This commit is contained in:
DEII 2023-07-18 08:53:59 +08:00
parent f5ef231ca3
commit 91a65d3d08
28 changed files with 353198 additions and 0 deletions

63
vits/.gitattributes vendored Normal file
View File

@ -0,0 +1,63 @@
###############################################################################
# Set default behavior to automatically normalize line endings.
###############################################################################
* text=auto
###############################################################################
# Set default behavior for command prompt diff.
#
# This is need for earlier builds of msysgit that does not have it on by
# default for csharp files.
# Note: This is only used by command line
###############################################################################
#*.cs diff=csharp
###############################################################################
# Set the merge driver for project and solution files
#
# Merging from the command prompt will add diff markers to the files if there
# are conflicts (Merging from VS is not affected by the settings below, in VS
# the diff markers are never inserted). Diff markers may cause the following
# file extensions to fail to load in VS. An alternative would be to treat
# these files as binary and thus will always conflict and require user
# intervention with every merge. To do so, just uncomment the entries below
###############################################################################
#*.sln merge=binary
#*.csproj merge=binary
#*.vbproj merge=binary
#*.vcxproj merge=binary
#*.vcproj merge=binary
#*.dbproj merge=binary
#*.fsproj merge=binary
#*.lsproj merge=binary
#*.wixproj merge=binary
#*.modelproj merge=binary
#*.sqlproj merge=binary
#*.wwaproj merge=binary
###############################################################################
# behavior for image files
#
# image files are treated as binary by default.
###############################################################################
#*.jpg binary
#*.png binary
#*.gif binary
###############################################################################
# diff behavior for common document formats
#
# Convert binary document formats to text before diffing them. This feature
# is only available from the command line. Turn it on by uncommenting the
# entries below.
###############################################################################
#*.doc diff=astextplain
#*.DOC diff=astextplain
#*.docx diff=astextplain
#*.DOCX diff=astextplain
#*.dot diff=astextplain
#*.DOT diff=astextplain
#*.pdf diff=astextplain
#*.PDF diff=astextplain
#*.rtf diff=astextplain
#*.RTF diff=astextplain

383
vits/.gitignore vendored Normal file
View File

@ -0,0 +1,383 @@
## Ignore Visual Studio temporary files, build results, and
## files generated by popular Visual Studio add-ons.
##
## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
# User-specific files
*.rsuser
*.suo
*.user
*.userosscache
*.sln.docstates
# User-specific files (MonoDevelop/Xamarin Studio)
*.userprefs
# Mono auto generated files
mono_crash.*
# Build results
[Dd]ebug/
[Dd]ebugPublic/
[Rr]elease/
[Rr]eleases/
x64/
x86/
[Ww][Ii][Nn]32/
[Aa][Rr][Mm]/
[Aa][Rr][Mm]64/
bld/
[Bb]in/
[Oo]bj/
[Oo]ut/
[Ll]og/
[Ll]ogs/
# Visual Studio 2015/2017 cache/options directory
.vs/
# Uncomment if you have tasks that create the project's static files in wwwroot
#wwwroot/
# Visual Studio 2017 auto generated files
Generated\ Files/
# MSTest test Results
[Tt]est[Rr]esult*/
