_category();
inline _LIBCPP_INLINE_VISIBILITY
error_code
make_error_code(future_errc __e)
{
return error_code(static_cast<int>(__e), future_category());
}
inline _LIBCPP_INLINE_VISIBILITY
error_condition
make_error_condition(future_errc __e)
{
return error_condition(static_cast<int>(__e), future_category());
}
class future_error
: public logic_error
{
error_code __ec_;
public:
future_error(error_code __ec);
const error_code& code() const throw() {return __ec_;}
};
2010-08-28 04:10:19 +08:00
class __assoc_sub_state
: public __shared_count
{
protected:
exception_ptr __exception_;
mutable mutex __mut_;
mutable condition_variable __cv_;
unsigned __state_;
virtual void __on_zero_shared();
void __sub_wait(unique_lock<mutex>& __lk);
2010-08-28 04:10:19 +08:00
public:
enum
{
__constructed = 1,
__future_attached = 2,
ready = 4,
deferred = 8
};
__assoc_sub_state() : __state_(0) {}
bool __has_value() const
{return (__state_ & __constructed) || (__exception_ != nullptr);}
void __set_future_attached() {__state_ |= __future_attached;}
bool __has_future_attached() const {return __state_ & __future_attached;}
void __set_deferred() {__state_ |= deferred;}
2010-08-28 04:10:19 +08:00
void __make_ready();
bool __is_ready() const {return __state_ & ready;}
void set_value();
void set_value_at_thread_exit();
void set_exception(exception_ptr __p);
void set_exception_at_thread_exit(exception_ptr __p);
void copy();
void wait();
2010-08-28 04:10:19 +08:00
template <class _Rep, class _Period>
future_status
wait_for(const chrono::duration<_Rep, _Period>& __rel_time) const;
template <class _Clock, class _Duration>
future_status
wait_until(const chrono::time_point<_Clock, _Duration>& __abs_time) const;
virtual void __execute();
2010-08-28 04:10:19 +08:00
};
template <class _Clock, class _Duration>
future_status
__assoc_sub_state::wait_until(const chrono::time_point<_Clock, _Duration>& __abs_time) const
{
unique_lock<mutex> __lk(__mut_);
if (__state_ & deferred)
return future_status::deferred;
while (!(__state_ & ready) && _Clock::now() < __abs_time)
__cv_.wait_until(__lk, __abs_time);
if (__state_ & ready)
return future_status::ready;
return future_status::timeout;
}
template <class _Rep, class _Period>
inline _LIBCPP_INLINE_VISIBILITY
future_status
__assoc_sub_state::wait_for(const chrono::duration<_Rep, _Period>& __rel_time) const
{
return wait_until(chrono::monotonic_clock::now() + __rel_time);
}
2010-08-28 04:10:19 +08:00
template <class _R>
class __assoc_state
: public __assoc_sub_state
{
typedef __assoc_sub_state base;
typedef typename aligned_storage<sizeof(_R), alignment_of<_R>::value>::type _U;
protected:
_U __value_;
virtual void __on_zero_shared();
public:
template <class _Arg>
#ifdef _LIBCPP_MOVE
void set_value(_Arg&& __arg);
#else
void set_value(_Arg& __arg);
#endif
template <class _Arg>
#ifdef _LIBCPP_MOVE
void set_value_at_thread_exit(_Arg&& __arg);
#else
void set_value_at_thread_exit(_Arg& __arg);
#endif
_R move();
typename add_lvalue_reference<_R>::type copy();
};
template <class _R>
void
__assoc_state<_R>::__on_zero_shared()
{
if (this->__state_ & base::__constructed)
reinterpret_cast<_R*>(&__value_)->~_R();
delete this;
}
template <class _R>
template <class _Arg>
void
#ifdef _LIBCPP_MOVE
__assoc_state<_R>::set_value(_Arg&& __arg)
#else
__assoc_state<_R>::set_value(_Arg& __arg)
#endif
{
unique_lock<mutex> __lk(this->__mut_);
if (this->__has_value())
throw future_error(make_error_code(future_errc::promise_already_satisfied));
::new(&__value_) _R(_STD::forward<_Arg>(__arg));
this->__state_ |= base::__constructed | base::ready;
__lk.unlock();
__cv_.notify_all();
}
template <class _R>
template <class _Arg>
void
#ifdef _LIBCPP_MOVE
__assoc_state<_R>::set_value_at_thread_exit(_Arg&& __arg)
#else
__assoc_state<_R>::set_value_at_thread_exit(_Arg& __arg)
#endif
{
unique_lock<mutex> __lk(this->__mut_);
if (this->__has_value())
throw future_error(make_error_code(future_errc::promise_already_satisfied));
::new(&__value_) _R(_STD::forward<_Arg>(__arg));
this->__state_ |= base::__constructed;
__thread_local_data->__make_ready_at_thread_exit(this);
__lk.unlock();
}
template <class _R>
_R
__assoc_state<_R>::move()
{
unique_lock<mutex> __lk(this->__mut_);
this->__sub_wait(__lk);
2010-08-28 04:10:19 +08:00
if (this->__exception_ != nullptr)
rethrow_exception(this->__exception_);
return _STD::move(*reinterpret_cast<_R*>(&__value_));
}
template <class _R>
typename add_lvalue_reference<_R>::type
__assoc_state<_R>::copy()
{
unique_lock<mutex> __lk(this->__mut_);
this->__sub_wait(__lk);
2010-08-28 04:10:19 +08:00
if (this->__exception_ != nullptr)
rethrow_exception(this->__exception_);
return *reinterpret_cast<_R*>(&__value_);
}
template <class _R>
class __assoc_state<_R&>
: public __assoc_sub_state
{
typedef __assoc_sub_state base;
typedef _R* _U;
protected:
_U __value_;
virtual void __on_zero_shared();
public:
void set_value(_R& __arg);
void set_value_at_thread_exit(_R& __arg);
_R& copy();
};
template <class _R>
void
__assoc_state<_R&>::__on_zero_shared()
{
delete this;
}
template <class _R>
void
__assoc_state<_R&>::set_value(_R& __arg)
{
unique_lock<mutex> __lk(this->__mut_);
if (this->__has_value())
