mirror of https://github.com/avilliai/Manyana.git
This commit is contained in:
parent
f5ef231ca3
commit
91a65d3d08
|
@ -0,0 +1,63 @@
|
|||
###############################################################################
|
||||
# Set default behavior to automatically normalize line endings.
|
||||
###############################################################################
|
||||
* text=auto
|
||||
|
||||
###############################################################################
|
||||
# Set default behavior for command prompt diff.
|
||||
#
|
||||
# This is need for earlier builds of msysgit that does not have it on by
|
||||
# default for csharp files.
|
||||
# Note: This is only used by command line
|
||||
###############################################################################
|
||||
#*.cs diff=csharp
|
||||
|
||||
###############################################################################
|
||||
# Set the merge driver for project and solution files
|
||||
#
|
||||
# Merging from the command prompt will add diff markers to the files if there
|
||||
# are conflicts (Merging from VS is not affected by the settings below, in VS
|
||||
# the diff markers are never inserted). Diff markers may cause the following
|
||||
# file extensions to fail to load in VS. An alternative would be to treat
|
||||
# these files as binary and thus will always conflict and require user
|
||||
# intervention with every merge. To do so, just uncomment the entries below
|
||||
###############################################################################
|
||||
#*.sln merge=binary
|
||||
#*.csproj merge=binary
|
||||
#*.vbproj merge=binary
|
||||
#*.vcxproj merge=binary
|
||||
#*.vcproj merge=binary
|
||||
#*.dbproj merge=binary
|
||||
#*.fsproj merge=binary
|
||||
#*.lsproj merge=binary
|
||||
#*.wixproj merge=binary
|
||||
#*.modelproj merge=binary
|
||||
#*.sqlproj merge=binary
|
||||
#*.wwaproj merge=binary
|
||||
|
||||
###############################################################################
|
||||
# behavior for image files
|
||||
#
|
||||
# image files are treated as binary by default.
|
||||
###############################################################################
|
||||
#*.jpg binary
|
||||
#*.png binary
|
||||
#*.gif binary
|
||||
|
||||
###############################################################################
|
||||
# diff behavior for common document formats
|
||||
#
|
||||
# Convert binary document formats to text before diffing them. This feature
|
||||
# is only available from the command line. Turn it on by uncommenting the
|
||||
# entries below.
|
||||
###############################################################################
|
||||
#*.doc diff=astextplain
|
||||
#*.DOC diff=astextplain
|
||||
#*.docx diff=astextplain
|
||||
#*.DOCX diff=astextplain
|
||||
#*.dot diff=astextplain
|
||||
#*.DOT diff=astextplain
|
||||
#*.pdf diff=astextplain
|
||||
#*.PDF diff=astextplain
|
||||
#*.rtf diff=astextplain
|
||||
#*.RTF diff=astextplain
|
|
@ -0,0 +1,383 @@
|
|||
## Ignore Visual Studio temporary files, build results, and
|
||||
## files generated by popular Visual Studio add-ons.
|
||||
##
|
||||
## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
|
||||
|
||||
# User-specific files
|
||||
*.rsuser
|
||||
*.suo
|
||||
*.user
|
||||
*.userosscache
|
||||
*.sln.docstates
|
||||
|
||||
# User-specific files (MonoDevelop/Xamarin Studio)
|
||||
*.userprefs
|
||||
|
||||
# Mono auto generated files
|
||||
mono_crash.*
|
||||
|
||||
# Build results
|
||||
[Dd]ebug/
|
||||
[Dd]ebugPublic/
|
||||
[Rr]elease/
|
||||
[Rr]eleases/
|
||||
x64/
|
||||
x86/
|
||||
[Ww][Ii][Nn]32/
|
||||
[Aa][Rr][Mm]/
|
||||
[Aa][Rr][Mm]64/
|
||||
bld/
|
||||
[Bb]in/
|
||||
[Oo]bj/
|
||||
[Oo]ut/
|
||||
[Ll]og/
|
||||
[Ll]ogs/
|
||||
|
||||
# Visual Studio 2015/2017 cache/options directory
|
||||
.vs/
|
||||
# Uncomment if you have tasks that create the project's static files in wwwroot
|
||||
#wwwroot/
|
||||
|
||||
# Visual Studio 2017 auto generated files
|
||||
Generated\ Files/
|
||||
|
||||
# MSTest test Results
|
||||
[Tt]est[Rr]esult*/
|
||||
[Bb]uild[Ll]og.*
|
||||
|
||||
# NUnit
|
||||
*.VisualState.xml
|
||||
TestResult.xml
|
||||
nunit-*.xml
|
||||
|
||||
# Build Results of an ATL Project
|
||||
[Dd]ebugPS/
|
||||
[Rr]eleasePS/
|
||||
dlldata.c
|
||||
|
||||
# Benchmark Results
|
||||
BenchmarkDotNet.Artifacts/
|
||||
|
||||
# .NET Core
|
||||
project.lock.json
|
||||
project.fragment.lock.json
|
||||
artifacts/
|
||||
|
||||
# ASP.NET Scaffolding
|
||||
ScaffoldingReadMe.txt
|
||||
|
||||
# StyleCop
|
||||
StyleCopReport.xml
|
||||
|
||||
# Files built by Visual Studio
|
||||
*_i.c
|
||||
*_p.c
|
||||
*_h.h
|
||||
*.ilk
|
||||
*.meta
|
||||
*.obj
|
||||
*.iobj
|
||||
*.pch
|
||||
*.pdb
|
||||
*.ipdb
|
||||
*.pgc
|
||||
*.pgd
|
||||
*.rsp
|
||||
*.sbr
|
||||
*.tlb
|
||||
*.tli
|
||||
*.tlh
|
||||
*.tmp
|
||||
*.tmp_proj
|
||||
*_wpftmp.csproj
|
||||
*.log
|
||||
*.vspscc
|
||||
*.vssscc
|
||||
.builds
|
||||
*.pidb
|
||||
*.svclog
|
||||
*.scc
|
||||
|
||||
# Chutzpah Test files
|
||||
_Chutzpah*
|
||||
|
||||
# Visual C++ cache files
|
||||
ipch/
|
||||
*.aps
|
||||
*.ncb
|
||||
*.opendb
|
||||
*.opensdf
|
||||
*.sdf
|
||||
*.cachefile
|
||||
*.VC.db
|
||||
*.VC.VC.opendb
|
||||
|
||||
# Visual Studio profiler
|
||||
*.psess
|
||||
*.vsp
|
||||
*.vspx
|
||||
*.sap
|
||||
|
||||
# Visual Studio Trace Files
|
||||
*.e2e
|
||||
|
||||
# TFS 2012 Local Workspace
|
||||
$tf/
|
||||
|
||||
# Guidance Automation Toolkit
|
||||
*.gpState
|
||||
|
||||
# ReSharper is a .NET coding add-in
|
||||
_ReSharper*/
|
||||
*.[Rr]e[Ss]harper
|
||||
*.DotSettings.user
|
||||
|
||||
# TeamCity is a build add-in
|
||||
_TeamCity*
|
||||
|
||||
# DotCover is a Code Coverage Tool
|
||||
*.dotCover
|
||||
|
||||
# AxoCover is a Code Coverage Tool
|
||||
.axoCover/*
|
||||
!.axoCover/settings.json
|
||||
|
||||
# Coverlet is a free, cross platform Code Coverage Tool
|
||||
coverage*.json
|
||||
coverage*.xml
|
||||
coverage*.info
|
||||
|
||||
# Visual Studio code coverage results
|
||||
*.coverage
|
||||
*.coveragexml
|
||||
|
||||
# NCrunch
|
||||
_NCrunch_*
|
||||
.*crunch*.local.xml
|
||||
nCrunchTemp_*
|
||||
|
||||
# MightyMoose
|
||||
*.mm.*
|
||||
AutoTest.Net/
|
||||
|
||||
# Web workbench (sass)
|
||||
.sass-cache/
|
||||
|
||||
# Installshield output folder
|
||||
[Ee]xpress/
|
||||
|
||||
# DocProject is a documentation generator add-in
|
||||
DocProject/buildhelp/
|
||||
DocProject/Help/*.HxT
|
||||
DocProject/Help/*.HxC
|
||||
DocProject/Help/*.hhc
|
||||
DocProject/Help/*.hhk
|
||||
DocProject/Help/*.hhp
|
||||
DocProject/Help/Html2
|
||||
DocProject/Help/html
|
||||
|
||||
# Click-Once directory
|
||||
publish/
|
||||
|
||||
# Publish Web Output
|
||||
*.[Pp]ublish.xml
|
||||
*.azurePubxml
|
||||
# Note: Comment the next line if you want to checkin your web deploy settings,
|
||||
# but database connection strings (with potential passwords) will be unencrypted
|
||||
*.pubxml
|
||||
*.publishproj
|
||||
|
||||
# Microsoft Azure Web App publish settings. Comment the next line if you want to
|
||||
# checkin your Azure Web App publish settings, but sensitive information contained
|
||||
# in these scripts will be unencrypted
|
||||
PublishScripts/
|
||||
|
||||
# NuGet Packages
|
||||
*.nupkg
|
||||
# NuGet Symbol Packages
|
||||
*.snupkg
|
||||
# The packages folder can be ignored because of Package Restore
|
||||
**/[Pp]ackages/*
|
||||
# except build/, which is used as an MSBuild target.
|
||||
!**/[Pp]ackages/build/
|
||||
# Uncomment if necessary however generally it will be regenerated when needed
|
||||
#!**/[Pp]ackages/repositories.config
|
||||
# NuGet v3's project.json files produces more ignorable files
|
||||
*.nuget.props
|
||||
*.nuget.targets
|
||||
|
||||
# Microsoft Azure Build Output
|
||||
csx/
|
||||
*.build.csdef
|
||||
|
||||
# Microsoft Azure Emulator
|
||||
ecf/
|
||||
rcf/
|
||||
|
||||
# Windows Store app package directories and files
|
||||
AppPackages/
|
||||
BundleArtifacts/
|
||||
Package.StoreAssociation.xml
|
||||
_pkginfo.txt
|
||||
*.appx
|
||||
*.appxbundle
|
||||
*.appxupload
|
||||
|
||||
# Visual Studio cache files
|
||||
# files ending in .cache can be ignored
|
||||
*.[Cc]ache
|
||||
# but keep track of directories ending in .cache
|
||||
!?*.[Cc]ache/
|
||||
|
||||
# Others
|
||||
ClientBin/
|
||||
~$*
|
||||
*~
|
||||
*.dbmdl
|
||||
*.dbproj.schemaview
|
||||
*.jfm
|
||||
*.pfx
|
||||
*.publishsettings
|
||||
orleans.codegen.cs
|
||||
|
||||
# Including strong name files can present a security risk
|
||||
# (https://github.com/github/gitignore/pull/2483#issue-259490424)
|
||||
#*.snk
|
||||
|
||||
# Since there are multiple workflows, uncomment next line to ignore bower_components
|
||||
# (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
|
||||
#bower_components/
|
||||
|
||||
# RIA/Silverlight projects
|
||||
Generated_Code/
|
||||
|
||||
# Backup & report files from converting an old project file
|
||||
# to a newer Visual Studio version. Backup files are not needed,
|
||||
# because we have git ;-)
|
||||
_UpgradeReport_Files/
|
||||
Backup*/
|
||||
UpgradeLog*.XML
|
||||
UpgradeLog*.htm
|
||||
ServiceFabricBackup/
|
||||
*.rptproj.bak
|
||||
|
||||
# SQL Server files
|
||||
*.mdf
|
||||
*.ldf
|
||||
*.ndf
|
||||
|
||||
# Business Intelligence projects
|
||||
*.rdl.data
|
||||
*.bim.layout
|
||||
*.bim_*.settings
|
||||
*.rptproj.rsuser
|
||||
*- [Bb]ackup.rdl
|
||||
*- [Bb]ackup ([0-9]).rdl
|
||||
*- [Bb]ackup ([0-9][0-9]).rdl
|
||||
|
||||
# Microsoft Fakes
|
||||
FakesAssemblies/
|
||||
|
||||
# GhostDoc plugin setting file
|
||||
*.GhostDoc.xml
|
||||
|
||||
# Node.js Tools for Visual Studio
|
||||
.ntvs_analysis.dat
|
||||
node_modules/
|
||||
|
||||
# Visual Studio 6 build log
|
||||
*.plg
|
||||
|
||||
# Visual Studio 6 workspace options file
|
||||
*.opt
|
||||
|
||||
# Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
|
||||
*.vbw
|
||||
|
||||
# Visual Studio LightSwitch build output
|
||||
**/*.HTMLClient/GeneratedArtifacts
|
||||
**/*.DesktopClient/GeneratedArtifacts
|
||||
**/*.DesktopClient/ModelManifest.xml
|
||||
**/*.Server/GeneratedArtifacts
|
||||
**/*.Server/ModelManifest.xml
|
||||
_Pvt_Extensions
|
||||
|
||||
# Paket dependency manager
|
||||
.paket/paket.exe
|
||||
paket-files/
|
||||
|
||||
# FAKE - F# Make
|
||||
.fake/
|
||||
|
||||
# CodeRush personal settings
|
||||
.cr/personal
|
||||
|
||||
# Python Tools for Visual Studio (PTVS)
|
||||
__pycache__/
|
||||
*.pyc
|
||||
|
||||
# Cake - Uncomment if you are using it
|
||||
# tools/**
|
||||
# !tools/packages.config
|
||||
|
||||
# Tabs Studio
|
||||
*.tss
|
||||
|
||||
# Telerik's JustMock configuration file
|
||||
*.jmconfig
|
||||
|
||||
# BizTalk build output
|
||||
*.btp.cs
|
||||
*.btm.cs
|
||||
*.odx.cs
|
||||
*.xsd.cs
|
||||
|
||||
# OpenCover UI analysis results
|
||||
OpenCover/
|
||||
|
||||
# Azure Stream Analytics local run output
|
||||
ASALocalRun/
|
||||
|
||||
# MSBuild Binary and Structured Log
|
||||
*.binlog
|
||||
|
||||
# NVidia Nsight GPU debugger configuration file
|
||||
*.nvuser
|
||||
|
||||
# MFractors (Xamarin productivity tool) working folder
|
||||
.mfractor/
|
||||
|
||||
# Local History for Visual Studio
|
||||
.localhistory/
|
||||
|
||||
# BeatPulse healthcheck temp database
|
||||
healthchecksdb
|
||||
|
||||
# Backup folder for Package Reference Convert tool in Visual Studio 2017
|
||||
MigrationBackup/
|
||||
|
||||
# Ionide (cross platform F# VS Code tools) working folder
|
||||
.ionide/
|
||||
|
||||
# Fody - auto-generated XML schema
|
||||
FodyWeavers.xsd
|
||||
|
||||
# build
|
||||
build
|
||||
monotonic_align/core.c
|
||||
*.o
|
||||
*.so
|
||||
*.dll
|
||||
|
||||
# data
|
||||
/config.json
|
||||
/*.pth
|
||||
*.wav
|
||||
/monotonic_align/monotonic_align
|
||||
/resources
|
||||
/MoeGoe.spec
|
||||
/dist/MoeGoe
|
||||
/dist
|
||||
|
||||
# MacOS
|
||||
.DS_Store
|
|
@ -0,0 +1,21 @@
|
|||
MIT License
|
||||
|
||||
Copyright (c) 2022 CjangCjengh
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
|
@ -0,0 +1,434 @@
|
|||
import datetime
|
||||
|
||||
from scipy.io.wavfile import write
|
||||
|
||||
|
||||
from mel_processing import spectrogram_torch
|
||||
from text import text_to_sequence, _clean_text
|
||||
from models import SynthesizerTrn
|
||||
import utils
|
||||
import commons
|
||||
import sys
|
||||
import re
|
||||
from torch import no_grad, LongTensor
|
||||
import logging
|
||||
|
||||
logging.getLogger('numba').setLevel(logging.WARNING)
|
||||
|
||||
|
||||
def ex_print(text, escape=False):
|
||||
if escape:
|
||||
print(text.encode('unicode_escape').decode())
|
||||
else:
|
||||
print(text)
|
||||
|
||||
|
||||
def get_text(text, hps, cleaned=False):
|
||||
if cleaned:
|
||||
text_norm = text_to_sequence(text, hps.symbols, [])
|
||||
else:
|
||||
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
||||
if hps.data.add_blank:
|
||||
text_norm = commons.intersperse(text_norm, 0)
|
||||
text_norm = LongTensor(text_norm)
|
||||
return text_norm
|
||||
|
||||
|
||||
def ask_if_continue():
|
||||
while True:
|
||||
answer = input('Continue? (y/n): ')
|
||||
if answer == 'y':
|
||||
break
|
||||
elif answer == 'n':
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
def print_speakers(speakers, escape=False):
|
||||
print('ID\tSpeaker')
|
||||
for id, name in enumerate(speakers):
|
||||
ex_print(str(id) + '\t' + name, escape)
|
||||
|
||||
|
||||
def get_speaker_id(message):
|
||||
'''speaker_id = input(message)
|
||||
try:
|
||||
speaker_id = int(speaker_id)
|
||||
except:
|
||||
print(str(speaker_id) + ' is not a valid ID!')