[Bb]uild[Ll]og.*
# NUnit
*.VisualState.xml
TestResult.xml
nunit-*.xml
# Build Results of an ATL Project
[Dd]ebugPS/
[Rr]eleasePS/
dlldata.c
# Benchmark Results
BenchmarkDotNet.Artifacts/
# .NET Core
project.lock.json
project.fragment.lock.json
artifacts/
# ASP.NET Scaffolding
ScaffoldingReadMe.txt
# StyleCop
StyleCopReport.xml
# Files built by Visual Studio
*_i.c
*_p.c
*_h.h
*.ilk
*.meta
*.obj
*.iobj
*.pch
*.pdb
*.ipdb
*.pgc
*.pgd
*.rsp
*.sbr
*.tlb
*.tli
*.tlh
*.tmp
*.tmp_proj
*_wpftmp.csproj
*.log
*.vspscc
*.vssscc
.builds
*.pidb
*.svclog
*.scc
# Chutzpah Test files
_Chutzpah*
# Visual C++ cache files
ipch/
*.aps
*.ncb
*.opendb
*.opensdf
*.sdf
*.cachefile
*.VC.db
*.VC.VC.opendb
# Visual Studio profiler
*.psess
*.vsp
*.vspx
*.sap
# Visual Studio Trace Files
*.e2e
# TFS 2012 Local Workspace
$tf/
# Guidance Automation Toolkit
*.gpState
# ReSharper is a .NET coding add-in
_ReSharper*/
*.[Rr]e[Ss]harper
*.DotSettings.user
# TeamCity is a build add-in
_TeamCity*
# DotCover is a Code Coverage Tool
*.dotCover
# AxoCover is a Code Coverage Tool
.axoCover/*
!.axoCover/settings.json
# Coverlet is a free, cross platform Code Coverage Tool
coverage*.json
coverage*.xml
coverage*.info
# Visual Studio code coverage results
*.coverage
*.coveragexml
# NCrunch
_NCrunch_*
.*crunch*.local.xml
nCrunchTemp_*
# MightyMoose
*.mm.*
AutoTest.Net/
# Web workbench (sass)
.sass-cache/
# Installshield output folder
[Ee]xpress/
# DocProject is a documentation generator add-in
DocProject/buildhelp/
DocProject/Help/*.HxT
DocProject/Help/*.HxC
DocProject/Help/*.hhc
DocProject/Help/*.hhk
DocProject/Help/*.hhp
DocProject/Help/Html2
DocProject/Help/html
# Click-Once directory
publish/
# Publish Web Output
*.[Pp]ublish.xml
*.azurePubxml
# Note: Comment the next line if you want to checkin your web deploy settings,
# but database connection strings (with potential passwords) will be unencrypted
*.pubxml
*.publishproj
# Microsoft Azure Web App publish settings. Comment the next line if you want to
# checkin your Azure Web App publish settings, but sensitive information contained
# in these scripts will be unencrypted
PublishScripts/
# NuGet Packages
*.nupkg
# NuGet Symbol Packages
*.snupkg
# The packages folder can be ignored because of Package Restore
**/[Pp]ackages/*
# except build/, which is used as an MSBuild target.
!**/[Pp]ackages/build/
# Uncomment if necessary however generally it will be regenerated when needed
#!**/[Pp]ackages/repositories.config
# NuGet v3's project.json files produces more ignorable files
*.nuget.props
*.nuget.targets
# Microsoft Azure Build Output
csx/
*.build.csdef
# Microsoft Azure Emulator
ecf/
rcf/
# Windows Store app package directories and files
AppPackages/
BundleArtifacts/
Package.StoreAssociation.xml
_pkginfo.txt
*.appx
*.appxbundle
*.appxupload
# Visual Studio cache files
# files ending in .cache can be ignored
*.[Cc]ache
# but keep track of directories ending in .cache
!?*.[Cc]ache/
# Others
ClientBin/
~$*
*~
*.dbmdl
*.dbproj.schemaview
*.jfm
*.pfx
*.publishsettings
orleans.codegen.cs
# Including strong name files can present a security risk
# (https://github.com/github/gitignore/pull/2483#issue-259490424)
#*.snk
# Since there are multiple workflows, uncomment next line to ignore bower_components
# (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
#bower_components/
# RIA/Silverlight projects
Generated_Code/
# Backup & report files from converting an old project file
# to a newer Visual Studio version. Backup files are not needed,
# because we have git ;-)
_UpgradeReport_Files/