throw future_error(make_error_code(future_errc::promise_already_satisfied));
__value_ = &__arg;
this->__state_ |= base::__constructed | base::ready;
__lk.unlock();
__cv_.notify_all();
}
template <class _R>
void
__assoc_state<_R&>::set_value_at_thread_exit(_R& __arg)
{
unique_lock<mutex> __lk(this->__mut_);
if (this->__has_value())
throw future_error(make_error_code(future_errc::promise_already_satisfied));
__value_ = &__arg;
this->__state_ |= base::__constructed;
__thread_local_data->__make_ready_at_thread_exit(this);
__lk.unlock();
}
template <class _R>
_R&
__assoc_state<_R&>::copy()
{
unique_lock<mutex> __lk(this->__mut_);
this->__sub_wait(__lk);
if (this->__exception_ != nullptr)
rethrow_exception(this->__exception_);
return *__value_;
}
2010-08-28 04:10:19 +08:00
template <class _R, class _Alloc>
class __assoc_state_alloc
: public __assoc_state<_R>
{
typedef __assoc_state<_R> base;
_Alloc __alloc_;
virtual void __on_zero_shared();
public:
explicit __assoc_state_alloc(const _Alloc& __a)
: __alloc_(__a) {}
};
template <class _R, class _Alloc>
void
__assoc_state_alloc<_R, _Alloc>::__on_zero_shared()
{
if (this->__state_ & base::__constructed)
reinterpret_cast<_R*>(&this->__value_)->~_R();
typename _Alloc::template rebind<__assoc_state_alloc>::other __a(__alloc_);
this->~__assoc_state_alloc();
__a.deallocate(this, 1);
}
template <class _R, class _Alloc>
class __assoc_state_alloc<_R&, _Alloc>
: public __assoc_state<_R&>
{
typedef __assoc_state<_R&> base;
_Alloc __alloc_;
virtual void __on_zero_shared();
public:
explicit __assoc_state_alloc(const _Alloc& __a)
: __alloc_(__a) {}
};
template <class _R, class _Alloc>
void
__assoc_state_alloc<_R&, _Alloc>::__on_zero_shared()
{
typename _Alloc::template rebind<__assoc_state_alloc>::other __a(__alloc_);
this->~__assoc_state_alloc();
__a.deallocate(this, 1);
}
2010-08-28 04:10:19 +08:00
template <class _Alloc>
class __assoc_sub_state_alloc
: public __assoc_sub_state
{
typedef __assoc_sub_state base;
_Alloc __alloc_;
virtual void __on_zero_shared();
public:
explicit __assoc_sub_state_alloc(const _Alloc& __a)
: __alloc_(__a) {}
};
template <class _Alloc>
void
__assoc_sub_state_alloc<_Alloc>::__on_zero_shared()
{
this->~base();
typename _Alloc::template rebind<__assoc_sub_state_alloc>::other __a(__alloc_);
2010-08-28 04:10:19 +08:00
this->~__assoc_sub_state_alloc();
__a.deallocate(this, 1);
}
template <class _R, class _F>
class __deferred_assoc_state
: public __assoc_state<_R>
{
typedef __assoc_state<_R> base;
_F __func_;
public:
#ifdef _LIBCPP_MOVE
explicit __deferred_assoc_state(_F&& __f);
#endif
virtual void __execute();
};
#ifdef _LIBCPP_MOVE
template <class _R, class _F>
inline _LIBCPP_INLINE_VISIBILITY
__deferred_assoc_state<_R, _F>::__deferred_assoc_state(_F&& __f)
: __func_(_STD::forward<_F>(__f))
{
this->__set_deferred();
}
#endif // _LIBCPP_MOVE
template <class _R, class _F>
void
__deferred_assoc_state<_R, _F>::__execute()
{
#ifndef _LIBCPP_NO_EXCEPTIONS
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
this->set_value(__func_());
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
this->set_exception(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template <class _F>
class __deferred_assoc_state<void, _F>
: public __assoc_sub_state
{
typedef __assoc_sub_state base;
_F __func_;
public:
#ifdef _LIBCPP_MOVE
explicit __deferred_assoc_state(_F&& __f);
#endif
virtual void __execute();
};
#ifdef _LIBCPP_MOVE
template <class _F>
inline _LIBCPP_INLINE_VISIBILITY
__deferred_assoc_state<void, _F>::__deferred_assoc_state(_F&& __f)
: __func_(_STD::forward<_F>(__f))
{
this->__set_deferred();
}
#endif // _LIBCPP_MOVE
template <class _F>
void
__deferred_assoc_state<void, _F>::__execute()
{
#ifndef _LIBCPP_NO_EXCEPTIONS
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
__func_();
this->set_value();
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
this->set_exception(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
2010-08-28 04:10:19 +08:00
template <class> class promise;
template <class> class shared_future;
template <class> class atomic_future;
2010-08-28 04:10:19 +08:00
// future
template <class _R> class future;
template <class _R, class _F>
future<_R>
#ifdef _LIBCPP_MOVE
__make_deferred_assoc_state(_F&& __f);
#else
__make_deferred_assoc_state(_F __f);
#endif
2010-08-28 04:10:19 +08:00
template <class _R>
class future
{
__assoc_state<_R>* __state_;
explicit future(__assoc_state<_R>* __state);
template <class> friend class promise;
template <class> friend class shared_future;
template <class> friend class atomic_future;
template <class _R1, class _F>
#ifdef _LIBCPP_MOVE
friend future<_R1> __make_deferred_assoc_state(_F&& __f);
#else
friend future<_R1> __make_deferred_assoc_state(_F __f);
#endif
2010-08-28 04:10:19 +08:00
public:
future() : __state_(nullptr) {}
#ifdef _LIBCPP_MOVE
future(future&& __rhs)
: __state_(__rhs.__state_) {__rhs.__state_ = nullptr;}
future(const future&) = delete;
future& operator=(const future&) = delete;
future& operator=(future&& __rhs)
{
future(std::move(__rhs)).swap(*this);
return *this;
}
#else // _LIBCPP_MOVE
private:
future(const future&);
future& operator=(const future&);