|
||||
sys.exit(1)
|
||||
return speaker_id'''
|
||||
return 0
|
||||
|
||||
|
||||
def get_label_value(text, label, default, warning_name='value'):
|
||||
value = re.search(rf'\[{label}=(.+?)\]', text)
|
||||
if value:
|
||||
try:
|
||||
text = re.sub(rf'\[{label}=(.+?)\]', '', text, 1)
|
||||
value = float(value.group(1))
|
||||
except:
|
||||
print(f'Invalid {warning_name}!')
|
||||
sys.exit(1)
|
||||
else:
|
||||
value = default
|
||||
return value, text
|
||||
|
||||
|
||||
def get_label(text, label):
|
||||
if f'[{label}]' in text:
|
||||
return True, text.replace(f'[{label}]', '')
|
||||
else:
|
||||
return False, text
|
||||
|
||||
def voiceGenerate(tex,out,spealerIDDD=0,modelSelect=['voiceModel/nene/1374_epochsm.pth','voiceModel/nene/config.json']):
|
||||
if len(tex)>150:
|
||||
|
||||
tex='[JA]長すぎるああ、こんなに長い声..... んもう~[JA]'
|
||||
spealerIDDD=0
|
||||
if modelSelect == ['voiceModel/nene/1374_epochsm.pth','voiceModel/nene/config.json']:
|
||||
tex=tex.replace('[JA]','')
|
||||
text=tex
|
||||
out_path=out
|
||||
speakeriddd=int(spealerIDDD)
|
||||
if '--escape' in sys.argv:
|
||||
escape = True
|
||||
else:
|
||||
escape = False
|
||||
|
||||
#model = 'voiceModel\\1374_epochsm.pth'#input('Path of a VITS model: ')
|
||||
#config ='voiceModel\\config.json'#input('Path of a config file: ')
|
||||
model=modelSelect[0]
|
||||
config=modelSelect[1]
|
||||
|
||||
hps_ms = utils.get_hparams_from_file(config)
|
||||
n_speakers = hps_ms.data.n_speakers if 'n_speakers' in hps_ms.data.keys() else 0
|
||||
n_symbols = len(hps_ms.symbols) if 'symbols' in hps_ms.keys() else 0
|
||||
speakers = hps_ms.speakers if 'speakers' in hps_ms.keys() else ['0']
|
||||
use_f0 = hps_ms.data.use_f0 if 'use_f0' in hps_ms.data.keys() else False
|
||||
emotion_embedding = hps_ms.data.emotion_embedding if 'emotion_embedding' in hps_ms.data.keys() else False
|
||||
|
||||
net_g_ms = SynthesizerTrn(
|
||||
n_symbols,
|
||||
hps_ms.data.filter_length // 2 + 1,
|
||||
hps_ms.train.segment_size // hps_ms.data.hop_length,
|
||||
n_speakers=n_speakers,
|
||||
emotion_embedding=emotion_embedding,
|
||||
**hps_ms.model)
|
||||
_ = net_g_ms.eval()
|
||||
utils.load_checkpoint(model, net_g_ms)
|
||||
|
||||
while True:
|
||||
choice = 't' # input('TTS or VC? (t/v):')
|
||||
if choice == 't':
|
||||
#text = input('Text to read: ')
|
||||
if text == '[ADVANCED]':
|
||||
text = input('Raw text:')
|
||||
print('Cleaned text is:')
|
||||
ex_print(_clean_text(
|
||||
text, hps_ms.data.text_cleaners), escape)
|
||||
continue
|
||||
|
||||
length_scale, text = get_label_value(
|
||||
text, 'LENGTH', 1.1, 'length scale')
|
||||
noise_scale, text = get_label_value(
|
||||
text, 'NOISE', 0.667, 'noise scale')
|
||||
noise_scale_w, text = get_label_value(
|
||||
text, 'NOISEW', 0.8, 'deviation of noise')
|
||||
cleaned, text = get_label(text, 'CLEANED')
|
||||
|
||||
|
||||
|
||||
stn_tst = get_text(text, hps_ms, cleaned=cleaned)
|
||||
|
||||
#print_speakers(speakers, escape)
|
||||
|
||||
time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
||||
print(time + '| 正在使用语音模型:'+str(speakeriddd)+' ......生成中'+' | 文本:'+str(tex))
|
||||
speaker_id = speakeriddd
|
||||
|
||||
with no_grad():
|
||||
x_tst = stn_tst.unsqueeze(0)
|
||||
x_tst_lengths = LongTensor([stn_tst.size(0)])
|
||||
sid = LongTensor([speaker_id])
|
||||
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale,
|
||||
noise_scale_w=noise_scale_w, length_scale=length_scale)[0][
|
||||
0, 0].data.cpu().float().numpy()
|
||||
|
||||
elif choice == 'v':
|
||||
audio, out_path = voice_conversion()
|
||||
|
||||
write(out_path, hps_ms.data.sampling_rate, audio)
|
||||
time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
||||
print(time + '| Successfully saved!')
|
||||
break
|
||||
|
||||
|
||||
def voice_conversion(sourcepath,speaker=0):
|
||||
if '--escape' in sys.argv:
|
||||
escape = True
|
||||
else:
|
||||
escape = False
|
||||
|
||||
model = 'voiceModel\\1374_epochsm.pth'#input('Path of a VITS model: ')
|
||||
config ='voiceModel\\config.json'#input('Path of a config file: ')
|
||||
|
||||
hps_ms = utils.get_hparams_from_file(config)
|
||||
n_speakers = hps_ms.data.n_speakers if 'n_speakers' in hps_ms.data.keys() else 0
|
||||
n_symbols = len(hps_ms.symbols) if 'symbols' in hps_ms.keys() else 0
|
||||
speakers = hps_ms.speakers if 'speakers' in hps_ms.keys() else ['0']
|
||||
use_f0 = hps_ms.data.use_f0 if 'use_f0' in hps_ms.data.keys() else False
|
||||
emotion_embedding = hps_ms.data.emotion_embedding if 'emotion_embedding' in hps_ms.data.keys() else False
|
||||
|
||||
net_g_ms = SynthesizerTrn(
|
||||
n_symbols,
|
||||
hps_ms.data.filter_length // 2 + 1,
|
||||
hps_ms.train.segment_size // hps_ms.data.hop_length,
|
||||
n_speakers=n_speakers,
|
||||
emotion_embedding=emotion_embedding,
|
||||
**hps_ms.model)
|
||||
_ = net_g_ms.eval()
|
||||
utils.load_checkpoint(model, net_g_ms)
|
||||
|
||||
audio_path = sourcepath
|
||||
audio = utils.load_audio_to_torch(
|
||||
audio_path, hps_ms.data.sampling_rate)
|
||||
|
||||
originnal_id = speaker
|
||||
target_id = 3
|
||||
out_path = 'plugins\\voices\\sing\\out.wav'
|
||||
|
||||
y = audio.unsqueeze(0)
|
||||
|
||||
spec = spectrogram_torch(y, hps_ms.data.filter_length,
|
||||
hps_ms.data.sampling_rate, hps_ms.data.hop_length, hps_ms.data.win_length,
|
||||
center=False)
|
||||
spec_lengths = LongTensor([spec.size(-1)])
|
||||
sid_src = LongTensor([originnal_id])
|
||||
|
||||
with no_grad():
|
||||
sid_tgt = LongTensor([target_id])
|
||||
audio = net_g_ms.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[
|
||||
0][0, 0].data.cpu().float().numpy()
|
||||
write(out_path, hps_ms.data.sampling_rate, audio)
|
||||
print('Successfully saved!')
|
||||
return out_path
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
#voice_conversion("plugins/voices/sing/rest.wav")
|
||||
voiceGenerate('[JA]先生,ちょっとお時間..いただけますか?[JA]','voiceModel/YUUKA/1.wav')
|
||||
'''ranpath = random_str()
|
||||
Path=sys.argv[0][:-23]
|
||||
print(Path)
|
||||
out = Path+'PythonPlugins\\plugins\\voices\\' + ranpath + '.wav'
|
||||
tex = '[JA]' + translate('测试语音.....') + '[JA]'
|
||||
voiceGenerate(tex, out)'''
|
||||
'''if '--escape' in sys.argv:
|
||||
escape = True
|
||||
else:
|
||||
escape = False
|
||||
|
||||
model = input('Path of a VITS model: ')
|
||||
config = input('Path of a config file: ')
|
||||
|
||||
hps_ms = utils.get_hparams_from_file(config)
|
||||
n_speakers = hps_ms.data.n_speakers if 'n_speakers' in hps_ms.data.keys() else 0
|
||||
n_symbols = len(hps_ms.symbols) if 'symbols' in hps_ms.keys() else 0
|
||||
speakers = hps_ms.speakers if 'speakers' in hps_ms.keys() else ['0']
|
||||
use_f0 = hps_ms.data.use_f0 if 'use_f0' in hps_ms.data.keys() else False
|
||||
emotion_embedding = hps_ms.data.emotion_embedding if 'emotion_embedding' in hps_ms.data.keys() else False
|
||||
|
||||
net_g_ms = SynthesizerTrn(
|
||||
n_symbols,
|
||||
hps_ms.data.filter_length // 2 + 1,
|
||||
hps_ms.train.segment_size // hps_ms.data.hop_length,
|
||||
n_speakers=n_speakers,
|
||||
emotion_embedding=emotion_embedding,
|
||||
**hps_ms.model)
|
||||
_ = net_g_ms.eval()
|
||||
utils.load_checkpoint(model, net_g_ms)
|
||||
|
||||
def voice_conversion():
|
||||
audio_path = input('Path of an audio file to convert:\n')
|
||||
print_speakers(speakers)
|
||||
audio = utils.load_audio_to_torch(
|
||||
audio_path, hps_ms.data.sampling_rate)
|
||||
|
||||
originnal_id = get_speaker_id('Original speaker ID: ')
|
||||
target_id = get_speaker_id('Target speaker ID: ')
|
||||
out_path = input('Path to save: ')
|
||||
|
||||
y = audio.unsqueeze(0)
|
||||
|
||||
spec = spectrogram_torch(y, hps_ms.data.filter_length,
|
||||
hps_ms.data.sampling_rate, hps_ms.data.hop_length, hps_ms.data.win_length,
|
||||
center=False)
|
||||
spec_lengths = LongTensor([spec.size(-1)])
|
||||
sid_src = LongTensor([originnal_id])
|
||||
|
||||
with no_grad():
|
||||
sid_tgt = LongTensor([target_id])
|
||||
audio = net_g_ms.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[
|
||||
0][0, 0].data.cpu().float().numpy()
|
||||
return audio, out_path
|
||||
|
||||
if n_symbols != 0:
|
||||
if not emotion_embedding:
|
||||
while True:
|
||||
choice = input('TTS or VC? (t/v):')
|
||||
if choice == 't':
|
||||
text = input('Text to read: ')
|
||||
if text == '[ADVANCED]':
|
||||
text = input('Raw text:')
|
||||
print('Cleaned text is:')
|
||||
ex_print(_clean_text(
|
||||
text, hps_ms.data.text_cleaners), escape)
|
||||
continue
|
||||
|
||||
length_scale, text = get_label_value(
|
||||
text, 'LENGTH', 1, 'length scale')
|
||||
noise_scale, text = get_label_value(
|
||||
text, 'NOISE', 0.667, 'noise scale')
|
||||
noise_scale_w, text = get_label_value(
|
||||
text, 'NOISEW', 0.8, 'deviation of noise')
|
||||
cleaned, text = get_label(text, 'CLEANED')
|
||||
|
||||
stn_tst = get_text(text, hps_ms, cleaned=cleaned)
|
||||
|
||||
print_speakers(speakers, escape)
|
||||
speaker_id = get_speaker_id('Speaker ID: ')
|
||||
out_path = input('Path to save: ')
|
||||
|
||||
with no_grad():
|
||||
x_tst = stn_tst.unsqueeze(0)
|
||||
x_tst_lengths = LongTensor([stn_tst.size(0)])
|
||||
sid = LongTensor([speaker_id])
|
||||
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale,
|
||||
noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0, 0].data.cpu().float().numpy()
|
||||
|
||||
elif choice == 'v':
|
||||
audio, out_path = voice_conversion()
|
||||
|
||||
write(out_path, hps_ms.data.sampling_rate, audio)
|
||||
print('Successfully saved!')
|
||||
ask_if_continue()
|
||||
else:
|
||||
import os
|
||||
import librosa
|
||||
import numpy as np
|
||||
from torch import FloatTensor
|
||||
import audonnx
|
||||
w2v2_folder = input('Path of a w2v2 dimensional emotion model: ')
|
||||
w2v2_model = audonnx.load(os.path.dirname(w2v2_folder))
|
||||
while True:
|
||||
choice = input('TTS or VC? (t/v):')
|
||||
if choice == 't':
|
||||
text = input('Text to read: ')
|
||||
if text == '[ADVANCED]':
|
||||
text = input('Raw text:')
|
||||
print('Cleaned text is:')
|
||||
ex_print(_clean_text(
|
||||
text, hps_ms.data.text_cleaners), escape)
|
||||
continue
|
||||
|
||||
length_scale, text = get_label_value(
|
||||
text, 'LENGTH', 1, 'length scale')
|
||||
noise_scale, text = get_label_value(
|
||||
text, 'NOISE', 0.667, 'noise scale')
|
||||
noise_scale_w, text = get_label_value(
|
||||
text, 'NOISEW', 0.8, 'deviation of noise')
|
||||
cleaned, text = get_label(text, 'CLEANED')
|
||||
|
||||
stn_tst = get_text(text, hps_ms, cleaned=cleaned)
|
||||
|
||||
print_speakers(speakers, escape)
|
||||
speaker_id = get_speaker_id('Speaker ID: ')
|
||||
|
||||
emotion_reference = input('Path of an emotion reference: ')
|
||||
if emotion_reference.endswith('.npy'):
|
||||
emotion = np.load(emotion_reference)
|
||||
emotion = FloatTensor(emotion).unsqueeze(0)
|
||||
else:
|
||||
audio16000, sampling_rate = librosa.load(
|
||||
emotion_reference, sr=16000, mono=True)
|
||||
emotion = w2v2_model(audio16000, sampling_rate)[
|
||||
'hidden_states']
|
||||
emotion_reference = re.sub(
|
||||
r'\..*$', '', emotion_reference)
|
||||
np.save(emotion_reference, emotion.squeeze(0))
|
||||
emotion = FloatTensor(emotion)
|
||||
|
||||
out_path = input('Path to save: ')
|
||||
|
||||
with no_grad():
|
||||
x_tst = stn_tst.unsqueeze(0)
|
||||
x_tst_lengths = LongTensor([stn_tst.size(0)])
|
||||
sid = LongTensor([speaker_id])
|
||||
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
|
||||
length_scale=length_scale, emotion_embedding=emotion)[0][0, 0].data.cpu().float().numpy()
|
||||
|
||||
elif choice == 'v':
|
||||
audio, out_path = voice_conversion()
|
||||
|
||||
write(out_path, hps_ms.data.sampling_rate, audio)
|
||||
print('Successfully saved!')