Backup*/
UpgradeLog*.XML
UpgradeLog*.htm
ServiceFabricBackup/
*.rptproj.bak
# SQL Server files
*.mdf
*.ldf
*.ndf
# Business Intelligence projects
*.rdl.data
*.bim.layout
*.bim_*.settings
*.rptproj.rsuser
*- [Bb]ackup.rdl
*- [Bb]ackup ([0-9]).rdl
*- [Bb]ackup ([0-9][0-9]).rdl
# Microsoft Fakes
FakesAssemblies/
# GhostDoc plugin setting file
*.GhostDoc.xml
# Node.js Tools for Visual Studio
.ntvs_analysis.dat
node_modules/
# Visual Studio 6 build log
*.plg
# Visual Studio 6 workspace options file
*.opt
# Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
*.vbw
# Visual Studio LightSwitch build output
**/*.HTMLClient/GeneratedArtifacts
**/*.DesktopClient/GeneratedArtifacts
**/*.DesktopClient/ModelManifest.xml
**/*.Server/GeneratedArtifacts
**/*.Server/ModelManifest.xml
_Pvt_Extensions
# Paket dependency manager
.paket/paket.exe
paket-files/
# FAKE - F# Make
.fake/
# CodeRush personal settings
.cr/personal
# Python Tools for Visual Studio (PTVS)
__pycache__/
*.pyc
# Cake - Uncomment if you are using it
# tools/**
# !tools/packages.config
# Tabs Studio
*.tss
# Telerik's JustMock configuration file
*.jmconfig
# BizTalk build output
*.btp.cs
*.btm.cs
*.odx.cs
*.xsd.cs
# OpenCover UI analysis results
OpenCover/
# Azure Stream Analytics local run output
ASALocalRun/
# MSBuild Binary and Structured Log
*.binlog
# NVidia Nsight GPU debugger configuration file
*.nvuser
# MFractors (Xamarin productivity tool) working folder
.mfractor/
# Local History for Visual Studio
.localhistory/
# BeatPulse healthcheck temp database
healthchecksdb
# Backup folder for Package Reference Convert tool in Visual Studio 2017
MigrationBackup/
# Ionide (cross platform F# VS Code tools) working folder
.ionide/
# Fody - auto-generated XML schema
FodyWeavers.xsd
# build
build
monotonic_align/core.c
*.o
*.so
*.dll
# data
/config.json
/*.pth
*.wav
/monotonic_align/monotonic_align
/resources
/MoeGoe.spec
/dist/MoeGoe
/dist
# MacOS
.DS_Store

21
vits/LICENSE Normal file
View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2022 CjangCjengh
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

434
vits/MoeGoe.py Normal file
View File

@ -0,0 +1,434 @@
import datetime
from scipy.io.wavfile import write
from mel_processing import spectrogram_torch
from text import text_to_sequence, _clean_text
from models import SynthesizerTrn
import utils
import commons
import sys
import re
from torch import no_grad, LongTensor
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
def ex_print(text, escape=False):
if escape:
print(text.encode('unicode_escape').decode())
else:
print(text)
def get_text(text, hps, cleaned=False):
if cleaned:
text_norm = text_to_sequence(text, hps.symbols, [])
else:
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm
def ask_if_continue():
while True:
answer = input('Continue? (y/n): ')
if answer == 'y':
break
elif answer == 'n':
sys.exit(0)
def print_speakers(speakers, escape=False):
print('ID\tSpeaker')
for id, name in enumerate(speakers):
ex_print(str(id) + '\t' + name, escape)
def get_speaker_id(message):
'''speaker_id = input(message)
try:
speaker_id = int(speaker_id)
except:
print(str(speaker_id) + ' is not a valid ID!')
sys.exit(1)
return speaker_id'''
return 0
def get_label_value(text, label, default, warning_name='value'):
value = re.search(rf'\[{label}=(.+?)\]', text)
if value:
try:
text = re.sub(rf'\[{label}=(.+?)\]', '', text, 1)
value = float(value.group(1))
except:
print(f'Invalid {warning_name}!')