public:
#endif // _LIBCPP_MOVE
~future();
// retrieving the value
_R get();
void swap(future& __rhs) {_STD::swap(__state_, __rhs.__state_);}
// functions to check state
bool valid() const {return __state_ != nullptr;}
void wait() const {__state_->wait();}
template <class _Rep, class _Period>
future_status
wait_for(const chrono::duration<_Rep, _Period>& __rel_time) const
{return __state_->wait_for(__rel_time);}
template <class _Clock, class _Duration>
future_status
wait_until(const chrono::time_point<_Clock, _Duration>& __abs_time) const
{return __state_->wait_until(__abs_time);}
};
template <class _R>
future<_R>::future(__assoc_state<_R>* __state)
: __state_(__state)
{
if (__state_->__has_future_attached())
throw future_error(make_error_code(future_errc::future_already_retrieved));
__state_->__add_shared();
__state_->__set_future_attached();
2010-08-28 04:10:19 +08:00
}
struct __release_shared_count
{
void operator()(__shared_count* p) {p->__release_shared();}
};
2010-08-28 04:10:19 +08:00
template <class _R>
future<_R>::~future()
{
if (__state_)
__state_->__release_shared();
}
template <class _R>
_R
future<_R>::get()
{
unique_ptr<__shared_count, __release_shared_count> __(__state_);
2010-08-28 04:10:19 +08:00
__assoc_state<_R>* __s = __state_;
__state_ = nullptr;
return __s->move();
}
template <class _R>
class future<_R&>
{
__assoc_state<_R&>* __state_;
explicit future(__assoc_state<_R&>* __state);
template <class> friend class promise;
template <class> friend class shared_future;
template <class> friend class atomic_future;
template <class _R1, class _F>
#ifdef _LIBCPP_MOVE
friend future<_R1> __make_deferred_assoc_state(_F&& __f);
#else
friend future<_R1> __make_deferred_assoc_state(_F __f);
#endif
2010-08-28 04:10:19 +08:00
public:
future() : __state_(nullptr) {}
#ifdef _LIBCPP_MOVE
future(future&& __rhs)
: __state_(__rhs.__state_) {__rhs.__state_ = nullptr;}
future(const future&) = delete;
future& operator=(const future&) = delete;
future& operator=(future&& __rhs)
{
future(std::move(__rhs)).swap(*this);
return *this;
}
#else // _LIBCPP_MOVE
private:
future(const future&);
future& operator=(const future&);
public:
#endif // _LIBCPP_MOVE
~future();
// retrieving the value
_R& get();
void swap(future& __rhs) {_STD::swap(__state_, __rhs.__state_);}
// functions to check state
bool valid() const {return __state_ != nullptr;}
void wait() const {__state_->wait();}
template <class _Rep, class _Period>
future_status
wait_for(const chrono::duration<_Rep, _Period>& __rel_time) const
{return __state_->wait_for(__rel_time);}
template <class _Clock, class _Duration>
future_status
wait_until(const chrono::time_point<_Clock, _Duration>& __abs_time) const
{return __state_->wait_until(__abs_time);}
};
template <class _R>
future<_R&>::future(__assoc_state<_R&>* __state)
: __state_(__state)
{
if (__state_->__has_future_attached())
throw future_error(make_error_code(future_errc::future_already_retrieved));
__state_->__add_shared();
__state_->__set_future_attached();
2010-08-28 04:10:19 +08:00
}
template <class _R>
future<_R&>::~future()
{
if (__state_)
__state_->__release_shared();
}
template <class _R>
_R&
future<_R&>::get()
{
unique_ptr<__shared_count, __release_shared_count> __(__state_);
__assoc_state<_R&>* __s = __state_;
2010-08-28 04:10:19 +08:00
__state_ = nullptr;
return __s->copy();
}
template <>
class future<void>
{
__assoc_sub_state* __state_;
explicit future(__assoc_sub_state* __state);
template <class> friend class promise;
template <class> friend class shared_future;
template <class> friend class atomic_future;
template <class _R1, class _F>
#ifdef _LIBCPP_MOVE
friend future<_R1> __make_deferred_assoc_state(_F&& __f);
#else
friend future<_R1> __make_deferred_assoc_state(_F __f);
#endif
2010-08-28 04:10:19 +08:00
public:
future() : __state_(nullptr) {}
#ifdef _LIBCPP_MOVE
future(future&& __rhs)
: __state_(__rhs.__state_) {__rhs.__state_ = nullptr;}
future(const future&) = delete;
future& operator=(const future&) = delete;
future& operator=(future&& __rhs)
{
future(std::move(__rhs)).swap(*this);
return *this;
}
#else // _LIBCPP_MOVE
private:
future(const future&);
future& operator=(const future&);
public:
#endif // _LIBCPP_MOVE
~future();
// retrieving the value
void get();
void swap(future& __rhs) {_STD::swap(__state_, __rhs.__state_);}
// functions to check state
bool valid() const {return __state_ != nullptr;}
void wait() const {__state_->wait();}
template <class _Rep, class _Period>
future_status
wait_for(const chrono::duration<_Rep, _Period>& __rel_time) const
{return __state_->wait_for(__rel_time);}
template <class _Clock, class _Duration>
future_status
wait_until(const chrono::time_point<_Clock, _Duration>& __abs_time) const
{return __state_->wait_until(__abs_time);}
};
template <class _R>
inline _LIBCPP_INLINE_VISIBILITY
void
swap(future<_R>& __x, future<_R>& __y)
{
__x.swap(__y);
}
2010-08-28 04:10:19 +08:00
// promise<R>
template <class> class packaged_task;
2010-08-28 04:10:19 +08:00
template <class _R>
class promise
{
__assoc_state<_R>* __state_;
explicit promise(nullptr_t) : __state_(nullptr) {}
template <class> friend class packaged_task;
2010-08-28 04:10:19 +08:00