|
||||
ask_if_continue()
|
||||
else:
|
||||
model = input('Path of a hubert-soft model: ')
|
||||
from hubert_model import hubert_soft
|
||||
hubert = hubert_soft(model)
|
||||
|
||||
while True:
|
||||
audio_path = input('Path of an audio file to convert:\n')
|
||||
|
||||
if audio_path != '[VC]':
|
||||
import librosa
|
||||
if use_f0:
|
||||
audio, sampling_rate = librosa.load(
|
||||
audio_path, sr=hps_ms.data.sampling_rate, mono=True)
|
||||
audio16000 = librosa.resample(
|
||||
audio, orig_sr=sampling_rate, target_sr=16000)
|
||||
else:
|
||||
audio16000, sampling_rate = librosa.load(
|
||||
audio_path, sr=16000, mono=True)
|
||||
|
||||
target_id = get_speaker_id('Target speaker ID: ')
|
||||
out_path = input('Path to save: ')
|
||||
length_scale, out_path = get_label_value(
|
||||
out_path, 'LENGTH', 1, 'length scale')
|
||||
noise_scale, out_path = get_label_value(
|
||||
out_path, 'NOISE', 0.1, 'noise scale')
|
||||
noise_scale_w, out_path = get_label_value(
|
||||
out_path, 'NOISEW', 0.1, 'deviation of noise')
|
||||
|
||||
from torch import inference_mode, FloatTensor
|
||||
import numpy as np
|
||||
with inference_mode():
|
||||
units = hubert.units(FloatTensor(audio16000).unsqueeze(
|
||||
0).unsqueeze(0)).squeeze(0).numpy()
|
||||
if use_f0:
|
||||
f0_scale, out_path = get_label_value(
|
||||
out_path, 'F0', 1, 'f0 scale')
|
||||
f0 = librosa.pyin(audio, sr=sampling_rate,
|
||||
fmin=librosa.note_to_hz('C0'),
|
||||
fmax=librosa.note_to_hz('C7'),
|
||||
frame_length=1780)[0]
|
||||
target_length = len(units[:, 0])
|
||||
f0 = np.nan_to_num(np.interp(np.arange(0, len(f0)*target_length, len(f0))/target_length,
|
||||
np.arange(0, len(f0)), f0)) * f0_scale
|
||||
units[:, 0] = f0 / 10
|
||||
|
||||
stn_tst = FloatTensor(units)
|
||||
with no_grad():
|
||||
x_tst = stn_tst.unsqueeze(0)
|
||||
x_tst_lengths = LongTensor([stn_tst.size(0)])
|
||||
sid = LongTensor([target_id])
|
||||
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale,
|
||||
noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0, 0].data.float().numpy()
|
||||
|
||||
else:
|
||||
audio, out_path = voice_conversion()
|
||||
|
||||
write(out_path, hps_ms.data.sampling_rate, audio)
|
||||
print('Successfully saved!')
|
||||
ask_if_continue()'''
|
|
@ -0,0 +1,64 @@
|
|||
# Links
|
||||
- [MoeGoe_GUI](https://github.com/CjangCjengh/MoeGoe_GUI)
|
||||
- [Pretrained models](https://github.com/CjangCjengh/TTSModels)
|
||||
|
||||
# How to use
|
||||
Run MoeGoe.exe
|
||||
```
|
||||
Path of a VITS model: path\to\model.pth
|
||||
Path of a config file: path\to\config.json
|
||||
INFO:root:Loaded checkpoint 'path\to\model.pth' (iteration XXX)
|
||||
```
|
||||
## Text to speech
|
||||
```
|
||||
TTS or VC? (t/v):t
|
||||
Text to read: こんにちは。
|
||||
ID Speaker
|
||||
0 XXXX
|
||||
1 XXXX
|
||||
2 XXXX
|
||||
Speaker ID: 0
|
||||
Path to save: path\to\demo.wav
|
||||
Successfully saved!
|
||||
```
|
||||
## Voice conversion
|
||||
```
|
||||
TTS or VC? (t/v):v
|
||||
Path of an audio file to convert:
|
||||
path\to\origin.wav
|
||||
ID Speaker
|
||||
0 XXXX
|
||||
1 XXXX
|
||||
2 XXXX
|
||||
Original speaker ID: 0
|
||||
Target speaker ID: 6
|
||||
Path to save: path\to\demo.wav
|
||||
Successfully saved!
|
||||
```
|
||||
## HuBERT-VITS
|
||||
```
|
||||
Path of a hubert-soft model: path\to\hubert-soft.pt
|
||||
Path of an audio file to convert:
|
||||
path\to\origin.wav
|
||||
ID Speaker
|
||||
0 XXXX
|
||||
1 XXXX
|
||||
2 XXXX
|
||||
Target speaker ID: 6
|
||||
Path to save: path\to\demo.wav
|
||||
Successfully saved!
|
||||
```
|
||||
## W2V2-VITS
|
||||
```
|
||||
Path of a w2v2 dimensional emotion model: path\to\model.onnx
|
||||
TTS or VC? (t/v):t
|
||||
Text to read: こんにちは。
|
||||
ID Speaker
|
||||
0 XXXX
|
||||
1 XXXX
|
||||
2 XXXX
|
||||
Speaker ID: 0
|
||||
Path of an emotion reference: path\to\reference.wav
|
||||
Path to save: path\to\demo.wav
|
||||
Successfully saved!
|
||||
```
|
|
@ -0,0 +1,300 @@
|
|||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
import commons
|
||||
from modules import LayerNorm
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
x = x * x_mask
|
||||
for i in range(self.n_layers):
|
||||
y = self.attn_layers[i](x, x, attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.self_attn_layers = nn.ModuleList()
|
||||
self.norm_layers_0 = nn.ModuleList()
|
||||
self.encdec_attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
||||
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
||||
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask, h, h_mask):
|
||||
"""
|
||||
x: decoder input
|
||||
h: encoder output
|
||||
"""
|
||||
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
x = x * x_mask
|
||||
for i in range(self.n_layers):
|
||||
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_0[i](x + y)
|
||||
|
||||
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
||||
super().__init__()
|
||||
assert channels % n_heads == 0
|
||||
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels
|
||||
self.n_heads = n_heads
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
self.heads_share = heads_share
|
||||
self.block_length = block_length
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
self.attn = None
|
||||
|
||||
self.k_channels = channels // n_heads
|
||||
self.conv_q = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_k = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_v = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if window_size is not None:
|
||||
n_heads_rel = 1 if heads_share else n_heads
|
||||
rel_stddev = self.k_channels**-0.5
|
||||
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||
|
||||
nn.init.xavier_uniform_(self.conv_q.weight)
|
||||
nn.init.xavier_uniform_(self.conv_k.weight)
|
||||
nn.init.xavier_uniform_(self.conv_v.weight)
|
||||
if proximal_init:
|
||||
with torch.no_grad():
|
||||
self.conv_k.weight.copy_(self.conv_q.weight)
|
||||
self.conv_k.bias.copy_(self.conv_q.bias)
|
||||
|
||||
def forward(self, x, c, attn_mask=None):
|
||||
q = self.conv_q(x)
|
||||
k = self.conv_k(c)
|
||||
v = self.conv_v(c)
|
||||
|
||||
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
|
||||
x = self.conv_o(x)
|
||||
return x
|
||||
|
||||
def attention(self, query, key, value, mask=None):
|
||||
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||
b, d, t_s, t_t = (*key.size(), query.size(2))
|
||||
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
||||
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
|
||||
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
||||
if self.window_size is not None:
|
||||
assert t_s == t_t, "Relative attention is only available for self-attention."
|
||||
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
||||
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
||||
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
||||
scores = scores + scores_local
|
||||
if self.proximal_bias:
|
||||
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
||||
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
||||
if mask is not None:
|
||||
scores = scores.masked_fill(mask == 0, -1e4)
|
||||
if self.block_length is not None:
|
||||
assert t_s == t_t, "Local attention is only available for self-attention."
|
||||
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
||||
scores = scores.masked_fill(block_mask == 0, -1e4)
|
||||
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
||||
p_attn = self.drop(p_attn)
|
||||
output = torch.matmul(p_attn, value)
|
||||
if self.window_size is not None:
|
||||
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
||||
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
||||
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
||||
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
||||
return output, p_attn
|
||||
|
||||
def _matmul_with_relative_values(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, m]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, d]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0))
|
||||
return ret
|
||||
|
||||
def _matmul_with_relative_keys(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, d]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, m]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
||||
return ret
|
||||
|
||||
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||
max_relative_position = 2 * self.window_size + 1
|
||||
# Pad first before slice to avoid using cond ops.
|
||||
pad_length = max(length - (self.window_size + 1), 0)
|
||||
slice_start_position = max((self.window_size + 1) - length, 0)
|
||||
slice_end_position = slice_start_position + 2 * length - 1
|
||||
if pad_length > 0:
|
||||
padded_relative_embeddings = F.pad(
|
||||
relative_embeddings,
|
||||
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
||||
else:
|
||||
padded_relative_embeddings = relative_embeddings
|
||||
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
||||
return used_relative_embeddings
|
||||
|
||||
def _relative_position_to_absolute_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, 2*l-1]
|
||||
ret: [b, h, l, l]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# Concat columns of pad to shift from relative to absolute indexing.
|
||||
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
||||
|
||||
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
||||
x_flat = x.view([batch, heads, length * 2 * length])
|
||||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
||||
|
||||
# Reshape and slice out the padded elements.
|
||||
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
||||
return x_final
|
||||
|
||||
def _absolute_position_to_relative_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, l]
|
||||
ret: [b, h, l, 2*l-1]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# padd along column
|
||||
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
||||
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
||||
# add 0's in the beginning that will skew the elements after reshape
|
||||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
||||
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
||||
return x_final
|
||||
|
||||
def _attention_bias_proximal(self, length):
|
||||
"""Bias for self-attention to encourage attention to close positions.
|
||||
Args:
|
||||
length: an integer scalar.
|
||||
Returns:
|
||||
a Tensor with shape [1, 1, length, length]
|
||||
"""
|
||||
r = torch.arange(length, dtype=torch.float32)
|
||||
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
||||
|
||||
|
||||
class FFN(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.activation = activation
|
||||
self.causal = causal
|
||||
|
||||
if causal:
|
||||
self.padding = self._causal_padding
|
||||
else:
|
||||
self.padding = self._same_padding
|
||||
|
||||
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
||||
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(self.padding(x * x_mask))
|
||||
if self.activation == "gelu":
|
||||
x = x * torch.sigmoid(1.702 * x)
|
||||
else:
|
||||
x = torch.relu(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(self.padding(x * x_mask))
|
||||
return x * x_mask
|
||||
|
||||
def _causal_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = self.kernel_size - 1
|
||||
pad_r = 0
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
def _same_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = (self.kernel_size - 1) // 2
|
||||
pad_r = self.kernel_size // 2
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
|
@ -0,0 +1,96 @@
|
|||
import torch
|
||||
from torch.nn import functional as F
|
||||
import torch.jit
|
||||
|
||||
|
||||
def script_method(fn, _rcb=None):
|
||||
return fn
|
||||
|
||||
|
||||
def script(obj, optimize=True, _frames_up=0, _rcb=None):
|
||||
return obj
|
||||
|
||||
|
||||
torch.jit.script_method = script_method
|
||||
torch.jit.script = script
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size*dilation - dilation)/2)
|
||||
|
||||
|
||||
def intersperse(lst, item):
|
||||
result = [item] * (len(lst) * 2 + 1)
|
||||
result[1::2] = lst
|
||||
return result
|
||||
|
||||
|
||||
def slice_segments(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
ret[i] = x[i, :, idx_str:idx_end]
|
||||
return ret
|
||||
|
||||
|
||||
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
||||
b, d, t = x.size()
|
||||
if x_lengths is None:
|
||||
x_lengths = t
|
||||
ids_str_max = x_lengths - segment_size + 1
|
||||
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
||||
ret = slice_segments(x, ids_str, segment_size)
|
||||
return ret, ids_str
|
||||
|
||||
|
||||
def subsequent_mask(length):
|
||||
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
||||
return mask
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
in_act = input_a + input_b
|
||||
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def generate_path(duration, mask):
|
||||
"""
|
||||
duration: [b, 1, t_x]
|
||||
mask: [b, 1, t_y, t_x]
|
||||
"""
|
||||
device = duration.device
|
||||
|
||||
b, _, t_y, t_x = mask.shape
|
||||
cum_duration = torch.cumsum(duration, -1)
|
||||
|
||||
cum_duration_flat = cum_duration.view(b * t_x)
|
||||
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
||||
path = path.view(b, t_x, t_y)
|
||||
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
||||
path = path.unsqueeze(1).transpose(2,3) * mask
|
||||
return path
|
|
@ -0,0 +1,221 @@
|
|||
import copy
|
||||
from typing import Optional, Tuple
|
||||
import random
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
||||
|
||||
class Hubert(nn.Module):
|
||||
def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
|
||||
super().__init__()
|
||||
self._mask = mask
|
||||
self.feature_extractor = FeatureExtractor()
|
||||
self.feature_projection = FeatureProjection()
|
||||
self.positional_embedding = PositionalConvEmbedding()
|
||||
self.norm = nn.LayerNorm(768)
|
||||
self.dropout = nn.Dropout(0.1)
|
||||
self.encoder = TransformerEncoder(
|
||||
nn.TransformerEncoderLayer(
|
||||
768, 12, 3072, activation="gelu", batch_first=True
|
||||
),
|
||||
12,
|
||||
)
|
||||
self.proj = nn.Linear(768, 256)
|
||||
|
||||
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
|
||||
self.label_embedding = nn.Embedding(num_label_embeddings, 256)
|
||||
|
||||
def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
mask = None
|
||||
if self.training and self._mask:
|
||||
mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
|
||||
x[mask] = self.masked_spec_embed.to(x.dtype)
|
||||
return x, mask
|
||||
|
||||
def encode(
|
||||
self, x: torch.Tensor, layer: Optional[int] = None
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
x = self.feature_extractor(x)
|
||||
x = self.feature_projection(x.transpose(1, 2))
|
||||
x, mask = self.mask(x)
|
||||
x = x + self.positional_embedding(x)
|
||||
x = self.dropout(self.norm(x))
|
||||
x = self.encoder(x, output_layer=layer)
|
||||
return x, mask
|
||||
|
||||
def logits(self, x: torch.Tensor) -> torch.Tensor:
|
||||
logits = torch.cosine_similarity(
|
||||
x.unsqueeze(2),
|
||||
self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
|
||||
dim=-1,
|
||||
)
|
||||
return logits / 0.1
|
||||
|
||||
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
x, mask = self.encode(x)
|
||||
x = self.proj(x)
|
||||
logits = self.logits(x)
|
||||
return logits, mask
|
||||
|
||||
|
||||
class HubertSoft(Hubert):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@torch.inference_mode()
|
||||
def units(self, wav: torch.Tensor) -> torch.Tensor:
|
||||
wav = F.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
|
||||
x, _ = self.encode(wav)
|
||||
return self.proj(x)
|
||||
|
||||
|
||||
class FeatureExtractor(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
|
||||
self.norm0 = nn.GroupNorm(512, 512)
|
||||
self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
||||
self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
||||
self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
||||
self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
|
||||
self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
||||
self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = F.gelu(self.norm0(self.conv0(x)))
|
||||
x = F.gelu(self.conv1(x))
|
||||
x = F.gelu(self.conv2(x))
|
||||
x = F.gelu(self.conv3(x))
|
||||
x = F.gelu(self.conv4(x))
|
||||
x = F.gelu(self.conv5(x))
|
||||
x = F.gelu(self.conv6(x))
|
||||
return x
|
||||
|
||||
|
||||
class FeatureProjection(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(512)
|
||||
self.projection = nn.Linear(512, 768)
|
||||
self.dropout = nn.Dropout(0.1)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.norm(x)
|
||||
x = self.projection(x)
|
||||
x = self.dropout(x)
|
||||
return x
|
||||
|
||||
|
||||
class PositionalConvEmbedding(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv1d(
|
||||
768,
|
||||
768,
|
||||
kernel_size=128,
|
||||
padding=128 // 2,
|
||||
groups=16,
|
||||
)
|
||||
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.conv(x.transpose(1, 2))
|
||||
x = F.gelu(x[:, :, :-1])
|
||||
return x.transpose(1, 2)
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
def __init__(
|
||||
self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
|
||||
) -> None:
|
||||
super(TransformerEncoder, self).__init__()
|
||||
self.layers = nn.ModuleList(
|
||||
[copy.deepcopy(encoder_layer) for _ in range(num_layers)]
|
||||
)
|
||||
self.num_layers = num_layers
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
mask: torch.Tensor = None,
|
||||
src_key_padding_mask: torch.Tensor = None,
|
||||
output_layer: Optional[int] = None,
|
||||
) -> torch.Tensor:
|
||||
output = src
|
||||
for layer in self.layers[:output_layer]:
|
||||
output = layer(
|
||||
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
|
||||
)
|
||||
return output
|
||||
|
||||
|
||||
def _compute_mask(
|
||||
shape: Tuple[int, int],
|
||||
mask_prob: float,
|
||||
mask_length: int,
|
||||
device: torch.device,
|
||||
min_masks: int = 0,
|
||||
) -> torch.Tensor:
|
||||
batch_size, sequence_length = shape
|
||||
|
||||
if mask_length < 1:
|
||||
raise ValueError("`mask_length` has to be bigger than 0.")