sys.exit(1)
else:
value = default
return value, text
def get_label(text, label):
if f'[{label}]' in text:
return True, text.replace(f'[{label}]', '')
else:
return False, text
def voiceGenerate(tex,out,spealerIDDD=0,modelSelect=['voiceModel/nene/1374_epochsm.pth','voiceModel/nene/config.json']):
if len(tex)>150:
tex='[JA]長すぎるああ、こんなに長い声..... んもう~[JA]'
spealerIDDD=0
if modelSelect == ['voiceModel/nene/1374_epochsm.pth','voiceModel/nene/config.json']:
tex=tex.replace('[JA]','')
text=tex
out_path=out
speakeriddd=int(spealerIDDD)
if '--escape' in sys.argv:
escape = True
else:
escape = False
#model = 'voiceModel\\1374_epochsm.pth'#input('Path of a VITS model: ')
#config ='voiceModel\\config.json'#input('Path of a config file: ')
model=modelSelect[0]
config=modelSelect[1]
hps_ms = utils.get_hparams_from_file(config)
n_speakers = hps_ms.data.n_speakers if 'n_speakers' in hps_ms.data.keys() else 0
n_symbols = len(hps_ms.symbols) if 'symbols' in hps_ms.keys() else 0
speakers = hps_ms.speakers if 'speakers' in hps_ms.keys() else ['0']
use_f0 = hps_ms.data.use_f0 if 'use_f0' in hps_ms.data.keys() else False
emotion_embedding = hps_ms.data.emotion_embedding if 'emotion_embedding' in hps_ms.data.keys() else False
net_g_ms = SynthesizerTrn(
n_symbols,
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps_ms.data.hop_length,
n_speakers=n_speakers,
emotion_embedding=emotion_embedding,
**hps_ms.model)
_ = net_g_ms.eval()
utils.load_checkpoint(model, net_g_ms)
while True:
choice = 't' # input('TTS or VC? (t/v):')
if choice == 't':
#text = input('Text to read: ')
if text == '[ADVANCED]':
text = input('Raw text:')
print('Cleaned text is:')
ex_print(_clean_text(
text, hps_ms.data.text_cleaners), escape)
continue
length_scale, text = get_label_value(
text, 'LENGTH', 1.1, 'length scale')
noise_scale, text = get_label_value(
text, 'NOISE', 0.667, 'noise scale')
noise_scale_w, text = get_label_value(
text, 'NOISEW', 0.8, 'deviation of noise')
cleaned, text = get_label(text, 'CLEANED')
stn_tst = get_text(text, hps_ms, cleaned=cleaned)
#print_speakers(speakers, escape)
time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print(time + '| 正在使用语音模型:'+str(speakeriddd)+' ......生成中'+' | 文本:'+str(tex))
speaker_id = speakeriddd
with no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = LongTensor([stn_tst.size(0)])
sid = LongTensor([speaker_id])
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale,
noise_scale_w=noise_scale_w, length_scale=length_scale)[0][
0, 0].data.cpu().float().numpy()
elif choice == 'v':
audio, out_path = voice_conversion()
write(out_path, hps_ms.data.sampling_rate, audio)
time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print(time + '| Successfully saved!')
break
def voice_conversion(sourcepath,speaker=0):
if '--escape' in sys.argv:
escape = True
else:
escape = False
model = 'voiceModel\\1374_epochsm.pth'#input('Path of a VITS model: ')
config ='voiceModel\\config.json'#input('Path of a config file: ')
hps_ms = utils.get_hparams_from_file(config)
n_speakers = hps_ms.data.n_speakers if 'n_speakers' in hps_ms.data.keys() else 0
n_symbols = len(hps_ms.symbols) if 'symbols' in hps_ms.keys() else 0
speakers = hps_ms.speakers if 'speakers' in hps_ms.keys() else ['0']
use_f0 = hps_ms.data.use_f0 if 'use_f0' in hps_ms.data.keys() else False
emotion_embedding = hps_ms.data.emotion_embedding if 'emotion_embedding' in hps_ms.data.keys() else False
net_g_ms = SynthesizerTrn(
n_symbols,
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps_ms.data.hop_length,
n_speakers=n_speakers,
emotion_embedding=emotion_embedding,
**hps_ms.model)
_ = net_g_ms.eval()
utils.load_checkpoint(model, net_g_ms)
audio_path = sourcepath
audio = utils.load_audio_to_torch(
audio_path, hps_ms.data.sampling_rate)
originnal_id = speaker
target_id = 3
out_path = 'plugins\\voices\\sing\\out.wav'
y = audio.unsqueeze(0)
spec = spectrogram_torch(y, hps_ms.data.filter_length,
hps_ms.data.sampling_rate, hps_ms.data.hop_length, hps_ms.data.win_length,
center=False)
spec_lengths = LongTensor([spec.size(-1)])
sid_src = LongTensor([originnal_id])
with no_grad():
sid_tgt = LongTensor([target_id])
audio = net_g_ms.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[
0][0, 0].data.cpu().float().numpy()
write(out_path, hps_ms.data.sampling_rate, audio)
print('Successfully saved!')