public:
promise();
template <class _Alloc>
promise(allocator_arg_t, const _Alloc& __a);
#ifdef _LIBCPP_MOVE
promise(promise&& __rhs)
: __state_(__rhs.__state_) {__rhs.__state_ = nullptr;}
promise(const promise& __rhs) = delete;
#else // _LIBCPP_MOVE
private:
promise(const promise& __rhs);
public:
#endif // _LIBCPP_MOVE
~promise();
// assignment
#ifdef _LIBCPP_MOVE
promise& operator=(promise&& __rhs)
{
promise(std::move(__rhs)).swap(*this);
return *this;
}
promise& operator=(const promise& __rhs) = delete;
#else // _LIBCPP_MOVE
private:
promise& operator=(const promise& __rhs);
public:
#endif // _LIBCPP_MOVE
void swap(promise& __rhs) {_STD::swap(__state_, __rhs.__state_);}
// retrieving the result
future<_R> get_future();
// setting the result
void set_value(const _R& __r);
#ifdef _LIBCPP_MOVE
void set_value(_R&& __r);
#endif
void set_exception(exception_ptr __p);
// setting the result with deferred notification
void set_value_at_thread_exit(const _R& __r);
#ifdef _LIBCPP_MOVE
void set_value_at_thread_exit(_R&& __r);
#endif
void set_exception_at_thread_exit(exception_ptr __p);
};
template <class _R>
promise<_R>::promise()
: __state_(new __assoc_state<_R>)
{
}
template <class _R>
template <class _Alloc>
promise<_R>::promise(allocator_arg_t, const _Alloc& __a0)
{
typedef typename _Alloc::template rebind<__assoc_state_alloc<_R, _Alloc> >::other _A2;
typedef __allocator_destructor<_A2> _D2;
_A2 __a(__a0);
unique_ptr<__assoc_state_alloc<_R, _Alloc>, _D2> __hold(__a.allocate(1), _D2(__a, 1));
::new(__hold.get()) __assoc_state_alloc<_R, _Alloc>(__a0);
__state_ = __hold.release();
}
template <class _R>
promise<_R>::~promise()
{
if (__state_)
{
if (!__state_->__has_value() && __state_->use_count() > 1)
__state_->set_exception(make_exception_ptr(
future_error(make_error_code(future_errc::broken_promise))
));
__state_->__release_shared();
}
}
template <class _R>
future<_R>
promise<_R>::get_future()
{
if (__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
return future<_R>(__state_);
}
template <class _R>
void
promise<_R>::set_value(const _R& __r)
{
if (__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
__state_->set_value(__r);
}
#ifdef _LIBCPP_MOVE
template <class _R>
void
promise<_R>::set_value(_R&& __r)
{
if (__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
__state_->set_value(_STD::move(__r));
}
#endif // _LIBCPP_MOVE
template <class _R>
void
promise<_R>::set_exception(exception_ptr __p)
{
if (__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
__state_->set_exception(__p);
}
template <class _R>
void
promise<_R>::set_value_at_thread_exit(const _R& __r)
{
if (__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
__state_->set_value_at_thread_exit(__r);
}
#ifdef _LIBCPP_MOVE
template <class _R>
void
promise<_R>::set_value_at_thread_exit(_R&& __r)
{
if (__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
__state_->set_value_at_thread_exit(_STD::move(__r));
}
#endif // _LIBCPP_MOVE
template <class _R>
void
promise<_R>::set_exception_at_thread_exit(exception_ptr __p)
{
if (__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
__state_->set_exception_at_thread_exit(__p);
}
// promise<R&>
template <class _R>
class promise<_R&>
{
__assoc_state<_R&>* __state_;
explicit promise(nullptr_t) : __state_(nullptr) {}
template <class> friend class packaged_task;
2010-08-28 04:10:19 +08:00
public:
promise();
template <class _Allocator>
promise(allocator_arg_t, const _Allocator& __a);
#ifdef _LIBCPP_MOVE
promise(promise&& __rhs)
: __state_(__rhs.__state_) {__rhs.__state_ = nullptr;}
promise(const promise& __rhs) = delete;
#else // _LIBCPP_MOVE
private:
promise(const promise& __rhs);
public:
#endif // _LIBCPP_MOVE
~promise();
// assignment
#ifdef _LIBCPP_MOVE
promise& operator=(promise&& __rhs)
{
promise(std::move(__rhs)).swap(*this);
return *this;
}
promise& operator=(const promise& __rhs) = delete;
#else // _LIBCPP_MOVE
private:
promise& operator=(const promise& __rhs);
public:
#endif // _LIBCPP_MOVE
void swap(promise& __rhs) {_STD::swap(__state_, __rhs.__state_);}
// retrieving the result
future<_R&> get_future();
// setting the result
void set_value(_R& __r);
void set_exception(exception_ptr __p);
// setting the result with deferred notification
void set_value_at_thread_exit(_R&);
void set_exception_at_thread_exit(exception_ptr __p);
};
template <class _R>
promise<_R&>::promise()
: __state_(new __assoc_state<_R&>)
{
}
template <class _R>
template <class _Alloc>
promise<_R&>::promise(allocator_arg_t, const _Alloc& __a0)
{
typedef typename _Alloc::template rebind<__assoc_state_alloc<_R&, _Alloc> >::other _A2;
typedef __allocator_destructor<_A2> _D2;
_A2 __a(__a0);
unique_ptr<__assoc_state_alloc<_R&, _Alloc>, _D2> __hold(__a.allocate(1), _D2(__a, 1));
::new(__hold.get()) __assoc_state_alloc<_R&, _Alloc>(__a0);
__state_ = __hold.release();
}
template <class _R>
promise<_R&>::~promise()
{
if (__state_)
{
if (!__state_->__has_value() && __state_->use_count() > 1)
__state_->set_exception(make_exception_ptr(
future_error(make_error_code(future_errc::broken_promise))
));
__state_->__release_shared();
}
}
template <class _R>
future<_R&>
promise<_R&>::get_future()