|
||||
|
||||
if mask_length > sequence_length:
|
||||
raise ValueError(
|
||||
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
|
||||
)
|
||||
|
||||
# compute number of masked spans in batch
|
||||
num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
|
||||
num_masked_spans = max(num_masked_spans, min_masks)
|
||||
|
||||
# make sure num masked indices <= sequence_length
|
||||
if num_masked_spans * mask_length > sequence_length:
|
||||
num_masked_spans = sequence_length // mask_length
|
||||
|
||||
# SpecAugment mask to fill
|
||||
mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
|
||||
|
||||
# uniform distribution to sample from, make sure that offset samples are < sequence_length
|
||||
uniform_dist = torch.ones(
|
||||
(batch_size, sequence_length - (mask_length - 1)), device=device
|
||||
)
|
||||
|
||||
# get random indices to mask
|
||||
mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
|
||||
|
||||
# expand masked indices to masked spans
|
||||
mask_indices = (
|
||||
mask_indices.unsqueeze(dim=-1)
|
||||
.expand((batch_size, num_masked_spans, mask_length))
|
||||
.reshape(batch_size, num_masked_spans * mask_length)
|
||||
)
|
||||
offsets = (
|
||||
torch.arange(mask_length, device=device)[None, None, :]
|
||||
.expand((batch_size, num_masked_spans, mask_length))
|
||||
.reshape(batch_size, num_masked_spans * mask_length)
|
||||
)
|
||||
mask_idxs = mask_indices + offsets
|
||||
|
||||
# scatter indices to mask
|
||||
mask = mask.scatter(1, mask_idxs, True)
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
def hubert_soft(
|
||||
path: str
|
||||
) -> HubertSoft:
|
||||
r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
|
||||
Args:
|
||||
path (str): path of a pretrained model
|
||||
"""
|
||||
hubert = HubertSoft()
|
||||
checkpoint = torch.load(path)
|
||||
consume_prefix_in_state_dict_if_present(checkpoint, "module.")
|
||||
hubert.load_state_dict(checkpoint)
|
||||
hubert.eval()
|
||||
return hubert
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,101 @@
|
|||
import torch
|
||||
import torch.utils.data
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||||
"""
|
||||
PARAMS
|
||||
------
|
||||
C: compression factor
|
||||
"""
|
||||
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression_torch(x, C=1):
|
||||
"""
|
||||
PARAMS
|
||||
------
|
||||
C: compression factor used to compress
|
||||
"""
|
||||
return torch.exp(x) / C
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes):
|
||||
output = dynamic_range_compression_torch(magnitudes)
|
||||
return output
|
||||
|
||||
|
||||
def spectral_de_normalize_torch(magnitudes):
|
||||
output = dynamic_range_decompression_torch(magnitudes)
|
||||
return output
|
||||
|
||||
|
||||
mel_basis = {}
|
||||
hann_window = {}
|
||||
|
||||
|
||||
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
||||
if torch.min(y) < -1.:
|
||||
print('min value is ', torch.min(y))
|
||||
if torch.max(y) > 1.:
|
||||
print('max value is ', torch.max(y))
|
||||
|
||||
global hann_window
|
||||
dtype_device = str(y.dtype) + '_' + str(y.device)
|
||||
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||||
if wnsize_dtype_device not in hann_window:
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
|
||||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||||
y = y.squeeze(1)
|
||||
|
||||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
return spec
|
||||
|
||||
|
||||
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
||||
global mel_basis
|
||||
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
||||
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
||||
if fmax_dtype_device not in mel_basis:
|
||||
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
||||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
return spec
|
||||
|
||||
|
||||
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||||
if torch.min(y) < -1.:
|
||||
print('min value is ', torch.min(y))
|
||||
if torch.max(y) > 1.:
|
||||
print('max value is ', torch.max(y))
|
||||
|
||||
global mel_basis, hann_window
|
||||
dtype_device = str(y.dtype) + '_' + str(y.device)
|
||||
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
||||
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||||
if fmax_dtype_device not in mel_basis:
|
||||
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
||||
if wnsize_dtype_device not in hann_window:
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
|
||||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||||
y = y.squeeze(1)
|
||||
|
||||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
|
||||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
|
||||
return spec
|
|
@ -0,0 +1,404 @@
|
|||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
import commons
|
||||
import modules
|
||||
import attentions
|
||||
|
||||
from torch.nn import Conv1d, ConvTranspose1d
|
||||
from torch.nn.utils import weight_norm
|
||||
from commons import init_weights
|
||||
|
||||
|
||||
class StochasticDurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
||||
super().__init__()
|
||||
filter_channels = in_channels # it needs to be removed from future version.
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.n_flows = n_flows
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.log_flow = modules.Log()
|
||||
self.flows = nn.ModuleList()
|
||||
self.flows.append(modules.ElementwiseAffine(2))
|
||||
for i in range(n_flows):
|
||||
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||
self.flows.append(modules.Flip())
|
||||
|
||||
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
||||
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||
self.post_flows = nn.ModuleList()
|
||||
self.post_flows.append(modules.ElementwiseAffine(2))
|
||||
for i in range(4):
|
||||
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||
self.post_flows.append(modules.Flip())
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
||||
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
||||
|
||||
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
||||
x = torch.detach(x)
|
||||
x = self.pre(x)
|
||||
if g is not None:
|
||||
g = torch.detach(g)
|
||||
x = x + self.cond(g)
|
||||
x = self.convs(x, x_mask)
|
||||
x = self.proj(x) * x_mask
|
||||
|
||||
if not reverse:
|
||||
flows = self.flows
|
||||
assert w is not None
|
||||
|
||||
logdet_tot_q = 0
|
||||
h_w = self.post_pre(w)
|
||||
h_w = self.post_convs(h_w, x_mask)
|
||||
h_w = self.post_proj(h_w) * x_mask
|
||||
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
||||
z_q = e_q
|
||||
for flow in self.post_flows:
|
||||
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
||||
logdet_tot_q += logdet_q
|
||||
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
||||
u = torch.sigmoid(z_u) * x_mask
|
||||
z0 = (w - u) * x_mask
|
||||
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
||||
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
||||
|
||||
logdet_tot = 0
|
||||
z0, logdet = self.log_flow(z0, x_mask)
|
||||
logdet_tot += logdet
|
||||
z = torch.cat([z0, z1], 1)
|
||||
for flow in flows:
|
||||
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
||||
logdet_tot = logdet_tot + logdet
|
||||
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
||||
return nll + logq # [b]
|
||||
else:
|
||||
flows = list(reversed(self.flows))
|
||||
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
||||
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
||||
for flow in flows:
|
||||
z = flow(z, x_mask, g=x, reverse=reverse)
|
||||
z0, z1 = torch.split(z, [1, 1], 1)
|
||||
logw = z0
|
||||
return logw
|
||||
|
||||
|
||||
class DurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
||||
self.norm_1 = modules.LayerNorm(filter_channels)
|
||||
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
||||
self.norm_2 = modules.LayerNorm(filter_channels)
|
||||
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
x = torch.detach(x)
|
||||
if g is not None:
|
||||
g = torch.detach(g)
|
||||
x = x + self.cond(g)
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_1(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_2(x)
|
||||
x = self.drop(x)
|
||||
x = self.proj(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
n_vocab,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
emotion_embedding):
|
||||
super().__init__()
|
||||
self.n_vocab = n_vocab
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.emotion_embedding = emotion_embedding
|
||||
|
||||
if self.n_vocab!=0:
|
||||
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
||||
if emotion_embedding:
|
||||
self.emo_proj = nn.Linear(1024, hidden_channels)
|
||||
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
||||
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout)
|
||||
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, x, x_lengths, emotion_embedding=None):
|
||||
if self.n_vocab!=0:
|
||||
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||
if emotion_embedding is not None:
|
||||
x = x + self.emo_proj(emotion_embedding.unsqueeze(1))
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||
|
||||
x = self.encoder(x * x_mask, x_mask)
|
||||
stats = self.proj(x) * x_mask
|
||||
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return x, m, logs, x_mask
|
||||
|
||||
|
||||
class ResidualCouplingBlock(nn.Module):
|
||||
def __init__(self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
n_flows=4,
|
||||
gin_channels=0):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.n_flows = n_flows
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.flows = nn.ModuleList()
|
||||
for i in range(n_flows):
|
||||
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
||||
self.flows.append(modules.Flip())
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
if not reverse:
|
||||
for flow in self.flows:
|
||||
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
||||
else:
|
||||
for flow in reversed(self.flows):
|
||||
x = flow(x, x_mask, g=g, reverse=reverse)
|
||||
return x
|
||||
|
||||
|
||||
class PosteriorEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, x, x_lengths, g=None):
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||
x = self.pre(x) * x_mask
|
||||
x = self.enc(x, x_mask, g=g)
|
||||
stats = self.proj(x) * x_mask
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
||||
return z, m, logs, x_mask
|
||||
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
||||
super(Generator, self).__init__()
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
self.num_upsamples = len(upsample_rates)
|
||||
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
||||
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
||||
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||
self.ups.append(weight_norm(
|
||||
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
||||
k, u, padding=(k-u)//2)))
|
||||
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = upsample_initial_channel//(2**(i+1))
|
||||
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||
self.resblocks.append(resblock(ch, k, d))
|
||||
|
||||
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
||||
self.ups.apply(init_weights)
|
||||
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||||
|
||||
def forward(self, x, g=None):
|
||||
x = self.conv_pre(x)
|
||||
if g is not None:
|
||||
x = x + self.cond(g)
|
||||
|
||||
for i in range(self.num_upsamples):
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
x = self.ups[i](x)
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i*self.num_kernels+j](x)
|
||||
else:
|
||||
xs += self.resblocks[i*self.num_kernels+j](x)
|
||||
x = xs / self.num_kernels
|
||||
x = F.leaky_relu(x)
|
||||
x = self.conv_post(x)
|
||||
x = torch.tanh(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SynthesizerTrn(nn.Module):
|
||||
"""
|
||||
Synthesizer for Training
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
n_vocab,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
n_speakers=0,
|
||||
gin_channels=0,
|
||||
use_sdp=True,
|
||||
emotion_embedding=False,
|
||||
**kwargs):
|
||||
|
||||
super().__init__()
|
||||
self.n_vocab = n_vocab
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.resblock = resblock
|
||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||
self.upsample_rates = upsample_rates
|
||||
self.upsample_initial_channel = upsample_initial_channel
|
||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||
self.segment_size = segment_size
|
||||
self.n_speakers = n_speakers
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.use_sdp = use_sdp
|
||||
|
||||
self.enc_p = TextEncoder(n_vocab,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
emotion_embedding)
|
||||
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
||||
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
||||
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
||||
|
||||
if use_sdp:
|
||||
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
||||
else:
|
||||
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
||||
|
||||
if n_speakers > 1:
|
||||
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
||||
|
||||
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None, emotion_embedding=None):
|
||||
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, emotion_embedding)
|
||||
if self.n_speakers > 0:
|
||||
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
||||
else:
|
||||
g = None
|
||||
|
||||
if self.use_sdp:
|
||||
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
||||
else:
|
||||
logw = self.dp(x, x_mask, g=g)
|
||||
w = torch.exp(logw) * x_mask * length_scale
|
||||
w_ceil = torch.ceil(w)
|
||||
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
||||
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
||||
attn = commons.generate_path(w_ceil, attn_mask)
|
||||
|
||||
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
||||
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
||||
|
||||
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
||||
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
||||
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
||||
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
||||
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
||||
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
||||
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
||||
z_p = self.flow(z, y_mask, g=g_src)
|
||||
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
||||
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
||||
return o_hat, y_mask, (z, z_p, z_hat)
|
||||
|
|
@ -0,0 +1,387 @@
|
|||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from torch.nn import Conv1d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm
|
||||
|
||||
import commons
|
||||
from commons import init_weights, get_padding
|
||||
from transforms import piecewise_rational_quadratic_transform
|
||||
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
|
||||
class ConvReluNorm(nn.Module):
|
||||
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
assert n_layers > 1, "Number of layers should be larger than 0."
|
||||
|
||||
self.conv_layers = nn.ModuleList()
|
||||
self.norm_layers = nn.ModuleList()
|
||||
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.relu_drop = nn.Sequential(
|
||||
nn.ReLU(),
|
||||
nn.Dropout(p_dropout))
|
||||
for _ in range(n_layers-1):
|
||||
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x_org = x
|
||||
for i in range(self.n_layers):
|
||||
x = self.conv_layers[i](x * x_mask)
|
||||
x = self.norm_layers[i](x)
|
||||
x = self.relu_drop(x)
|
||||
x = x_org + self.proj(x)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DDSConv(nn.Module):
|
||||
"""
|
||||
Dilated and Depth-Separable Convolution
|
||||
"""
|
||||
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.convs_sep = nn.ModuleList()
|
||||
self.convs_1x1 = nn.ModuleList()
|
||||
self.norms_1 = nn.ModuleList()
|
||||
self.norms_2 = nn.ModuleList()
|
||||
for i in range(n_layers):
|
||||
dilation = kernel_size ** i
|
||||
padding = (kernel_size * dilation - dilation) // 2
|
||||
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
||||
groups=channels, dilation=dilation, padding=padding
|
||||
))
|
||||
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
||||
self.norms_1.append(LayerNorm(channels))
|
||||
self.norms_2.append(LayerNorm(channels))
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
if g is not None:
|
||||
x = x + g
|
||||
for i in range(self.n_layers):
|
||||
y = self.convs_sep[i](x * x_mask)
|
||||
y = self.norms_1[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.convs_1x1[i](y)
|
||||
y = self.norms_2[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.drop(y)
|
||||
x = x + y
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class WN(torch.nn.Module):
|
||||
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
||||
super(WN, self).__init__()
|
||||
assert(kernel_size % 2 == 1)
|
||||
self.hidden_channels =hidden_channels
|
||||
self.kernel_size = kernel_size,
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if gin_channels != 0:
|
||||
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
||||
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
||||
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate ** i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
||||
dilation=dilation, padding=padding)
|
||||
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
||||
self.in_layers.append(in_layer)
|
||||
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
|
||||
def forward(self, x, x_mask, g=None, **kwargs):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