return out_path
if __name__ == '__main__':
#voice_conversion("plugins/voices/sing/rest.wav")
voiceGenerate('[JA]先生,ちょっとお時間..いただけますか?[JA]','voiceModel/YUUKA/1.wav')
'''ranpath = random_str()
Path=sys.argv[0][:-23]
print(Path)
out = Path+'PythonPlugins\\plugins\\voices\\' + ranpath + '.wav'
tex = '[JA]' + translate('测试语音.....') + '[JA]'
voiceGenerate(tex, out)'''
'''if '--escape' in sys.argv:
escape = True
else:
escape = False
model = input('Path of a VITS model: ')
config = input('Path of a config file: ')
hps_ms = utils.get_hparams_from_file(config)
n_speakers = hps_ms.data.n_speakers if 'n_speakers' in hps_ms.data.keys() else 0
n_symbols = len(hps_ms.symbols) if 'symbols' in hps_ms.keys() else 0
speakers = hps_ms.speakers if 'speakers' in hps_ms.keys() else ['0']
use_f0 = hps_ms.data.use_f0 if 'use_f0' in hps_ms.data.keys() else False
emotion_embedding = hps_ms.data.emotion_embedding if 'emotion_embedding' in hps_ms.data.keys() else False
net_g_ms = SynthesizerTrn(
n_symbols,
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps_ms.data.hop_length,
n_speakers=n_speakers,
emotion_embedding=emotion_embedding,
**hps_ms.model)
_ = net_g_ms.eval()
utils.load_checkpoint(model, net_g_ms)
def voice_conversion():
audio_path = input('Path of an audio file to convert:\n')
print_speakers(speakers)
audio = utils.load_audio_to_torch(
audio_path, hps_ms.data.sampling_rate)
originnal_id = get_speaker_id('Original speaker ID: ')
target_id = get_speaker_id('Target speaker ID: ')
out_path = input('Path to save: ')
y = audio.unsqueeze(0)
spec = spectrogram_torch(y, hps_ms.data.filter_length,
hps_ms.data.sampling_rate, hps_ms.data.hop_length, hps_ms.data.win_length,
center=False)
spec_lengths = LongTensor([spec.size(-1)])
sid_src = LongTensor([originnal_id])
with no_grad():
sid_tgt = LongTensor([target_id])
audio = net_g_ms.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[
0][0, 0].data.cpu().float().numpy()
return audio, out_path
if n_symbols != 0:
if not emotion_embedding:
while True:
choice = input('TTS or VC? (t/v):')
if choice == 't':
text = input('Text to read: ')
if text == '[ADVANCED]':
text = input('Raw text:')
print('Cleaned text is:')
ex_print(_clean_text(
text, hps_ms.data.text_cleaners), escape)
continue
length_scale, text = get_label_value(
text, 'LENGTH', 1, 'length scale')
noise_scale, text = get_label_value(
text, 'NOISE', 0.667, 'noise scale')
noise_scale_w, text = get_label_value(
text, 'NOISEW', 0.8, 'deviation of noise')
cleaned, text = get_label(text, 'CLEANED')
stn_tst = get_text(text, hps_ms, cleaned=cleaned)
print_speakers(speakers, escape)
speaker_id = get_speaker_id('Speaker ID: ')
out_path = input('Path to save: ')
with no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = LongTensor([stn_tst.size(0)])
sid = LongTensor([speaker_id])
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale,
noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0, 0].data.cpu().float().numpy()
elif choice == 'v':
audio, out_path = voice_conversion()
write(out_path, hps_ms.data.sampling_rate, audio)
print('Successfully saved!')