{
if (__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
return future<_R&>(__state_);
}
template <class _R>
void
promise<_R&>::set_value(_R& __r)
{
if (__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
__state_->set_value(__r);
}
template <class _R>
void
promise<_R&>::set_exception(exception_ptr __p)
{
if (__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
__state_->set_exception(__p);
}
template <class _R>
void
promise<_R&>::set_value_at_thread_exit(_R& __r)
{
if (__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
__state_->set_value_at_thread_exit(__r);
}
template <class _R>
void
promise<_R&>::set_exception_at_thread_exit(exception_ptr __p)
{
if (__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
__state_->set_exception_at_thread_exit(__p);
}
// promise<void>
template <>
class promise<void>
{
__assoc_sub_state* __state_;
explicit promise(nullptr_t) : __state_(nullptr) {}
template <class> friend class packaged_task;
2010-08-28 04:10:19 +08:00
public:
promise();
template <class _Allocator>
promise(allocator_arg_t, const _Allocator& __a);
#ifdef _LIBCPP_MOVE
promise(promise&& __rhs)
: __state_(__rhs.__state_) {__rhs.__state_ = nullptr;}
promise(const promise& __rhs) = delete;
#else // _LIBCPP_MOVE
private:
promise(const promise& __rhs);
public:
#endif // _LIBCPP_MOVE
~promise();
// assignment
#ifdef _LIBCPP_MOVE
promise& operator=(promise&& __rhs)
{
promise(std::move(__rhs)).swap(*this);
return *this;
}
promise& operator=(const promise& __rhs) = delete;
#else // _LIBCPP_MOVE
private:
promise& operator=(const promise& __rhs);
public:
#endif // _LIBCPP_MOVE
void swap(promise& __rhs) {_STD::swap(__state_, __rhs.__state_);}
// retrieving the result
future<void> get_future();
// setting the result
void set_value();
void set_exception(exception_ptr __p);
// setting the result with deferred notification
void set_value_at_thread_exit();
void set_exception_at_thread_exit(exception_ptr __p);
};
template <class _Alloc>
promise<void>::promise(allocator_arg_t, const _Alloc& __a0)
{
typedef typename _Alloc::template rebind<__assoc_sub_state_alloc<_Alloc> >::other _A2;
typedef __allocator_destructor<_A2> _D2;
_A2 __a(__a0);
unique_ptr<__assoc_sub_state_alloc<_Alloc>, _D2> __hold(__a.allocate(1), _D2(__a, 1));
::new(__hold.get()) __assoc_sub_state_alloc<_Alloc>(__a0);
__state_ = __hold.release();
}
template <class _R>
inline _LIBCPP_INLINE_VISIBILITY
void
swap(promise<_R>& __x, promise<_R>& __y)
{
__x.swap(__y);
}
template <class _R, class _Alloc>
struct uses_allocator<promise<_R>, _Alloc> : public true_type {};
#ifndef _LIBCPP_HAS_NO_VARIADICS
// packaged_task
template<class _Fp> class __packaged_task_base;
template<class _R, class ..._ArgTypes>
class __packaged_task_base<_R(_ArgTypes...)>
{
__packaged_task_base(const __packaged_task_base&);
__packaged_task_base& operator=(const __packaged_task_base&);
public:
__packaged_task_base() {}
virtual ~__packaged_task_base() {}
virtual void __move_to(__packaged_task_base*) = 0;
virtual void destroy() = 0;
virtual void destroy_deallocate() = 0;
virtual _R operator()(_ArgTypes&& ...) = 0;
};
template<class _FD, class _Alloc, class _FB> class __packaged_task_func;
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
class __packaged_task_func<_F, _Alloc, _R(_ArgTypes...)>
: public __packaged_task_base<_R(_ArgTypes...)>
{
__compressed_pair<_F, _Alloc> __f_;
public:
explicit __packaged_task_func(const _F& __f) : __f_(__f) {}
explicit __packaged_task_func(_F&& __f) : __f_(_STD::move(__f)) {}
__packaged_task_func(const _F& __f, const _Alloc& __a)
: __f_(__f, __a) {}
__packaged_task_func(_F&& __f, const _Alloc& __a)
: __f_(_STD::move(__f), __a) {}
virtual void __move_to(__packaged_task_base<_R(_ArgTypes...)>*);
virtual void destroy();
virtual void destroy_deallocate();
virtual _R operator()(_ArgTypes&& ... __args);
};
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
void
__packaged_task_func<_F, _Alloc, _R(_ArgTypes...)>::__move_to(
__packaged_task_base<_R(_ArgTypes...)>* __p)
{
::new (__p) __packaged_task_func(_STD::move(__f_.first()), _STD::move(__f_.second()));
}
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
void
__packaged_task_func<_F, _Alloc, _R(_ArgTypes...)>::destroy()
{
__f_.~__compressed_pair<_F, _Alloc>();
}
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
void
__packaged_task_func<_F, _Alloc, _R(_ArgTypes...)>::destroy_deallocate()
{
typedef typename _Alloc::template rebind<__packaged_task_func>::other _A;
_A __a(__f_.second());
__f_.~__compressed_pair<_F, _Alloc>();
__a.deallocate(this, 1);
}
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
_R
__packaged_task_func<_F, _Alloc, _R(_ArgTypes...)>::operator()(_ArgTypes&& ... __arg)
{
return __invoke(__f_.first(), _STD::forward<_ArgTypes>(__arg)...);
}
template <class> class __packaged_task_function;
template<class _R, class ..._ArgTypes>
class __packaged_task_function<_R(_ArgTypes...)>
{
typedef __packaged_task_base<_R(_ArgTypes...)> __base;
aligned_storage<3*sizeof(void*)>::type __buf_;
__base* __f_;
public:
typedef _R result_type;
// construct/copy/destroy:
__packaged_task_function() : __f_(nullptr) {}
template<class _F>