|
||||
if g is not None:
|
||||
g = self.cond_layer(g)
|
||||
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
if g is not None:
|
||||
cond_offset = i * 2 * self.hidden_channels
|
||||
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
||||
else:
|
||||
g_l = torch.zeros_like(x_in)
|
||||
|
||||
acts = commons.fused_add_tanh_sigmoid_multiply(
|
||||
x_in,
|
||||
g_l,
|
||||
n_channels_tensor)
|
||||
acts = self.drop(acts)
|
||||
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
||||
x = (x + res_acts) * x_mask
|
||||
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output * x_mask
|
||||
|
||||
def remove_weight_norm(self):
|
||||
if self.gin_channels != 0:
|
||||
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
||||
for l in self.in_layers:
|
||||
torch.nn.utils.remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
torch.nn.utils.remove_weight_norm(l)
|
||||
|
||||
|
||||
class ResBlock1(torch.nn.Module):
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
||||
super(ResBlock1, self).__init__()
|
||||
self.convs1 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2])))
|
||||
])
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1)))
|
||||
])
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
def forward(self, x, x_mask=None):
|
||||
for c1, c2 in zip(self.convs1, self.convs2):
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
xt = xt * x_mask
|
||||
xt = c1(xt)
|
||||
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
xt = xt * x_mask
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
if x_mask is not None:
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class ResBlock2(torch.nn.Module):
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
||||
super(ResBlock2, self).__init__()
|
||||
self.convs = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1])))
|
||||
])
|
||||
self.convs.apply(init_weights)
|
||||
|
||||
def forward(self, x, x_mask=None):
|
||||
for c in self.convs:
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
xt = xt * x_mask
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
if x_mask is not None:
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class Log(nn.Module):
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
||||
logdet = torch.sum(-y, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = torch.exp(x) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class Flip(nn.Module):
|
||||
def forward(self, x, *args, reverse=False, **kwargs):
|
||||
x = torch.flip(x, [1])
|
||||
if not reverse:
|
||||
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class ElementwiseAffine(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.m = nn.Parameter(torch.zeros(channels,1))
|
||||
self.logs = nn.Parameter(torch.zeros(channels,1))
|
||||
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = self.m + torch.exp(self.logs) * x
|
||||
y = y * x_mask
|
||||
logdet = torch.sum(self.logs * x_mask, [1,2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class ResidualCouplingLayer(nn.Module):
|
||||
def __init__(self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
p_dropout=0,
|
||||
gin_channels=0,
|
||||
mean_only=False):
|
||||
assert channels % 2 == 0, "channels should be divisible by 2"
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.half_channels = channels // 2
|
||||
self.mean_only = mean_only
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
||||
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
||||
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
||||
self.post.weight.data.zero_()
|
||||
self.post.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
||||
h = self.pre(x0) * x_mask
|
||||
h = self.enc(h, x_mask, g=g)
|
||||
stats = self.post(h) * x_mask
|
||||
if not self.mean_only:
|
||||
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
||||
else:
|
||||
m = stats
|
||||
logs = torch.zeros_like(m)
|
||||
|
||||
if not reverse:
|
||||
x1 = m + x1 * torch.exp(logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
logdet = torch.sum(logs, [1,2])
|
||||
return x, logdet
|
||||
else:
|
||||
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
return x
|
||||
|
||||
|
||||
class ConvFlow(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.num_bins = num_bins
|
||||
self.tail_bound = tail_bound
|
||||
self.half_channels = in_channels // 2
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
||||
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
||||
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
||||
h = self.pre(x0)
|
||||
h = self.convs(h, x_mask, g=g)
|
||||
h = self.proj(h) * x_mask
|
||||
|
||||
b, c, t = x0.shape
|
||||
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
||||
|
||||
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
||||
|
||||
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=reverse,
|
||||
tails='linear',
|
||||
tail_bound=self.tail_bound
|
||||
)
|
||||
|
||||
x = torch.cat([x0, x1], 1) * x_mask
|
||||
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
||||
if not reverse:
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
|
@ -0,0 +1,19 @@
|
|||
numba
|
||||
librosa
|
||||
numpy==1.22.0
|
||||
scipy
|
||||
torch
|
||||
unidecode
|
||||
openjtalk>=0.3.0.dev2
|
||||
jamo
|
||||
pypinyin
|
||||
jieba
|
||||
protobuf
|
||||
cn2an
|
||||
inflect
|
||||
eng_to_ipa
|
||||
ko_pron
|
||||
indic_transliteration
|
||||
num_thai
|
||||
opencc
|
||||
audonnx
|
|
@ -0,0 +1,19 @@
|
|||
Copyright (c) 2017 Keith Ito
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
|
@ -0,0 +1,32 @@
|
|||
""" from https://github.com/keithito/tacotron """
|
||||
from text import cleaners
|
||||
|
||||
|
||||
def text_to_sequence(text, symbols, cleaner_names):
|
||||
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
||||
Args:
|
||||
text: string to convert to a sequence
|
||||
cleaner_names: names of the cleaner functions to run the text through
|
||||
Returns:
|
||||
List of integers corresponding to the symbols in the text
|
||||
'''
|
||||
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
||||
|
||||
sequence = []
|
||||
|
||||
clean_text = _clean_text(text, cleaner_names)
|
||||
for symbol in clean_text:
|
||||
if symbol not in _symbol_to_id.keys():
|
||||
continue
|
||||
symbol_id = _symbol_to_id[symbol]
|
||||
sequence += [symbol_id]
|
||||
return sequence
|
||||
|
||||
|
||||
def _clean_text(text, cleaner_names):
|
||||
for name in cleaner_names:
|
||||
cleaner = getattr(cleaners, name)
|
||||
if not cleaner:
|
||||
raise Exception('Unknown cleaner: %s' % name)
|
||||
text = cleaner(text)
|
||||
return text
|
|
@ -0,0 +1,59 @@
|
|||
import re
|
||||
import cn2an
|
||||
import opencc
|
||||
|
||||
|
||||
converter = opencc.OpenCC('jyutjyu')
|
||||
|
||||
# List of (Latin alphabet, ipa) pairs:
|
||||
_latin_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('A', 'ei˥'),
|
||||
('B', 'biː˥'),
|
||||
('C', 'siː˥'),
|
||||
('D', 'tiː˥'),
|
||||
('E', 'iː˥'),
|
||||
('F', 'e˥fuː˨˩'),
|
||||
('G', 'tsiː˥'),
|
||||
('H', 'ɪk̚˥tsʰyː˨˩'),
|
||||
('I', 'ɐi˥'),
|
||||
('J', 'tsei˥'),
|
||||
('K', 'kʰei˥'),
|
||||
('L', 'e˥llou˨˩'),
|
||||
('M', 'ɛːm˥'),
|
||||
('N', 'ɛːn˥'),
|
||||
('O', 'ou˥'),
|
||||
('P', 'pʰiː˥'),
|
||||
('Q', 'kʰiːu˥'),
|
||||
('R', 'aː˥lou˨˩'),
|
||||
('S', 'ɛː˥siː˨˩'),
|
||||
('T', 'tʰiː˥'),
|
||||
('U', 'juː˥'),
|
||||
('V', 'wiː˥'),
|
||||
('W', 'tʊk̚˥piː˥juː˥'),
|
||||
('X', 'ɪk̚˥siː˨˩'),
|
||||
('Y', 'waːi˥'),
|
||||
('Z', 'iː˨sɛːt̚˥')
|
||||
]]
|
||||
|
||||
|
||||
def number_to_cantonese(text):
|
||||
return re.sub(r'\d+(?:\.?\d+)?', lambda x: cn2an.an2cn(x.group()), text)
|
||||
|
||||
|
||||
def latin_to_ipa(text):
|
||||
for regex, replacement in _latin_to_ipa:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def cantonese_to_ipa(text):
|
||||
text = number_to_cantonese(text.upper())
|
||||
text = converter.convert(text).replace('-','').replace('$',' ')
|
||||
text = re.sub(r'[A-Z]', lambda x: latin_to_ipa(x.group())+' ', text)
|
||||
text = re.sub(r'[、;:]', ',', text)
|
||||
text = re.sub(r'\s*,\s*', ', ', text)
|
||||
text = re.sub(r'\s*。\s*', '. ', text)
|
||||
text = re.sub(r'\s*?\s*', '? ', text)
|
||||
text = re.sub(r'\s*!\s*', '! ', text)
|
||||
text = re.sub(r'\s*$', '', text)
|
||||
return text
|
|
@ -0,0 +1,145 @@
|
|||
import re
|
||||
|
||||
|
||||
def japanese_cleaners(text):
|
||||
from text.japanese import japanese_to_romaji_with_accent
|
||||
text = japanese_to_romaji_with_accent(text)
|
||||
text = re.sub(r'([A-Za-z])$', r'\1.', text)
|
||||
return text
|
||||
|
||||
|
||||
def japanese_cleaners2(text):
|
||||
return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')
|
||||
|
||||
|
||||
def korean_cleaners(text):
|
||||
'''Pipeline for Korean text'''
|
||||
from text.korean import latin_to_hangul, number_to_hangul, divide_hangul
|
||||
text = latin_to_hangul(text)
|
||||
text = number_to_hangul(text)
|
||||
text = divide_hangul(text)
|
||||
text = re.sub(r'([\u3131-\u3163])$', r'\1.', text)
|
||||
return text
|
||||
|
||||
|
||||
def chinese_cleaners(text):
|
||||
'''Pipeline for Chinese text'''
|
||||
from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo
|
||||
text = number_to_chinese(text)
|
||||
text = chinese_to_bopomofo(text)
|
||||
text = latin_to_bopomofo(text)
|
||||
text = re.sub(r'([ˉˊˇˋ˙])$', r'\1。', text)
|
||||
return text
|
||||
|
||||
|
||||
def zh_ja_mixture_cleaners(text):
|
||||
from text.mandarin import chinese_to_romaji
|
||||
from text.japanese import japanese_to_romaji_with_accent
|
||||
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
|
||||
lambda x: chinese_to_romaji(x.group(1))+' ', text)
|
||||
text = re.sub(r'\[JA\](.*?)\[JA\]', lambda x: japanese_to_romaji_with_accent(
|
||||
x.group(1)).replace('ts', 'ʦ').replace('u', 'ɯ').replace('...', '…')+' ', text)
|
||||
text = re.sub(r'\s+$', '', text)
|
||||
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
||||
return text
|
||||
|
||||
|
||||
def sanskrit_cleaners(text):
|
||||
text = text.replace('॥', '।').replace('ॐ', 'ओम्')
|
||||
text = re.sub(r'([^।])$', r'\1।', text)
|
||||
return text
|
||||
|
||||
|
||||
def cjks_cleaners(text):
|
||||
from text.mandarin import chinese_to_lazy_ipa
|
||||
from text.japanese import japanese_to_ipa
|
||||
from text.korean import korean_to_lazy_ipa
|
||||
from text.sanskrit import devanagari_to_ipa
|
||||
from text.english import english_to_lazy_ipa
|
||||
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
|
||||
lambda x: chinese_to_lazy_ipa(x.group(1))+' ', text)
|
||||
text = re.sub(r'\[JA\](.*?)\[JA\]',
|
||||
lambda x: japanese_to_ipa(x.group(1))+' ', text)
|
||||
text = re.sub(r'\[KO\](.*?)\[KO\]',
|
||||
lambda x: korean_to_lazy_ipa(x.group(1))+' ', text)
|
||||
text = re.sub(r'\[SA\](.*?)\[SA\]',
|
||||
lambda x: devanagari_to_ipa(x.group(1))+' ', text)
|
||||
text = re.sub(r'\[EN\](.*?)\[EN\]',
|
||||
lambda x: english_to_lazy_ipa(x.group(1))+' ', text)
|
||||
text = re.sub(r'\s+$', '', text)
|
||||
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
||||
return text
|
||||
|
||||
|
||||
def cjke_cleaners(text):
|
||||
from text.mandarin import chinese_to_lazy_ipa
|
||||
from text.japanese import japanese_to_ipa
|
||||
from text.korean import korean_to_ipa
|
||||
from text.english import english_to_ipa2
|
||||
text = re.sub(r'\[ZH\](.*?)\[ZH\]', lambda x: chinese_to_lazy_ipa(x.group(1)).replace(
|
||||
'ʧ', 'tʃ').replace('ʦ', 'ts').replace('ɥan', 'ɥæn')+' ', text)
|
||||
text = re.sub(r'\[JA\](.*?)\[JA\]', lambda x: japanese_to_ipa(x.group(1)).replace('ʧ', 'tʃ').replace(
|
||||
'ʦ', 'ts').replace('ɥan', 'ɥæn').replace('ʥ', 'dz')+' ', text)
|
||||
text = re.sub(r'\[KO\](.*?)\[KO\]',
|
||||
lambda x: korean_to_ipa(x.group(1))+' ', text)
|
||||
text = re.sub(r'\[EN\](.*?)\[EN\]', lambda x: english_to_ipa2(x.group(1)).replace('ɑ', 'a').replace(
|
||||
'ɔ', 'o').replace('ɛ', 'e').replace('ɪ', 'i').replace('ʊ', 'u')+' ', text)
|
||||
text = re.sub(r'\s+$', '', text)
|
||||
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
||||
return text
|
||||
|
||||
|
||||
def cjke_cleaners2(text):
|
||||
from text.mandarin import chinese_to_ipa
|
||||
from text.japanese import japanese_to_ipa2
|
||||
from text.korean import korean_to_ipa
|
||||
from text.english import english_to_ipa2
|
||||
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
|
||||
lambda x: chinese_to_ipa(x.group(1))+' ', text)
|
||||
text = re.sub(r'\[JA\](.*?)\[JA\]',
|
||||
lambda x: japanese_to_ipa2(x.group(1))+' ', text)
|
||||
text = re.sub(r'\[KO\](.*?)\[KO\]',
|
||||
lambda x: korean_to_ipa(x.group(1))+' ', text)
|
||||
text = re.sub(r'\[EN\](.*?)\[EN\]',
|
||||
lambda x: english_to_ipa2(x.group(1))+' ', text)
|
||||
text = re.sub(r'\s+$', '', text)
|
||||
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
||||
return text
|
||||
|
||||
|
||||
def thai_cleaners(text):
|
||||
from text.thai import num_to_thai, latin_to_thai
|
||||
text = num_to_thai(text)
|
||||
text = latin_to_thai(text)
|
||||
return text
|
||||
|
||||
|
||||
def shanghainese_cleaners(text):
|
||||
from text.shanghainese import shanghainese_to_ipa
|
||||
text = shanghainese_to_ipa(text)
|
||||
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
||||
return text
|
||||
|
||||
|
||||
def chinese_dialect_cleaners(text):
|
||||
from text.mandarin import chinese_to_ipa2
|
||||
from text.japanese import japanese_to_ipa3
|
||||
from text.shanghainese import shanghainese_to_ipa
|
||||
from text.cantonese import cantonese_to_ipa
|
||||
from text.english import english_to_lazy_ipa2
|
||||
from text.ngu_dialect import ngu_dialect_to_ipa
|
||||
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
|
||||
lambda x: chinese_to_ipa2(x.group(1))+' ', text)
|
||||
text = re.sub(r'\[JA\](.*?)\[JA\]',
|
||||
lambda x: japanese_to_ipa3(x.group(1)).replace('Q', 'ʔ')+' ', text)
|
||||
text = re.sub(r'\[SH\](.*?)\[SH\]', lambda x: shanghainese_to_ipa(x.group(1)).replace('1', '˥˧').replace('5',
|
||||
'˧˧˦').replace('6', '˩˩˧').replace('7', '˥').replace('8', '˩˨').replace('ᴀ', 'ɐ').replace('ᴇ', 'e')+' ', text)
|
||||
text = re.sub(r'\[GD\](.*?)\[GD\]',
|
||||
lambda x: cantonese_to_ipa(x.group(1))+' ', text)
|
||||
text = re.sub(r'\[EN\](.*?)\[EN\]',
|
||||
lambda x: english_to_lazy_ipa2(x.group(1))+' ', text)
|
||||
text = re.sub(r'\[([A-Z]{2})\](.*?)\[\1\]', lambda x: ngu_dialect_to_ipa(x.group(2), x.group(
|
||||
1)).replace('ʣ', 'dz').replace('ʥ', 'dʑ').replace('ʦ', 'ts').replace('ʨ', 'tɕ')+' ', text)
|
||||
text = re.sub(r'\s+$', '', text)
|
||||
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
|
||||
return text
|
|
@ -0,0 +1,188 @@
|
|||
""" from https://github.com/keithito/tacotron """
|
||||
|
||||
'''
|
||||
Cleaners are transformations that run over the input text at both training and eval time.
|
||||
|
||||
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
||||
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
||||
1. "english_cleaners" for English text
|
||||
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
||||
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
||||
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
||||
the symbols in symbols.py to match your data).
|
||||
'''
|
||||
|
||||
|
||||
# Regular expression matching whitespace:
|
||||
|
||||
|
||||
import re
|
||||
import inflect
|
||||
from unidecode import unidecode
|
||||
import eng_to_ipa as ipa
|
||||
_inflect = inflect.engine()
|
||||
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
|
||||
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
|
||||
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
|
||||
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
|
||||
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
|
||||
_number_re = re.compile(r'[0-9]+')
|
||||
|
||||
# List of (regular expression, replacement) pairs for abbreviations:
|
||||
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
|
||||
('mrs', 'misess'),
|
||||
('mr', 'mister'),
|
||||
('dr', 'doctor'),
|
||||
('st', 'saint'),
|
||||
('co', 'company'),
|
||||
('jr', 'junior'),
|
||||
('maj', 'major'),
|
||||
('gen', 'general'),
|
||||
('drs', 'doctors'),
|
||||
('rev', 'reverend'),
|
||||
('lt', 'lieutenant'),
|
||||
('hon', 'honorable'),
|
||||
('sgt', 'sergeant'),
|
||||
('capt', 'captain'),
|
||||
('esq', 'esquire'),
|
||||
('ltd', 'limited'),
|
||||
('col', 'colonel'),
|
||||
('ft', 'fort'),
|
||||
]]
|
||||
|
||||
|
||||
# List of (ipa, lazy ipa) pairs:
|
||||
_lazy_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('r', 'ɹ'),
|
||||
('æ', 'e'),
|
||||
('ɑ', 'a'),
|
||||
('ɔ', 'o'),
|
||||
('ð', 'z'),
|
||||
('θ', 's'),
|
||||
('ɛ', 'e'),
|
||||
('ɪ', 'i'),
|
||||
('ʊ', 'u'),
|
||||
('ʒ', 'ʥ'),
|
||||
('ʤ', 'ʥ'),
|
||||
('ˈ', '↓'),
|
||||
]]
|
||||
|
||||
# List of (ipa, lazy ipa2) pairs:
|
||||
_lazy_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('r', 'ɹ'),
|
||||
('ð', 'z'),
|
||||
('θ', 's'),
|
||||
('ʒ', 'ʑ'),
|
||||
('ʤ', 'dʑ'),
|
||||
('ˈ', '↓'),
|
||||
]]
|
||||
|
||||
# List of (ipa, ipa2) pairs
|
||||
_ipa_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('r', 'ɹ'),
|
||||
('ʤ', 'dʒ'),
|
||||
('ʧ', 'tʃ')
|
||||
]]
|
||||
|
||||
|
||||
def expand_abbreviations(text):
|
||||
for regex, replacement in _abbreviations:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def collapse_whitespace(text):
|
||||
return re.sub(r'\s+', ' ', text)
|
||||
|
||||
|
||||
def _remove_commas(m):
|
||||
return m.group(1).replace(',', '')
|
||||
|
||||
|
||||
def _expand_decimal_point(m):
|
||||
return m.group(1).replace('.', ' point ')
|
||||
|
||||
|
||||
def _expand_dollars(m):
|
||||
match = m.group(1)
|
||||
parts = match.split('.')