ask_if_continue()
else:
import os
import librosa
import numpy as np
from torch import FloatTensor
import audonnx
w2v2_folder = input('Path of a w2v2 dimensional emotion model: ')
w2v2_model = audonnx.load(os.path.dirname(w2v2_folder))
while True:
choice = input('TTS or VC? (t/v):')
if choice == 't':
text = input('Text to read: ')
if text == '[ADVANCED]':
text = input('Raw text:')
print('Cleaned text is:')
ex_print(_clean_text(
text, hps_ms.data.text_cleaners), escape)
continue
length_scale, text = get_label_value(
text, 'LENGTH', 1, 'length scale')
noise_scale, text = get_label_value(
text, 'NOISE', 0.667, 'noise scale')
noise_scale_w, text = get_label_value(
text, 'NOISEW', 0.8, 'deviation of noise')
cleaned, text = get_label(text, 'CLEANED')
stn_tst = get_text(text, hps_ms, cleaned=cleaned)
print_speakers(speakers, escape)
speaker_id = get_speaker_id('Speaker ID: ')
emotion_reference = input('Path of an emotion reference: ')
if emotion_reference.endswith('.npy'):
emotion = np.load(emotion_reference)
emotion = FloatTensor(emotion).unsqueeze(0)
else:
audio16000, sampling_rate = librosa.load(
emotion_reference, sr=16000, mono=True)
emotion = w2v2_model(audio16000, sampling_rate)[
'hidden_states']
emotion_reference = re.sub(
r'\..*$', '', emotion_reference)
np.save(emotion_reference, emotion.squeeze(0))
emotion = FloatTensor(emotion)
out_path = input('Path to save: ')
with no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = LongTensor([stn_tst.size(0)])
sid = LongTensor([speaker_id])
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
length_scale=length_scale, emotion_embedding=emotion)[0][0, 0].data.cpu().float().numpy()
elif choice == 'v':
audio, out_path = voice_conversion()
write(out_path, hps_ms.data.sampling_rate, audio)
print('Successfully saved!')
ask_if_continue()
else:
model = input('Path of a hubert-soft model: ')
from hubert_model import hubert_soft
hubert = hubert_soft(model)
while True:
audio_path = input('Path of an audio file to convert:\n')
if audio_path != '[VC]':
import librosa
if use_f0:
audio, sampling_rate = librosa.load(
audio_path, sr=hps_ms.data.sampling_rate, mono=True)
audio16000 = librosa.resample(
audio, orig_sr=sampling_rate, target_sr=16000)
else:
audio16000, sampling_rate = librosa.load(
audio_path, sr=16000, mono=True)
target_id = get_speaker_id('Target speaker ID: ')
out_path = input('Path to save: ')
length_scale, out_path = get_label_value(
out_path, 'LENGTH', 1, 'length scale')
noise_scale, out_path = get_label_value(
out_path, 'NOISE', 0.1, 'noise scale')
noise_scale_w, out_path = get_label_value(
out_path, 'NOISEW', 0.1, 'deviation of noise')
from torch import inference_mode, FloatTensor
import numpy as np
with inference_mode():
units = hubert.units(FloatTensor(audio16000).unsqueeze(
0).unsqueeze(0)).squeeze(0).numpy()
if use_f0:
f0_scale, out_path = get_label_value(
out_path, 'F0', 1, 'f0 scale')
f0 = librosa.pyin(audio, sr=sampling_rate,
fmin=librosa.note_to_hz('C0'),
fmax=librosa.note_to_hz('C7'),
frame_length=1780)[0]
target_length = len(units[:, 0])
f0 = np.nan_to_num(np.interp(np.arange(0, len(f0)*target_length, len(f0))/target_length,
np.arange(0, len(f0)), f0)) * f0_scale
units[:, 0] = f0 / 10
stn_tst = FloatTensor(units)
with no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = LongTensor([stn_tst.size(0)])
sid = LongTensor([target_id])
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale,
noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0, 0].data.float().numpy()
else:
audio, out_path = voice_conversion()
write(out_path, hps_ms.data.sampling_rate, audio)
print('Successfully saved!')