__packaged_task_function(_F&& __f);
template<class _F, class _Alloc>
__packaged_task_function(allocator_arg_t, const _Alloc& __a, _F&& __f);
__packaged_task_function(__packaged_task_function&&);
__packaged_task_function& operator=(__packaged_task_function&&);
__packaged_task_function(const __packaged_task_function&) = delete;
__packaged_task_function& operator=(const __packaged_task_function&) = delete;
~__packaged_task_function();
void swap(__packaged_task_function&);
_R operator()(_ArgTypes...) const;
};
template<class _R, class ..._ArgTypes>
__packaged_task_function<_R(_ArgTypes...)>::__packaged_task_function(__packaged_task_function&& __f)
{
if (__f.__f_ == nullptr)
__f_ = nullptr;
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__move_to(__f_);
}
else
{
__f_ = __f.__f_;
__f.__f_ = nullptr;
}
}
template<class _R, class ..._ArgTypes>
template <class _F>
__packaged_task_function<_R(_ArgTypes...)>::__packaged_task_function(_F&& __f)
: __f_(nullptr)
{
typedef typename remove_reference<_F>::type _FR;
typedef __packaged_task_func<_FR, allocator<_FR>, _R(_ArgTypes...)> _FF;
if (sizeof(_FF) <= sizeof(__buf_))
{
__f_ = (__base*)&__buf_;
::new (__f_) _FF(_STD::forward<_F>(__f));
}
else
{
typedef allocator<_FF> _A;
_A __a;
typedef __allocator_destructor<_A> _D;
unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) _FF(_STD::forward<_F>(__f), allocator<_FR>(__a));
__f_ = __hold.release();
}
}
template<class _R, class ..._ArgTypes>
template <class _F, class _Alloc>
__packaged_task_function<_R(_ArgTypes...)>::__packaged_task_function(
allocator_arg_t, const _Alloc& __a0, _F&& __f)
: __f_(nullptr)
{
typedef allocator_traits<_Alloc> __alloc_traits;
typedef typename remove_reference<_F>::type _FR;
typedef __packaged_task_func<_FR, _Alloc, _R(_ArgTypes...)> _FF;
if (sizeof(_FF) <= sizeof(__buf_))
{
__f_ = (__base*)&__buf_;
::new (__f_) _FF(_STD::forward<_F>(__f));
}
else
{
typedef typename __alloc_traits::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind_alloc<_FF>
#else
rebind_alloc<_FF>::other
#endif
_A;
_A __a(__a0);
typedef __allocator_destructor<_A> _D;
unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) _FF(_STD::forward<_F>(__f), _Alloc(__a));
__f_ = __hold.release();
}
}
template<class _R, class ..._ArgTypes>
__packaged_task_function<_R(_ArgTypes...)>&
__packaged_task_function<_R(_ArgTypes...)>::operator=(__packaged_task_function&& __f)
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
__f_ = nullptr;
if (__f.__f_ == nullptr)
__f_ = nullptr;
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__move_to(__f_);
}
else
{
__f_ = __f.__f_;
__f.__f_ = nullptr;
}
}
template<class _R, class ..._ArgTypes>
__packaged_task_function<_R(_ArgTypes...)>::~__packaged_task_function()
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
}
template<class _R, class ..._ArgTypes>
void
__packaged_task_function<_R(_ArgTypes...)>::swap(__packaged_task_function& __f)
{
if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_)
{
typename aligned_storage<sizeof(__buf_)>::type __tempbuf;
__base* __t = (__base*)&__tempbuf;
__f_->__move_to(__t);
__f_->destroy();
__f_ = nullptr;
__f.__f_->__move_to((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = nullptr;
__f_ = (__base*)&__buf_;
__t->__move_to((__base*)&__f.__buf_);
__t->destroy();
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f_ == (__base*)&__buf_)
{
__f_->__move_to((__base*)&__f.__buf_);
__f_->destroy();
__f_ = __f.__f_;
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f.__f_->__move_to((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = __f_;
__f_ = (__base*)&__buf_;
}
else
_STD::swap(__f_, __f.__f_);
}
template<class _R, class ..._ArgTypes>
inline _LIBCPP_INLINE_VISIBILITY
_R
__packaged_task_function<_R(_ArgTypes...)>::operator()(_ArgTypes... __arg) const
{
return (*__f_)(_STD::forward<_ArgTypes>(__arg)...);
}
template<class _R, class ..._ArgTypes>
class packaged_task<_R(_ArgTypes...)>
{
public:
typedef _R result_type;
private:
__packaged_task_function<result_type(_ArgTypes...)> __f_;
promise<result_type> __p_;
public:
// construction and destruction
packaged_task() : __p_(nullptr) {}
template <class _F>
explicit packaged_task(_F&& __f) : __f_(_STD::forward<_F>(__f)) {}
template <class _F, class _Allocator>
explicit packaged_task(allocator_arg_t, const _Allocator& __a, _F&& __f)
: __f_(allocator_arg, __a, _STD::forward<_F>(__f)),
__p_(allocator_arg, __a) {}
// ~packaged_task() = default;
// no copy
packaged_task(packaged_task&) = delete;
packaged_task& operator=(packaged_task&) = delete;
// move support
packaged_task(packaged_task&& __other)
: __f_(_STD::move(__other.__f_)), __p_(_STD::move(__other.__p_)) {}
packaged_task& operator=(packaged_task&& __other)
{
__f_ = _STD::move(__other.__f_);
__p_ = _STD::move(__other.__p_);
return *this;
}
void swap(packaged_task& __other)
{
__f_.swap(__other.__f_);
__p_.swap(__other.__p_);
}
//explicit
operator bool() const {return __p_.__state_ != nullptr;}
// result retrieval
future<result_type> get_future() {return __p_.get_future();}
// execution
void operator()(_ArgTypes... __args);
void make_ready_at_thread_exit(_ArgTypes... __args);
void reset();
};
template<class _R, class ..._ArgTypes>