|
||||
if len(parts) > 2:
|
||||
return match + ' dollars' # Unexpected format
|
||||
dollars = int(parts[0]) if parts[0] else 0
|
||||
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
||||
if dollars and cents:
|
||||
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
||||
cent_unit = 'cent' if cents == 1 else 'cents'
|
||||
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
|
||||
elif dollars:
|
||||
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
||||
return '%s %s' % (dollars, dollar_unit)
|
||||
elif cents:
|
||||
cent_unit = 'cent' if cents == 1 else 'cents'
|
||||
return '%s %s' % (cents, cent_unit)
|
||||
else:
|
||||
return 'zero dollars'
|
||||
|
||||
|
||||
def _expand_ordinal(m):
|
||||
return _inflect.number_to_words(m.group(0))
|
||||
|
||||
|
||||
def _expand_number(m):
|
||||
num = int(m.group(0))
|
||||
if num > 1000 and num < 3000:
|
||||
if num == 2000:
|
||||
return 'two thousand'
|
||||
elif num > 2000 and num < 2010:
|
||||
return 'two thousand ' + _inflect.number_to_words(num % 100)
|
||||
elif num % 100 == 0:
|
||||
return _inflect.number_to_words(num // 100) + ' hundred'
|
||||
else:
|
||||
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
|
||||
else:
|
||||
return _inflect.number_to_words(num, andword='')
|
||||
|
||||
|
||||
def normalize_numbers(text):
|
||||
text = re.sub(_comma_number_re, _remove_commas, text)
|
||||
text = re.sub(_pounds_re, r'\1 pounds', text)
|
||||
text = re.sub(_dollars_re, _expand_dollars, text)
|
||||
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
||||
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
||||
text = re.sub(_number_re, _expand_number, text)
|
||||
return text
|
||||
|
||||
|
||||
def mark_dark_l(text):
|
||||
return re.sub(r'l([^aeiouæɑɔəɛɪʊ ]*(?: |$))', lambda x: 'ɫ'+x.group(1), text)
|
||||
|
||||
|
||||
def english_to_ipa(text):
|
||||
text = unidecode(text).lower()
|
||||
text = expand_abbreviations(text)
|
||||
text = normalize_numbers(text)
|
||||
phonemes = ipa.convert(text)
|
||||
phonemes = collapse_whitespace(phonemes)
|
||||
return phonemes
|
||||
|
||||
|
||||
def english_to_lazy_ipa(text):
|
||||
text = english_to_ipa(text)
|
||||
for regex, replacement in _lazy_ipa:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def english_to_ipa2(text):
|
||||
text = english_to_ipa(text)
|
||||
text = mark_dark_l(text)
|
||||
for regex, replacement in _ipa_to_ipa2:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text.replace('...', '…')
|
||||
|
||||
|
||||
def english_to_lazy_ipa2(text):
|
||||
text = english_to_ipa(text)
|
||||
for regex, replacement in _lazy_ipa2:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
|
@ -0,0 +1,153 @@
|
|||
import re
|
||||
from unidecode import unidecode
|
||||
import pyopenjtalk
|
||||
|
||||
|
||||
# Regular expression matching Japanese without punctuation marks:
|
||||
_japanese_characters = re.compile(
|
||||
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
||||
|
||||
# Regular expression matching non-Japanese characters or punctuation marks:
|
||||
_japanese_marks = re.compile(
|
||||
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
||||
|
||||
# List of (symbol, Japanese) pairs for marks:
|
||||
_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('%', 'パーセント')
|
||||
]]
|
||||
|
||||
# List of (romaji, ipa) pairs for marks:
|
||||
_romaji_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('ts', 'ʦ'),
|
||||
('u', 'ɯ'),
|
||||
('j', 'ʥ'),
|
||||
('y', 'j'),
|
||||
('ni', 'n^i'),
|
||||
('nj', 'n^'),
|
||||
('hi', 'çi'),
|
||||
('hj', 'ç'),
|
||||
('f', 'ɸ'),
|
||||
('I', 'i*'),
|
||||
('U', 'ɯ*'),
|
||||
('r', 'ɾ')
|
||||
]]
|
||||
|
||||
# List of (romaji, ipa2) pairs for marks:
|
||||
_romaji_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('u', 'ɯ'),
|
||||
('ʧ', 'tʃ'),
|
||||
('j', 'dʑ'),
|
||||
('y', 'j'),
|
||||
('ni', 'n^i'),
|
||||
('nj', 'n^'),
|
||||
('hi', 'çi'),
|
||||
('hj', 'ç'),
|
||||
('f', 'ɸ'),
|
||||
('I', 'i*'),
|
||||
('U', 'ɯ*'),
|
||||
('r', 'ɾ')
|
||||
]]
|
||||
|
||||
# List of (consonant, sokuon) pairs:
|
||||
_real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
(r'Q([↑↓]*[kg])', r'k#\1'),
|
||||
(r'Q([↑↓]*[tdjʧ])', r't#\1'),
|
||||
(r'Q([↑↓]*[sʃ])', r's\1'),
|
||||
(r'Q([↑↓]*[pb])', r'p#\1')
|
||||
]]
|
||||
|
||||
# List of (consonant, hatsuon) pairs:
|
||||
_real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
(r'N([↑↓]*[pbm])', r'm\1'),
|
||||
(r'N([↑↓]*[ʧʥj])', r'n^\1'),
|
||||
(r'N([↑↓]*[tdn])', r'n\1'),
|
||||
(r'N([↑↓]*[kg])', r'ŋ\1')
|
||||
]]
|
||||
|
||||
|
||||
def symbols_to_japanese(text):
|
||||
for regex, replacement in _symbols_to_japanese:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def japanese_to_romaji_with_accent(text):
|
||||
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
|
||||
text = symbols_to_japanese(text)
|
||||
sentences = re.split(_japanese_marks, text)
|
||||
marks = re.findall(_japanese_marks, text)
|
||||
text = ''
|
||||
for i, sentence in enumerate(sentences):
|
||||
if re.match(_japanese_characters, sentence):
|
||||
if text != '':
|
||||
text += ' '
|
||||
labels = pyopenjtalk.extract_fullcontext(sentence)
|
||||
for n, label in enumerate(labels):
|
||||
phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
|
||||
if phoneme not in ['sil', 'pau']:
|
||||
text += phoneme.replace('ch', 'ʧ').replace('sh',
|
||||
'ʃ').replace('cl', 'Q')
|
||||
else:
|
||||
continue
|
||||
# n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
|
||||
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
|
||||
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
|
||||
a3 = int(re.search(r"\+(\d+)/", label).group(1))
|
||||
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
|
||||
a2_next = -1
|
||||
else:
|
||||
a2_next = int(
|
||||
re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
|
||||
# Accent phrase boundary
|
||||
if a3 == 1 and a2_next == 1:
|
||||
text += ' '
|
||||
# Falling
|
||||
elif a1 == 0 and a2_next == a2 + 1:
|
||||
text += '↓'
|
||||
# Rising
|
||||
elif a2 == 1 and a2_next == 2:
|
||||
text += '↑'
|
||||
if i < len(marks):
|
||||
text += unidecode(marks[i]).replace(' ', '')
|
||||
return text
|
||||
|
||||
|
||||
def get_real_sokuon(text):
|
||||
for regex, replacement in _real_sokuon:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def get_real_hatsuon(text):
|
||||
for regex, replacement in _real_hatsuon:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def japanese_to_ipa(text):
|
||||
text = japanese_to_romaji_with_accent(text).replace('...', '…')
|
||||
text = re.sub(
|
||||
r'([aiueo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
|
||||
text = get_real_sokuon(text)
|
||||
text = get_real_hatsuon(text)
|
||||
for regex, replacement in _romaji_to_ipa:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def japanese_to_ipa2(text):
|
||||
text = japanese_to_romaji_with_accent(text).replace('...', '…')
|
||||
text = get_real_sokuon(text)
|
||||
text = get_real_hatsuon(text)
|
||||
for regex, replacement in _romaji_to_ipa2:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def japanese_to_ipa3(text):
|
||||
text = japanese_to_ipa2(text).replace('n^', 'ȵ').replace(
|
||||
'ʃ', 'ɕ').replace('*', '\u0325').replace('#', '\u031a')
|
||||
text = re.sub(
|
||||
r'([aiɯeo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
|
||||
text = re.sub(r'((?:^|\s)(?:ts|tɕ|[kpt]))', r'\1ʰ', text)
|
||||
return text
|
|
@ -0,0 +1,210 @@
|
|||
import re
|
||||
from jamo import h2j, j2hcj
|
||||
import ko_pron
|
||||
|
||||
|
||||
# This is a list of Korean classifiers preceded by pure Korean numerals.
|
||||
_korean_classifiers = '군데 권 개 그루 닢 대 두 마리 모 모금 뭇 발 발짝 방 번 벌 보루 살 수 술 시 쌈 움큼 정 짝 채 척 첩 축 켤레 톨 통'
|
||||
|
||||
# List of (hangul, hangul divided) pairs:
|
||||
_hangul_divided = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('ㄳ', 'ㄱㅅ'),
|
||||
('ㄵ', 'ㄴㅈ'),
|
||||
('ㄶ', 'ㄴㅎ'),
|
||||
('ㄺ', 'ㄹㄱ'),
|
||||
('ㄻ', 'ㄹㅁ'),
|
||||
('ㄼ', 'ㄹㅂ'),
|
||||
('ㄽ', 'ㄹㅅ'),
|
||||
('ㄾ', 'ㄹㅌ'),
|
||||
('ㄿ', 'ㄹㅍ'),
|
||||
('ㅀ', 'ㄹㅎ'),
|
||||
('ㅄ', 'ㅂㅅ'),
|
||||
('ㅘ', 'ㅗㅏ'),
|
||||
('ㅙ', 'ㅗㅐ'),
|
||||
('ㅚ', 'ㅗㅣ'),
|
||||
('ㅝ', 'ㅜㅓ'),
|
||||
('ㅞ', 'ㅜㅔ'),
|
||||
('ㅟ', 'ㅜㅣ'),
|
||||
('ㅢ', 'ㅡㅣ'),
|
||||
('ㅑ', 'ㅣㅏ'),
|
||||
('ㅒ', 'ㅣㅐ'),
|
||||
('ㅕ', 'ㅣㅓ'),
|
||||
('ㅖ', 'ㅣㅔ'),
|
||||
('ㅛ', 'ㅣㅗ'),
|
||||
('ㅠ', 'ㅣㅜ')
|
||||
]]
|
||||
|
||||
# List of (Latin alphabet, hangul) pairs:
|
||||
_latin_to_hangul = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
||||
('a', '에이'),
|
||||
('b', '비'),
|
||||
('c', '시'),
|
||||
('d', '디'),
|
||||
('e', '이'),
|
||||
('f', '에프'),
|
||||
('g', '지'),
|
||||
('h', '에이치'),
|
||||
('i', '아이'),
|
||||
('j', '제이'),
|
||||
('k', '케이'),
|
||||
('l', '엘'),
|
||||
('m', '엠'),
|
||||
('n', '엔'),
|
||||
('o', '오'),
|
||||
('p', '피'),
|
||||
('q', '큐'),
|
||||
('r', '아르'),
|
||||
('s', '에스'),
|
||||
('t', '티'),
|
||||
('u', '유'),
|
||||
('v', '브이'),
|
||||
('w', '더블유'),
|
||||
('x', '엑스'),
|
||||
('y', '와이'),
|
||||
('z', '제트')
|
||||
]]
|
||||
|
||||
# List of (ipa, lazy ipa) pairs:
|
||||
_ipa_to_lazy_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
||||
('t͡ɕ','ʧ'),
|
||||
('d͡ʑ','ʥ'),
|
||||
('ɲ','n^'),
|
||||
('ɕ','ʃ'),
|
||||
('ʷ','w'),
|
||||
('ɭ','l`'),
|
||||
('ʎ','ɾ'),
|
||||
('ɣ','ŋ'),
|
||||
('ɰ','ɯ'),
|
||||
('ʝ','j'),
|
||||
('ʌ','ə'),
|
||||
('ɡ','g'),
|
||||
('\u031a','#'),
|
||||
('\u0348','='),
|
||||
('\u031e',''),
|
||||
('\u0320',''),
|
||||
('\u0339','')
|
||||
]]
|
||||
|
||||
|
||||
def latin_to_hangul(text):
|
||||
for regex, replacement in _latin_to_hangul:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def divide_hangul(text):
|
||||
text = j2hcj(h2j(text))
|
||||
for regex, replacement in _hangul_divided:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def hangul_number(num, sino=True):
|
||||
'''Reference https://github.com/Kyubyong/g2pK'''
|
||||
num = re.sub(',', '', num)
|
||||
|
||||
if num == '0':
|
||||
return '영'
|
||||
if not sino and num == '20':
|
||||
return '스무'
|
||||
|
||||
digits = '123456789'
|
||||
names = '일이삼사오육칠팔구'
|
||||
digit2name = {d: n for d, n in zip(digits, names)}
|
||||
|
||||
modifiers = '한 두 세 네 다섯 여섯 일곱 여덟 아홉'
|
||||
decimals = '열 스물 서른 마흔 쉰 예순 일흔 여든 아흔'
|
||||
digit2mod = {d: mod for d, mod in zip(digits, modifiers.split())}
|
||||
digit2dec = {d: dec for d, dec in zip(digits, decimals.split())}
|
||||
|
||||
spelledout = []
|
||||
for i, digit in enumerate(num):
|
||||
i = len(num) - i - 1
|
||||
if sino:
|
||||
if i == 0:
|
||||
name = digit2name.get(digit, '')
|
||||
elif i == 1:
|
||||
name = digit2name.get(digit, '') + '십'
|
||||
name = name.replace('일십', '십')
|
||||
else:
|
||||
if i == 0:
|
||||
name = digit2mod.get(digit, '')
|
||||
elif i == 1:
|
||||
name = digit2dec.get(digit, '')
|
||||
if digit == '0':
|
||||
if i % 4 == 0:
|
||||
last_three = spelledout[-min(3, len(spelledout)):]
|
||||
if ''.join(last_three) == '':
|
||||
spelledout.append('')
|
||||
continue
|
||||
else:
|
||||
spelledout.append('')
|
||||
continue
|
||||
if i == 2:
|
||||
name = digit2name.get(digit, '') + '백'
|
||||
name = name.replace('일백', '백')
|
||||
elif i == 3:
|
||||
name = digit2name.get(digit, '') + '천'
|
||||
name = name.replace('일천', '천')
|
||||
elif i == 4:
|
||||
name = digit2name.get(digit, '') + '만'
|
||||
name = name.replace('일만', '만')
|
||||
elif i == 5:
|
||||
name = digit2name.get(digit, '') + '십'
|
||||
name = name.replace('일십', '십')
|
||||
elif i == 6:
|
||||
name = digit2name.get(digit, '') + '백'
|
||||
name = name.replace('일백', '백')
|
||||
elif i == 7:
|
||||
name = digit2name.get(digit, '') + '천'
|
||||
name = name.replace('일천', '천')
|
||||
elif i == 8:
|
||||
name = digit2name.get(digit, '') + '억'
|
||||
elif i == 9:
|
||||
name = digit2name.get(digit, '') + '십'
|
||||
elif i == 10:
|
||||
name = digit2name.get(digit, '') + '백'
|
||||
elif i == 11:
|
||||
name = digit2name.get(digit, '') + '천'
|
||||
elif i == 12:
|
||||
name = digit2name.get(digit, '') + '조'
|
||||
elif i == 13:
|
||||
name = digit2name.get(digit, '') + '십'
|
||||
elif i == 14:
|
||||
name = digit2name.get(digit, '') + '백'
|
||||
elif i == 15:
|
||||
name = digit2name.get(digit, '') + '천'
|
||||