ask_if_continue()'''

64
vits/README.md Normal file
View File

@ -0,0 +1,64 @@
# Links
- [MoeGoe_GUI](https://github.com/CjangCjengh/MoeGoe_GUI)
- [Pretrained models](https://github.com/CjangCjengh/TTSModels)
# How to use
Run MoeGoe.exe
```
Path of a VITS model: path\to\model.pth
Path of a config file: path\to\config.json
INFO:root:Loaded checkpoint 'path\to\model.pth' (iteration XXX)
```
## Text to speech
```
TTS or VC? (t/v):t
Text to read: こんにちは。
ID Speaker
0 XXXX
1 XXXX
2 XXXX
Speaker ID: 0
Path to save: path\to\demo.wav
Successfully saved!
```
## Voice conversion
```
TTS or VC? (t/v):v
Path of an audio file to convert:
path\to\origin.wav
ID Speaker
0 XXXX
1 XXXX
2 XXXX
Original speaker ID: 0
Target speaker ID: 6
Path to save: path\to\demo.wav
Successfully saved!
```
## HuBERT-VITS
```
Path of a hubert-soft model: path\to\hubert-soft.pt
Path of an audio file to convert:
path\to\origin.wav
ID Speaker
0 XXXX
1 XXXX
2 XXXX
Target speaker ID: 6
Path to save: path\to\demo.wav
Successfully saved!
```
## W2V2-VITS
```
Path of a w2v2 dimensional emotion model: path\to\model.onnx
TTS or VC? (t/v):t
Text to read: こんにちは。
ID Speaker
0 XXXX
1 XXXX
2 XXXX
Speaker ID: 0
Path of an emotion reference: path\to\reference.wav
Path to save: path\to\demo.wav
Successfully saved!
```

300
vits/attentions.py Normal file
View File

@ -0,0 +1,300 @@
import math
import torch
from torch import nn
from torch.nn import functional as F
import commons
from modules import LayerNorm
class Encoder(nn.Module):
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.drop = nn.Dropout(p_dropout)
self.attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.attn_layers[i](x, x, attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class Decoder(nn.Module):
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.drop = nn.Dropout(p_dropout)
self.self_attn_layers = nn.ModuleList()
self.norm_layers_0 = nn.ModuleList()
self.encdec_attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
self.norm_layers_0.append(LayerNorm(hidden_channels))
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask, h, h_mask):
"""
x: decoder input
h: encoder output
"""
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.self_attn_layers[i](x, x, self_attn_mask)
y = self.drop(y)
x = self.norm_layers_0[i](x + y)
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class MultiHeadAttention(nn.Module):
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
super().__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.p_dropout = p_dropout
self.window_size = window_size
self.heads_share = heads_share
self.block_length = block_length
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.attn = None
self.k_channels = channels // n_heads
self.conv_q = nn.Conv1d(channels, channels, 1)
self.conv_k = nn.Conv1d(channels, channels, 1)
self.conv_v = nn.Conv1d(channels, channels, 1)
self.conv_o = nn.Conv1d(channels, out_channels, 1)
self.drop = nn.Dropout(p_dropout)
if window_size is not None:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels**-0.5
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
nn.init.xavier_uniform_(self.conv_q.weight)
nn.init.xavier_uniform_(self.conv_k.weight)
nn.init.xavier_uniform_(self.conv_v.weight)
if proximal_init:
with torch.no_grad():
self.conv_k.weight.copy_(self.conv_q.weight)
self.conv_k.bias.copy_(self.conv_q.bias)
def forward(self, x, c, attn_mask=None):
q = self.conv_q(x)
k = self.conv_k(c)
v = self.conv_v(c)
x, self.attn = self.attention(q, k, v, mask=attn_mask)
x = self.conv_o(x)
return x
def attention(self, query, key, value, mask=None):
# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s, t_t = (*key.size(), query.size(2))
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
if self.window_size is not None:
assert t_s == t_t, "Relative attention is only available for self-attention."