void
packaged_task<_R(_ArgTypes...)>::operator()(_ArgTypes... __args)
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__p_.__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
if (__p_.__state_->__has_value())
throw future_error(make_error_code(future_errc::promise_already_satisfied));
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
__p_.set_value(__f_(_STD::forward<_ArgTypes>(__args)...));
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
__p_.set_exception(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template<class _R, class ..._ArgTypes>
void
packaged_task<_R(_ArgTypes...)>::make_ready_at_thread_exit(_ArgTypes... __args)
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__p_.__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
if (__p_.__state_->__has_value())
throw future_error(make_error_code(future_errc::promise_already_satisfied));
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
__p_.set_value_at_thread_exit(__f_(_STD::forward<_ArgTypes>(__args)...));
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
__p_.set_exception_at_thread_exit(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template<class _R, class ..._ArgTypes>
void
packaged_task<_R(_ArgTypes...)>::reset()
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (!(*this))
throw future_error(make_error_code(future_errc::no_state));
#endif // _LIBCPP_NO_EXCEPTIONS
__p_ = promise<result_type>();
}
template<class ..._ArgTypes>
class packaged_task<void(_ArgTypes...)>
{
public:
typedef void result_type;
private:
__packaged_task_function<result_type(_ArgTypes...)> __f_;
promise<result_type> __p_;
public:
// construction and destruction
packaged_task() : __p_(nullptr) {}
template <class _F>
explicit packaged_task(_F&& __f) : __f_(_STD::forward<_F>(__f)) {}
template <class _F, class _Allocator>
explicit packaged_task(allocator_arg_t, const _Allocator& __a, _F&& __f)
: __f_(allocator_arg, __a, _STD::forward<_F>(__f)),
__p_(allocator_arg, __a) {}
// ~packaged_task() = default;
// no copy
packaged_task(packaged_task&) = delete;
packaged_task& operator=(packaged_task&) = delete;
// move support
packaged_task(packaged_task&& __other)
: __f_(_STD::move(__other.__f_)), __p_(_STD::move(__other.__p_)) {}
packaged_task& operator=(packaged_task&& __other)
{
__f_ = _STD::move(__other.__f_);
__p_ = _STD::move(__other.__p_);
return *this;
}
void swap(packaged_task& __other)
{
__f_.swap(__other.__f_);
__p_.swap(__other.__p_);
}
//explicit
operator bool() const {return __p_.__state_ != nullptr;}
// result retrieval
future<result_type> get_future() {return __p_.get_future();}
// execution
void operator()(_ArgTypes... __args);
void make_ready_at_thread_exit(_ArgTypes... __args);
void reset();
};
template<class ..._ArgTypes>
void
packaged_task<void(_ArgTypes...)>::operator()(_ArgTypes... __args)
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__p_.__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
if (__p_.__state_->__has_value())
throw future_error(make_error_code(future_errc::promise_already_satisfied));
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
__f_(_STD::forward<_ArgTypes>(__args)...);
__p_.set_value();
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
__p_.set_exception(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template<class ..._ArgTypes>
void
packaged_task<void(_ArgTypes...)>::make_ready_at_thread_exit(_ArgTypes... __args)
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__p_.__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
if (__p_.__state_->__has_value())
throw future_error(make_error_code(future_errc::promise_already_satisfied));
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
__f_(_STD::forward<_ArgTypes>(__args)...);
__p_.set_value_at_thread_exit();
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
__p_.set_exception_at_thread_exit(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template<class ..._ArgTypes>
void
packaged_task<void(_ArgTypes...)>::reset()
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (!(*this))
throw future_error(make_error_code(future_errc::no_state));
#endif // _LIBCPP_NO_EXCEPTIONS
__p_ = promise<result_type>();
}
template <class _Callable>
inline _LIBCPP_INLINE_VISIBILITY
void
swap(packaged_task<_Callable>& __x, packaged_task<_Callable>& __y)
{
__x.swap(__y);
}
template <class _Callable, class _Alloc>
struct uses_allocator<packaged_task<_Callable>, _Alloc> : public true_type {};
template <class _R, class _F>
future<_R>
#ifdef _LIBCPP_MOVE
__make_deferred_assoc_state(_F&& __f)
#else
__make_deferred_assoc_state(_F __f)
#endif
{
unique_ptr<__deferred_assoc_state<_R, _F>, __release_shared_count>
__h(new __deferred_assoc_state<_R, _F>(_STD::forward<_F>(__f)));
return future<_R>(__h.get());
}
template <class _F, class... _Args>
future<typename result_of<_F(_Args...)>::type>
async(launch __policy, _F&& __f, _Args&&... __args)
{
typedef typename result_of<_F(_Args...)>::type _R;
future<_R> __r;
if (__policy == launch::sync)
__r = _STD::__make_deferred_assoc_state<_R>(bind(_STD::forward<_F>(__f),
_STD::forward<_Args>(__args)...));
else
{
packaged_task<_R()> __pk(bind(_STD::forward<_F>(__f),