spelledout.append(name)
|
||||
return ''.join(elem for elem in spelledout)
|
||||
|
||||
|
||||
def number_to_hangul(text):
|
||||
'''Reference https://github.com/Kyubyong/g2pK'''
|
||||
tokens = set(re.findall(r'(\d[\d,]*)([\uac00-\ud71f]+)', text))
|
||||
for token in tokens:
|
||||
num, classifier = token
|
||||
if classifier[:2] in _korean_classifiers or classifier[0] in _korean_classifiers:
|
||||
spelledout = hangul_number(num, sino=False)
|
||||
else:
|
||||
spelledout = hangul_number(num, sino=True)
|
||||
text = text.replace(f'{num}{classifier}', f'{spelledout}{classifier}')
|
||||
# digit by digit for remaining digits
|
||||
digits = '0123456789'
|
||||
names = '영일이삼사오육칠팔구'
|
||||
for d, n in zip(digits, names):
|
||||
text = text.replace(d, n)
|
||||
return text
|
||||
|
||||
|
||||
def korean_to_lazy_ipa(text):
|
||||
text = latin_to_hangul(text)
|
||||
text = number_to_hangul(text)
|
||||
text=re.sub('[\uac00-\ud7af]+',lambda x:ko_pron.romanise(x.group(0),'ipa').split('] ~ [')[0],text)
|
||||
for regex, replacement in _ipa_to_lazy_ipa:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def korean_to_ipa(text):
|
||||
text = korean_to_lazy_ipa(text)
|
||||
return text.replace('ʧ','tʃ').replace('ʥ','dʑ')
|
|
@ -0,0 +1,330 @@
|
|||
import os
|
||||
import sys
|
||||
import re
|
||||
from pypinyin import lazy_pinyin, BOPOMOFO
|
||||
import jieba
|
||||
import cn2an
|
||||
import logging
|
||||
|
||||
logging.getLogger('jieba').setLevel(logging.WARNING)
|
||||
jieba.set_dictionary(os.path.dirname(sys.argv[0])+'/jieba/dict.txt')
|
||||
jieba.initialize()
|
||||
|
||||
|
||||
# List of (Latin alphabet, bopomofo) pairs:
|
||||
_latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
||||
('a', 'ㄟˉ'),
|
||||
('b', 'ㄅㄧˋ'),
|
||||
('c', 'ㄙㄧˉ'),
|
||||
('d', 'ㄉㄧˋ'),
|
||||
('e', 'ㄧˋ'),
|
||||
('f', 'ㄝˊㄈㄨˋ'),
|
||||
('g', 'ㄐㄧˋ'),
|
||||
('h', 'ㄝˇㄑㄩˋ'),
|
||||
('i', 'ㄞˋ'),
|
||||
('j', 'ㄐㄟˋ'),
|
||||
('k', 'ㄎㄟˋ'),
|
||||
('l', 'ㄝˊㄛˋ'),
|
||||
('m', 'ㄝˊㄇㄨˋ'),
|
||||
('n', 'ㄣˉ'),
|
||||
('o', 'ㄡˉ'),
|
||||
('p', 'ㄆㄧˉ'),
|
||||
('q', 'ㄎㄧㄡˉ'),
|
||||
('r', 'ㄚˋ'),
|
||||
('s', 'ㄝˊㄙˋ'),
|
||||
('t', 'ㄊㄧˋ'),
|
||||
('u', 'ㄧㄡˉ'),
|
||||
('v', 'ㄨㄧˉ'),
|
||||
('w', 'ㄉㄚˋㄅㄨˋㄌㄧㄡˋ'),
|
||||
('x', 'ㄝˉㄎㄨˋㄙˋ'),
|
||||
('y', 'ㄨㄞˋ'),
|
||||
('z', 'ㄗㄟˋ')
|
||||
]]
|
||||
|
||||
# List of (bopomofo, romaji) pairs:
|
||||
_bopomofo_to_romaji = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('ㄅㄛ', 'p⁼wo'),
|
||||
('ㄆㄛ', 'pʰwo'),
|
||||
('ㄇㄛ', 'mwo'),
|
||||
('ㄈㄛ', 'fwo'),
|
||||
('ㄅ', 'p⁼'),
|
||||
('ㄆ', 'pʰ'),
|
||||
('ㄇ', 'm'),
|
||||
('ㄈ', 'f'),
|
||||
('ㄉ', 't⁼'),
|
||||
('ㄊ', 'tʰ'),
|
||||
('ㄋ', 'n'),
|
||||
('ㄌ', 'l'),
|
||||
('ㄍ', 'k⁼'),
|
||||
('ㄎ', 'kʰ'),
|
||||
('ㄏ', 'h'),
|
||||
('ㄐ', 'ʧ⁼'),
|
||||
('ㄑ', 'ʧʰ'),
|
||||
('ㄒ', 'ʃ'),
|
||||
('ㄓ', 'ʦ`⁼'),
|
||||
('ㄔ', 'ʦ`ʰ'),
|
||||
('ㄕ', 's`'),
|
||||
('ㄖ', 'ɹ`'),
|
||||
('ㄗ', 'ʦ⁼'),
|
||||
('ㄘ', 'ʦʰ'),
|
||||
('ㄙ', 's'),
|
||||
('ㄚ', 'a'),
|
||||
('ㄛ', 'o'),
|
||||
('ㄜ', 'ə'),
|
||||
('ㄝ', 'e'),
|
||||
('ㄞ', 'ai'),
|
||||
('ㄟ', 'ei'),
|
||||
('ㄠ', 'au'),
|
||||
('ㄡ', 'ou'),
|
||||
('ㄧㄢ', 'yeNN'),
|
||||
('ㄢ', 'aNN'),
|
||||
('ㄧㄣ', 'iNN'),
|
||||
('ㄣ', 'əNN'),
|
||||
('ㄤ', 'aNg'),
|
||||
('ㄧㄥ', 'iNg'),
|
||||
('ㄨㄥ', 'uNg'),
|
||||
('ㄩㄥ', 'yuNg'),
|
||||
('ㄥ', 'əNg'),
|
||||
('ㄦ', 'əɻ'),
|
||||
('ㄧ', 'i'),
|
||||
('ㄨ', 'u'),
|
||||
('ㄩ', 'ɥ'),
|
||||
('ˉ', '→'),
|
||||
('ˊ', '↑'),
|
||||
('ˇ', '↓↑'),
|
||||
('ˋ', '↓'),
|
||||
('˙', ''),
|
||||
(',', ','),
|
||||
('。', '.'),
|
||||
('!', '!'),
|
||||
('?', '?'),
|
||||
('—', '-')
|
||||
]]
|
||||
|
||||
# List of (romaji, ipa) pairs:
|
||||
_romaji_to_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
||||
('ʃy', 'ʃ'),
|
||||
('ʧʰy', 'ʧʰ'),
|
||||
('ʧ⁼y', 'ʧ⁼'),
|
||||
('NN', 'n'),
|
||||
('Ng', 'ŋ'),
|
||||
('y', 'j'),
|
||||
('h', 'x')
|
||||
]]
|
||||
|
||||
# List of (bopomofo, ipa) pairs:
|
||||
_bopomofo_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('ㄅㄛ', 'p⁼wo'),
|
||||
('ㄆㄛ', 'pʰwo'),
|
||||
('ㄇㄛ', 'mwo'),
|
||||
('ㄈㄛ', 'fwo'),
|
||||
('ㄅ', 'p⁼'),
|
||||
('ㄆ', 'pʰ'),
|
||||
('ㄇ', 'm'),
|
||||
('ㄈ', 'f'),
|
||||
('ㄉ', 't⁼'),
|
||||
('ㄊ', 'tʰ'),
|
||||
('ㄋ', 'n'),
|
||||
('ㄌ', 'l'),
|
||||
('ㄍ', 'k⁼'),
|
||||
('ㄎ', 'kʰ'),
|
||||
('ㄏ', 'x'),
|
||||
('ㄐ', 'tʃ⁼'),
|
||||
('ㄑ', 'tʃʰ'),
|
||||
('ㄒ', 'ʃ'),
|
||||
('ㄓ', 'ts`⁼'),
|
||||
('ㄔ', 'ts`ʰ'),
|
||||
('ㄕ', 's`'),
|
||||
('ㄖ', 'ɹ`'),
|
||||
('ㄗ', 'ts⁼'),
|
||||
('ㄘ', 'tsʰ'),
|
||||
('ㄙ', 's'),
|
||||
('ㄚ', 'a'),
|
||||
('ㄛ', 'o'),
|
||||
('ㄜ', 'ə'),
|
||||
('ㄝ', 'ɛ'),
|
||||
('ㄞ', 'aɪ'),
|
||||
('ㄟ', 'eɪ'),
|
||||
('ㄠ', 'ɑʊ'),
|
||||
('ㄡ', 'oʊ'),
|
||||
('ㄧㄢ', 'jɛn'),
|
||||
('ㄩㄢ', 'ɥæn'),
|
||||
('ㄢ', 'an'),
|
||||
('ㄧㄣ', 'in'),
|
||||
('ㄩㄣ', 'ɥn'),
|
||||
('ㄣ', 'ən'),
|
||||
('ㄤ', 'ɑŋ'),
|
||||
('ㄧㄥ', 'iŋ'),
|
||||
('ㄨㄥ', 'ʊŋ'),
|
||||
('ㄩㄥ', 'jʊŋ'),
|
||||
('ㄥ', 'əŋ'),
|
||||
('ㄦ', 'əɻ'),
|
||||
('ㄧ', 'i'),
|
||||
('ㄨ', 'u'),
|
||||
('ㄩ', 'ɥ'),
|
||||
('ˉ', '→'),
|
||||
('ˊ', '↑'),
|
||||
('ˇ', '↓↑'),
|
||||
('ˋ', '↓'),
|
||||
('˙', ''),
|
||||
(',', ','),
|
||||
('。', '.'),
|
||||
('!', '!'),
|
||||
('?', '?'),
|
||||
('—', '-')
|
||||
]]
|
||||
|
||||
# List of (bopomofo, ipa2) pairs:
|
||||
_bopomofo_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('ㄅㄛ', 'pwo'),
|
||||
('ㄆㄛ', 'pʰwo'),
|
||||
('ㄇㄛ', 'mwo'),
|
||||
('ㄈㄛ', 'fwo'),
|
||||
('ㄅ', 'p'),
|
||||
('ㄆ', 'pʰ'),
|
||||
('ㄇ', 'm'),
|
||||
('ㄈ', 'f'),
|
||||
('ㄉ', 't'),
|
||||
('ㄊ', 'tʰ'),
|
||||
('ㄋ', 'n'),
|
||||
('ㄌ', 'l'),
|
||||
('ㄍ', 'k'),
|
||||
('ㄎ', 'kʰ'),
|
||||
('ㄏ', 'h'),
|
||||
('ㄐ', 'tɕ'),
|
||||
('ㄑ', 'tɕʰ'),
|
||||
('ㄒ', 'ɕ'),
|
||||
('ㄓ', 'tʂ'),
|
||||
('ㄔ', 'tʂʰ'),
|
||||
('ㄕ', 'ʂ'),
|
||||
('ㄖ', 'ɻ'),
|
||||
('ㄗ', 'ts'),
|
||||
('ㄘ', 'tsʰ'),
|
||||
('ㄙ', 's'),
|
||||
('ㄚ', 'a'),
|
||||
('ㄛ', 'o'),
|
||||
('ㄜ', 'ɤ'),
|
||||
('ㄝ', 'ɛ'),
|
||||
('ㄞ', 'aɪ'),
|
||||
('ㄟ', 'eɪ'),
|
||||
('ㄠ', 'ɑʊ'),
|
||||
('ㄡ', 'oʊ'),
|
||||
('ㄧㄢ', 'jɛn'),
|
||||
('ㄩㄢ', 'yæn'),
|
||||
('ㄢ', 'an'),
|
||||
('ㄧㄣ', 'in'),
|
||||
('ㄩㄣ', 'yn'),
|
||||
('ㄣ', 'ən'),
|
||||
('ㄤ', 'ɑŋ'),
|
||||
('ㄧㄥ', 'iŋ'),
|
||||
('ㄨㄥ', 'ʊŋ'),
|
||||
('ㄩㄥ', 'jʊŋ'),
|
||||
('ㄥ', 'ɤŋ'),
|
||||
('ㄦ', 'əɻ'),
|
||||
('ㄧ', 'i'),
|
||||
('ㄨ', 'u'),
|
||||
('ㄩ', 'y'),
|
||||
('ˉ', '˥'),
|
||||
('ˊ', '˧˥'),
|
||||
('ˇ', '˨˩˦'),
|
||||
('ˋ', '˥˩'),
|
||||
('˙', ''),
|
||||
(',', ','),
|
||||
('。', '.'),
|
||||
('!', '!'),
|
||||
('?', '?'),
|
||||
('—', '-')
|
||||
]]
|
||||
|
||||
|
||||
def number_to_chinese(text):
|
||||
numbers = re.findall(r'\d+(?:\.?\d+)?', text)
|
||||
for number in numbers:
|
||||
text = text.replace(number, cn2an.an2cn(number), 1)
|
||||
return text
|
||||
|
||||
|
||||
def chinese_to_bopomofo(text):
|
||||
text = text.replace('、', ',').replace(';', ',').replace(':', ',')
|
||||
words = jieba.lcut(text, cut_all=False)
|
||||
text = ''
|
||||
for word in words:
|
||||
bopomofos = lazy_pinyin(word, BOPOMOFO)
|
||||
if not re.search('[\u4e00-\u9fff]', word):
|
||||
text += word
|
||||
continue
|
||||
for i in range(len(bopomofos)):
|
||||
bopomofos[i] = re.sub(r'([\u3105-\u3129])$', r'\1ˉ', bopomofos[i])
|
||||
if text != '':
|
||||
text += ' '
|
||||
text += ''.join(bopomofos)
|
||||
return text
|
||||
|
||||
|
||||
def latin_to_bopomofo(text):
|
||||
for regex, replacement in _latin_to_bopomofo:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def bopomofo_to_romaji(text):
|
||||
for regex, replacement in _bopomofo_to_romaji:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def bopomofo_to_ipa(text):
|
||||
for regex, replacement in _bopomofo_to_ipa:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def bopomofo_to_ipa2(text):
|
||||
for regex, replacement in _bopomofo_to_ipa2:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def chinese_to_romaji(text):
|
||||
text = number_to_chinese(text)
|
||||
text = chinese_to_bopomofo(text)
|
||||
text = latin_to_bopomofo(text)
|
||||
text = bopomofo_to_romaji(text)
|
||||
text = re.sub('i([aoe])', r'y\1', text)
|
||||
text = re.sub('u([aoəe])', r'w\1', text)
|
||||
text = re.sub('([ʦsɹ]`[⁼ʰ]?)([→↓↑ ]+|$)',
|
||||
r'\1ɹ`\2', text).replace('ɻ', 'ɹ`')
|
||||
text = re.sub('([ʦs][⁼ʰ]?)([→↓↑ ]+|$)', r'\1ɹ\2', text)
|
||||
return text
|
||||
|
||||
|
||||
def chinese_to_lazy_ipa(text):
|
||||
text = chinese_to_romaji(text)
|
||||
for regex, replacement in _romaji_to_ipa:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def chinese_to_ipa(text):
|
||||
text = number_to_chinese(text)
|
||||
text = chinese_to_bopomofo(text)
|
||||
text = latin_to_bopomofo(text)
|
||||
text = bopomofo_to_ipa(text)
|
||||
text = re.sub('i([aoe])', r'j\1', text)
|
||||
text = re.sub('u([aoəe])', r'w\1', text)
|
||||
text = re.sub('([sɹ]`[⁼ʰ]?)([→↓↑ ]+|$)',
|
||||
r'\1ɹ`\2', text).replace('ɻ', 'ɹ`')
|
||||
text = re.sub('([s][⁼ʰ]?)([→↓↑ ]+|$)', r'\1ɹ\2', text)
|
||||
return text
|
||||
|
||||
|
||||
def chinese_to_ipa2(text):
|
||||
text = number_to_chinese(text)
|
||||
text = chinese_to_bopomofo(text)
|
||||
text = latin_to_bopomofo(text)
|
||||
text = bopomofo_to_ipa2(text)
|
||||
text = re.sub(r'i([aoe])', r'j\1', text)
|
||||
text = re.sub(r'u([aoəe])', r'w\1', text)
|
||||
text = re.sub(r'([ʂɹ]ʰ?)([˩˨˧˦˥ ]+|$)', r'\1ʅ\2', text)
|
||||
text = re.sub(r'(sʰ?)([˩˨˧˦˥ ]+|$)', r'\1ɿ\2', text)
|
||||
return text
|
|
@ -0,0 +1,30 @@
|
|||
import re
|
||||
import opencc
|
||||
|
||||
|
||||
dialects = {'SZ': 'suzhou', 'WX': 'wuxi', 'CZ': 'changzhou', 'HZ': 'hangzhou',
|
||||
'SX': 'shaoxing', 'NB': 'ningbo', 'JJ': 'jingjiang', 'YX': 'yixing',
|
||||
'JD': 'jiading', 'ZR': 'zhenru', 'PH': 'pinghu', 'TX': 'tongxiang',
|
||||
'JS': 'jiashan', 'HN': 'xiashi', 'LP': 'linping', 'XS': 'xiaoshan',
|
||||
'FY': 'fuyang', 'RA': 'ruao', 'CX': 'cixi', 'SM': 'sanmen',
|
||||
'TT': 'tiantai', 'WZ': 'wenzhou', 'SC': 'suichang', 'YB': 'youbu'}
|
||||
|
||||
converters = {}
|
||||
|
||||
for dialect in dialects.values():
|
||||
try:
|
||||
converters[dialect] = opencc.OpenCC(dialect)
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def ngu_dialect_to_ipa(text, dialect):
|
||||
dialect = dialects[dialect]
|
||||
text = converters[dialect].convert(text).replace('-','').replace('$',' ')
|
||||
text = re.sub(r'[、;:]', ',', text)
|
||||
text = re.sub(r'\s*,\s*', ', ', text)
|
||||
text = re.sub(r'\s*。\s*', '. ', text)
|
||||
text = re.sub(r'\s*?\s*', '? ', text)
|
||||
text = re.sub(r'\s*!\s*', '! ', text)
|
||||
text = re.sub(r'\s*$', '', text)
|
||||
return text
|
|
@ -0,0 +1,62 @@
|
|||
import re
|
||||
from indic_transliteration import sanscript
|
||||
|
||||
|
||||
# List of (iast, ipa) pairs:
|
||||
_iast_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('a', 'ə'),
|
||||
('ā', 'aː'),
|
||||
('ī', 'iː'),
|
||||
('ū', 'uː'),
|
||||
('ṛ', 'ɹ`'),
|
||||
('ṝ', 'ɹ`ː'),
|
||||
('ḷ', 'l`'),
|
||||
('ḹ', 'l`ː'),
|
||||
('e', 'eː'),
|
||||
('o', 'oː'),
|
||||
('k', 'k⁼'),
|
||||
('k⁼h', 'kʰ'),
|
||||
('g', 'g⁼'),
|
||||
('g⁼h', 'gʰ'),
|
||||
('ṅ', 'ŋ'),
|
||||
('c', 'ʧ⁼'),
|
||||
('ʧ⁼h', 'ʧʰ'),
|
||||
('j', 'ʥ⁼'),
|
||||
('ʥ⁼h', 'ʥʰ'),
|
||||
('ñ', 'n^'),
|
||||
('ṭ', 't`⁼'),
|
||||
('t`⁼h', 't`ʰ'),
|
||||
('ḍ', 'd`⁼'),
|
||||
('d`⁼h', 'd`ʰ'),
|
||||
('ṇ', 'n`'),
|
||||
('t', 't⁼'),
|
||||
('t⁼h', 'tʰ'),
|
||||
('d', 'd⁼'),
|
||||
('d⁼h', 'dʰ'),
|
||||
('p', 'p⁼'),
|
||||
('p⁼h', 'pʰ'),
|
||||
('b', 'b⁼'),
|
||||
('b⁼h', 'bʰ'),
|
||||
('y', 'j'),
|
||||
('ś', 'ʃ'),
|
||||
('ṣ', 's`'),
|
||||
('r', 'ɾ'),
|
||||
('l̤', 'l`'),
|
||||
('h', 'ɦ'),
|
||||
("'", ''),
|
||||
('~', '^'),
|
||||
('ṃ', '^')
|
||||
]]
|
||||
|
||||
|
||||
def devanagari_to_ipa(text):
|
||||
text = text.replace('ॐ', 'ओम्')
|
||||
text = re.sub(r'\s*।\s*$', '.', text)
|
||||
text = re.sub(r'\s*।\s*', ', ', text)
|
||||
text = re.sub(r'\s*॥', '.', text)
|
||||
text = sanscript.transliterate(text, sanscript.DEVANAGARI, sanscript.IAST)
|
||||
for regex, replacement in _iast_to_ipa:
|
||||
text = re.sub(regex, replacement, text)
|
||||
text = re.sub('(.)[`ː]*ḥ', lambda x: x.group(0)
|
||||
[:-1]+'h'+x.group(1)+'*', text)
|
||||
return text
|
|
@ -0,0 +1,64 @@
|
|||
import re
|
||||
import cn2an
|
||||
import opencc
|
||||
|
||||
|
||||
converter = opencc.OpenCC('zaonhe')
|
||||
|
||||
# List of (Latin alphabet, ipa) pairs:
|
||||
_latin_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('A', 'ᴇ'),
|
||||
('B', 'bi'),
|
||||
('C', 'si'),
|
||||
('D', 'di'),
|
||||
('E', 'i'),
|
||||
('F', 'ᴇf'),
|
||||
('G', 'dʑi'),
|
||||
('H', 'ᴇtɕʰ'),
|
||||
('I', 'ᴀi'),
|
||||
('J', 'dʑᴇ'),
|
||||
('K', 'kʰᴇ'),
|
||||
('L', 'ᴇl'),
|
||||
('M', 'ᴇm'),
|
||||
('N', 'ᴇn'),
|
||||
('O', 'o'),
|
||||
('P', 'pʰi'),
|
||||
('Q', 'kʰiu'),
|
||||
('R', 'ᴀl'),
|
||||
('S', 'ᴇs'),
|
||||
('T', 'tʰi'),
|
||||
('U', 'ɦiu'),
|
||||
('V', 'vi'),
|
||||
('W', 'dᴀbɤliu'),
|
||||
('X', 'ᴇks'),
|
||||
('Y', 'uᴀi'),
|
||||
('Z', 'zᴇ')
|
||||
]]
|
||||
|
||||
|
||||
def _number_to_shanghainese(num):
|
||||
num = cn2an.an2cn(num).replace('一十','十').replace('二十', '廿').replace('二', '两')
|
||||
return re.sub(r'((?:^|[^三四五六七八九])十|廿)两', r'\1二', num)
|
||||
|
||||
|
||||
def number_to_shanghainese(text):
|
||||
return re.sub(r'\d+(?:\.?\d+)?', lambda x: _number_to_shanghainese(x.group()), text)
|
||||
|
||||
|
||||
def latin_to_ipa(text):
|
||||
for regex, replacement in _latin_to_ipa:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def shanghainese_to_ipa(text):
|
||||
text = number_to_shanghainese(text.upper())
|
||||
text = converter.convert(text).replace('-','').replace('$',' ')
|
||||
text = re.sub(r'[A-Z]', lambda x: latin_to_ipa(x.group())+' ', text)
|
||||
text = re.sub(r'[、;:]', ',', text)
|
||||
text = re.sub(r'\s*,\s*', ', ', text)
|
||||
text = re.sub(r'\s*。\s*', '. ', text)
|
||||
text = re.sub(r'\s*?\s*', '? ', text)
|
||||
text = re.sub(r'\s*!\s*', '! ', text)
|
||||
text = re.sub(r'\s*$', '', text)
|
||||
return text
|
|
@ -0,0 +1,44 @@
|
|||
import re
|
||||
from num_thai.thainumbers import NumThai
|
||||
|
||||
|
||||
num = NumThai()
|
||||
|
||||
# List of (Latin alphabet, Thai) pairs:
|
||||
_latin_to_thai = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
||||
('a', 'เอ'),
|
||||
('b','บี'),
|
||||
('c','ซี'),
|
||||
('d','ดี'),
|
||||
('e','อี'),
|
||||
('f','เอฟ'),
|
||||
('g','จี'),
|
||||
('h','เอช'),
|
||||
('i','ไอ'),
|
||||
('j','เจ'),
|
||||
('k','เค'),
|
||||
('l','แอล'),
|
||||
('m','เอ็ม'),
|
||||
('n','เอ็น'),
|
||||
('o','โอ'),
|
||||
('p','พี'),
|
||||
('q','คิว'),
|
||||
('r','แอร์'),
|
||||
('s','เอส'),
|
||||
('t','ที'),
|
||||
('u','ยู'),
|
||||
('v','วี'),
|
||||
('w','ดับเบิลยู'),
|
||||
('x','เอ็กซ์'),
|
||||
('y','วาย'),
|
||||
('z','ซี')
|
||||
]]
|
||||
|
||||
|
||||
def num_to_thai(text):
|
||||
return re.sub(r'(?:\d+(?:,?\d+)?)+(?:\.\d+(?:,?\d+)?)?', lambda x: ''.join(num.NumberToTextThai(float(x.group(0).replace(',', '')))), text)
|
||||
|
||||
def latin_to_thai(text):
|
||||
for regex, replacement in _latin_to_thai:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
|
@ -0,0 +1,193 @@
|
|||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
||||
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||||
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||||
|
||||
|
||||
def piecewise_rational_quadratic_transform(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails=None,
|
||||
tail_bound=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
|
||||
if tails is None:
|
||||
spline_fn = rational_quadratic_spline
|
||||
spline_kwargs = {}
|
||||
else:
|
||||
spline_fn = unconstrained_rational_quadratic_spline
|
||||
spline_kwargs = {
|
||||
'tails': tails,
|
||||
'tail_bound': tail_bound
|
||||
}
|
||||
|
||||
outputs, logabsdet = spline_fn(
|
||||
inputs=inputs,
|
||||
unnormalized_widths=unnormalized_widths,
|
||||
unnormalized_heights=unnormalized_heights,
|
||||
unnormalized_derivatives=unnormalized_derivatives,
|
||||
inverse=inverse,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
**spline_kwargs
|
||||
)
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def searchsorted(bin_locations, inputs, eps=1e-6):
|
||||
bin_locations[..., -1] += eps
|
||||
return torch.sum(
|
||||
inputs[..., None] >= bin_locations,
|
||||
dim=-1
|
||||
) - 1
|
||||
|
||||
|
||||
def unconstrained_rational_quadratic_spline(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails='linear',
|
||||
tail_bound=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
||||
outside_interval_mask = ~inside_interval_mask
|
||||
|
||||
outputs = torch.zeros_like(inputs)
|
||||
logabsdet = torch.zeros_like(inputs)
|
||||
|
||||
if tails == 'linear':
|
||||
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
||||
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||||
unnormalized_derivatives[..., 0] = constant
|
||||
unnormalized_derivatives[..., -1] = constant
|
||||
|
||||
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
||||
logabsdet[outside_interval_mask] = 0
|
||||
else:
|
||||
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
||||
|
||||
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
||||
inputs=inputs[inside_interval_mask],
|
||||
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
||||
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
||||
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
||||
inverse=inverse,
|
||||
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative
|
||||
)
|
||||
|
||||
return outputs, logabsdet
|
||||
|
||||
def rational_quadratic_spline(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
left=0., right=1., bottom=0., top=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
if torch.min(inputs) < left or torch.max(inputs) > right:
|
||||
raise ValueError('Input to a transform is not within its domain')
|
||||
|
||||
num_bins = unnormalized_widths.shape[-1]
|
||||
|
||||
if min_bin_width * num_bins > 1.0:
|
||||
raise ValueError('Minimal bin width too large for the number of bins')
|
||||
if min_bin_height * num_bins > 1.0:
|
||||
raise ValueError('Minimal bin height too large for the number of bins')
|
||||
|
||||
widths = F.softmax(unnormalized_widths, dim=-1)
|
||||
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
||||
cumwidths = torch.cumsum(widths, dim=-1)
|
||||
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
||||
cumwidths = (right - left) * cumwidths + left
|
||||
cumwidths[..., 0] = left
|
||||
cumwidths[..., -1] = right
|
||||
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
||||
|
||||
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
||||
|
||||
heights = F.softmax(unnormalized_heights, dim=-1)
|
||||
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
||||
cumheights = torch.cumsum(heights, dim=-1)
|
||||
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
||||
cumheights = (top - bottom) * cumheights + bottom
|
||||
cumheights[..., 0] = bottom
|
||||
cumheights[..., -1] = top
|
||||
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
||||
|
||||
if inverse:
|
||||
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
||||
else:
|
||||
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
||||
|
||||
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
||||
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
||||
delta = heights / widths
|
||||
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
||||
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
if inverse:
|
||||
a = (((inputs - input_cumheights) * (input_derivatives
|
||||
+ input_derivatives_plus_one
|
||||
- 2 * input_delta)
|
||||
+ input_heights * (input_delta - input_derivatives)))
|
||||
b = (input_heights * input_derivatives
|
||||
- (inputs - input_cumheights) * (input_derivatives
|
||||
+ input_derivatives_plus_one
|
||||
- 2 * input_delta))
|
||||
c = - input_delta * (inputs - input_cumheights)
|
||||
|
||||
discriminant = b.pow(2) - 4 * a * c
|
||||
assert (discriminant >= 0).all()
|
||||
|
||||
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
||||
outputs = root * input_bin_widths + input_cumwidths
|
||||
|
||||
theta_one_minus_theta = root * (1 - root)
|
||||
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta)
|
||||
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - root).pow(2))
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, -logabsdet
|
||||
else:
|
||||
theta = (inputs - input_cumwidths) / input_bin_widths
|
||||
theta_one_minus_theta = theta * (1 - theta)
|
||||
|
||||
numerator = input_heights * (input_delta * theta.pow(2)
|
||||
+ input_derivatives * theta_one_minus_theta)
|
||||
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta)
|
||||
outputs = input_cumheights + numerator / denominator
|
||||
|
||||
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - theta).pow(2))
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, logabsdet
|
|
@ -0,0 +1,75 @@
|
|||
import logging
|
||||
from json import loads
|
||||
from torch import load, FloatTensor
|
||||
from numpy import float32
|
||||
import librosa
|
||||
|
||||
|
||||
class HParams():
|
||||
def __init__(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if type(v) == dict:
|
||||
v = HParams(**v)
|
||||
self[k] = v
|
||||
|
||||
def keys(self):
|
||||
return self.__dict__.keys()
|
||||
|
||||
def items(self):
|
||||
return self.__dict__.items()
|
||||
|
||||
def values(self):
|
||||
return self.__dict__.values()
|
||||
|
||||
def __len__(self):
|
||||
return len(self.__dict__)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
return setattr(self, key, value)
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.__dict__
|
||||
|
||||
def __repr__(self):
|
||||
return self.__dict__.__repr__()
|
||||
|
||||
|
||||
def load_checkpoint(checkpoint_path, model):
|
||||
checkpoint_dict = load(checkpoint_path, map_location='cpu')
|
||||
iteration = checkpoint_dict['iteration']
|
||||
saved_state_dict = checkpoint_dict['model']
|
||||
if hasattr(model, 'module'):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
new_state_dict= {}
|
||||
for k, v in state_dict.items():
|
||||
try:
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
except:
|
||||
logging.info("%s is not in the checkpoint" % k)
|
||||
new_state_dict[k] = v
|
||||
if hasattr(model, 'module'):
|
||||
model.module.load_state_dict(new_state_dict)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict)
|
||||
logging.info("Loaded checkpoint '{}' (iteration {})" .format(
|
||||
checkpoint_path, iteration))
|
||||
return
|
||||
|
||||
|
||||
def get_hparams_from_file(config_path):
|
||||
with open(config_path, "r") as f:
|
||||
data = f.read()
|
||||
config = loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
return hparams
|
||||
|
||||
|
||||
def load_audio_to_torch(full_path, target_sampling_rate):
|
||||
audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True)
|
||||
return FloatTensor(audio.astype(float32))
|
|
@ -0,0 +1,55 @@
|
|||
{
|
||||
"train": {
|
||||
"log_interval": 200,
|
||||
"eval_interval": 1000,
|
||||
"seed": 1234,
|
||||
"epochs": 10000,
|
||||
"learning_rate": 2e-4,
|
||||
"betas": [0.8, 0.99],
|
||||
"eps": 1e-9,
|
||||
"batch_size": 32,
|
||||
"fp16_run": true,
|
||||
"lr_decay": 0.999875,
|
||||
"segment_size": 8192,
|
||||
"init_lr_ratio": 1,
|
||||
"warmup_epochs": 0,
|
||||
"c_mel": 45,
|
||||
"c_kl": 1.0
|
||||
},
|
||||
"data": {
|
||||
"training_files":"filelists/xiaoke_train.txt.cleaned",
|
||||
"validation_files":"filelists/xiaoke_val.txt.cleaned",
|
||||
"text_cleaners":["zh_ja_mixture_cleaners"],
|
||||
"max_wav_value": 32768.0,
|
||||
"sampling_rate": 22050,
|
||||
"filter_length": 1024,
|
||||
"hop_length": 256,
|
||||
"win_length": 1024,
|
||||
"n_mel_channels": 80,
|
||||
"mel_fmin": 0.0,
|
||||
"mel_fmax": null,
|
||||
"add_blank": true,
|
||||
"n_speakers": 804,
|
||||
"cleaned_text": true
|
||||
},
|
||||
"model": {
|
||||
"inter_channels": 192,
|
||||
"hidden_channels": 192,
|
||||
"filter_channels": 768,
|
||||
"n_heads": 2,
|
||||
"n_layers": 6,
|
||||
"kernel_size": 3,
|
||||
"p_dropout": 0.1,
|
||||
"resblock": "1",
|
||||
"resblock_kernel_sizes": [3,7,11],
|
||||
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
||||
"upsample_rates": [8,8,2,2],
|
||||
"upsample_initial_channel": 512,
|
||||
"upsample_kernel_sizes": [16,16,4,4],
|
||||
"n_layers_q": 3,
|
||||
"use_spectral_norm": false,
|
||||
"gin_channels": 256
|
||||
},
|
||||
"speakers": ["\u963f\u55b5\u55b5"],
|
||||
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
|
||||
}
|
Loading…
Reference in New Issue