_STD::forward<_Args>(__args)...));
__r = __pk.get_future();
thread(_STD::move(__pk)).detach();
}
return __r;
}
template <class _F, class... _Args>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
!is_same<typename decay<_F>::type, launch>::value,
future<typename result_of<_F(_Args...)>::type>
>::type
async(_F&& __f, _Args&&... __args)
{
return async(launch::any, _STD::forward<_F>(__f),
_STD::forward<_Args>(__args)...);
}
#endif // _LIBCPP_HAS_NO_VARIADICS
template <class _R>
class shared_future
{
__assoc_state<_R>* __state_;
public:
shared_future() : __state_(nullptr) {}
shared_future(const shared_future& __rhs) : __state_(__rhs.__state_)
{if (__state_) __state_->__add_shared();}
#ifdef _LIBCPP_MOVE
shared_future(future<_R>&& __f) : __state_(__f.__state_)
{__f.__state_ = nullptr;}
shared_future(shared_future&& __rhs) : __state_(__rhs.__state_)
{__rhs.__state_ = nullptr;}
#endif // _LIBCPP_MOVE
~shared_future();
shared_future& operator=(const shared_future& __rhs);
#ifdef _LIBCPP_MOVE
shared_future& operator=(shared_future&& __rhs)
{
shared_future(std::move(__rhs)).swap(*this);
return *this;
}
#endif // _LIBCPP_MOVE
// retrieving the value
const _R& get() const {return __state_->copy();}
void swap(shared_future& __rhs) {_STD::swap(__state_, __rhs.__state_);}
// functions to check state
bool valid() const {return __state_ != nullptr;}
void wait() const {__state_->wait();}
template <class _Rep, class _Period>
future_status
wait_for(const chrono::duration<_Rep, _Period>& __rel_time) const
{return __state_->wait_for(__rel_time);}
template <class _Clock, class _Duration>
future_status
wait_until(const chrono::time_point<_Clock, _Duration>& __abs_time) const
{return __state_->wait_until(__abs_time);}
};
template <class _R>
shared_future<_R>::~shared_future()
{
if (__state_)
__state_->__release_shared();
}
template <class _R>
shared_future<_R>&
shared_future<_R>::operator=(const shared_future& __rhs)
{
if (__rhs.__state_)
__rhs.__state_->__add_shared();
if (__state_)
__state_->__release_shared();
__state_ = __rhs.__state_;
return *this;
}
template <class _R>
class shared_future<_R&>
{
__assoc_state<_R&>* __state_;
public:
shared_future() : __state_(nullptr) {}
shared_future(const shared_future& __rhs) : __state_(__rhs.__state_)
{if (__state_) __state_->__add_shared();}
#ifdef _LIBCPP_MOVE
shared_future(future<_R&>&& __f) : __state_(__f.__state_)
{__f.__state_ = nullptr;}
shared_future(shared_future&& __rhs) : __state_(__rhs.__state_)
{__rhs.__state_ = nullptr;}
#endif // _LIBCPP_MOVE
~shared_future();
shared_future& operator=(const shared_future& __rhs);
#ifdef _LIBCPP_MOVE
shared_future& operator=(shared_future&& __rhs)
{
shared_future(std::move(__rhs)).swap(*this);
return *this;
}
#endif // _LIBCPP_MOVE
// retrieving the value
_R& get() const {return __state_->copy();}
void swap(shared_future& __rhs) {_STD::swap(__state_, __rhs.__state_);}
// functions to check state
bool valid() const {return __state_ != nullptr;}
void wait() const {__state_->wait();}
template <class _Rep, class _Period>
future_status
wait_for(const chrono::duration<_Rep, _Period>& __rel_time) const
{return __state_->wait_for(__rel_time);}
template <class _Clock, class _Duration>
future_status
wait_until(const chrono::time_point<_Clock, _Duration>& __abs_time) const
{return __state_->wait_until(__abs_time);}
};
template <class _R>
shared_future<_R&>::~shared_future()
{
if (__state_)
__state_->__release_shared();
}
template <class _R>
shared_future<_R&>&
shared_future<_R&>::operator=(const shared_future& __rhs)
{
if (__rhs.__state_)
__rhs.__state_->__add_shared();
if (__state_)
__state_->__release_shared();
__state_ = __rhs.__state_;
return *this;
}
template <>
class shared_future<void>
{
__assoc_sub_state* __state_;
public:
shared_future() : __state_(nullptr) {}
shared_future(const shared_future& __rhs) : __state_(__rhs.__state_)
{if (__state_) __state_->__add_shared();}
#ifdef _LIBCPP_MOVE
shared_future(future<void>&& __f) : __state_(__f.__state_)
{__f.__state_ = nullptr;}
shared_future(shared_future&& __rhs) : __state_(__rhs.__state_)
{__rhs.__state_ = nullptr;}
#endif // _LIBCPP_MOVE
~shared_future();
shared_future& operator=(const shared_future& __rhs);
#ifdef _LIBCPP_MOVE
shared_future& operator=(shared_future&& __rhs)
{
shared_future(std::move(__rhs)).swap(*this);
return *this;
}
#endif // _LIBCPP_MOVE
// retrieving the value
void get() const {__state_->copy();}
void swap(shared_future& __rhs) {_STD::swap(__state_, __rhs.__state_);}
// functions to check state
bool valid() const {return __state_ != nullptr;}
void wait() const {__state_->wait();}
template <class _Rep, class _Period>
future_status
wait_for(const chrono::duration<_Rep, _Period>& __rel_time) const
{return __state_->wait_for(__rel_time);}
template <class _Clock, class _Duration>
future_status
wait_until(const chrono::time_point<_Clock, _Duration>& __abs_time) const
{return __state_->wait_until(__abs_time);}
};
template <class _R>
inline _LIBCPP_INLINE_VISIBILITY
void
swap(shared_future<_R>& __x, shared_future<_R>& __y)
{
__x.swap(__y);
}
2010-05-12 03:42:16 +08:00
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_FUTURE