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
scores_local = self._relative_position_to_absolute_position(rel_logits)
scores = scores + scores_local
if self.proximal_bias:
assert t_s == t_t, "Proximal bias is only available for self-attention."
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
if self.block_length is not None:
assert t_s == t_t, "Local attention is only available for self-attention."
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
scores = scores.masked_fill(block_mask == 0, -1e4)
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
p_attn = self.drop(p_attn)
output = torch.matmul(p_attn, value)
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn)
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
return output, p_attn
def _matmul_with_relative_values(self, x, y):
"""
x: [b, h, l, m]
y: [h or 1, m, d]
ret: [b, h, l, d]
"""
ret = torch.matmul(x, y.unsqueeze(0))
return ret
def _matmul_with_relative_keys(self, x, y):
"""
x: [b, h, l, d]
y: [h or 1, m, d]
ret: [b, h, l, m]
"""
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
return ret
def _get_relative_embeddings(self, relative_embeddings, length):
max_relative_position = 2 * self.window_size + 1
# Pad first before slice to avoid using cond ops.
pad_length = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
if pad_length > 0:
padded_relative_embeddings = F.pad(
relative_embeddings,
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
else:
padded_relative_embeddings = relative_embeddings
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
return used_relative_embeddings
def _relative_position_to_absolute_position(self, x):
"""
x: [b, h, l, 2*l-1]
ret: [b, h, l, l]
"""
batch, heads, length, _ = x.size()
# Concat columns of pad to shift from relative to absolute indexing.
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
# Concat extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch, heads, length * 2 * length])
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
return x_final
def _absolute_position_to_relative_position(self, x):
"""
x: [b, h, l, l]
ret: [b, h, l, 2*l-1]
"""
batch, heads, length, _ = x.size()
# padd along column
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
# add 0's in the beginning that will skew the elements after reshape
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
return x_final
def _attention_bias_proximal(self, length):
"""Bias for self-attention to encourage attention to close positions.
Args:
length: an integer scalar.
Returns:
a Tensor with shape [1, 1, length, length]
"""
r = torch.arange(length, dtype=torch.float32)
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
class FFN(nn.Module):
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.activation = activation
self.causal = causal
if causal:
self.padding = self._causal_padding
else:
self.padding = self._same_padding
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
self.drop = nn.Dropout(p_dropout)
def forward(self, x, x_mask):
x = self.conv_1(self.padding(x * x_mask))
if self.activation == "gelu":
x = x * torch.sigmoid(1.702 * x)
else:
x = torch.relu(x)
x = self.drop(x)
x = self.conv_2(self.padding(x * x_mask))
return x * x_mask
def _causal_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = self.kernel_size - 1
pad_r = 0
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, commons.convert_pad_shape(padding))
return x
def _same_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = (self.kernel_size - 1) // 2
pad_r = self.kernel_size // 2
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, commons.convert_pad_shape(padding))
return x

96
vits/commons.py Normal file
View File

@ -0,0 +1,96 @@
import torch
from torch.nn import functional as F
import torch.jit
def script_method(fn, _rcb=None):
return fn
def script(obj, optimize=True, _frames_up=0, _rcb=None):
return obj
torch.jit.script_method = script_method
torch.jit.script = script
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def slice_segments(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :, :segment_size])
for i in range(x.size(0)):
idx_str = ids_str[i]
idx_end = idx_str + segment_size
ret[i] = x[i, :, idx_str:idx_end]
return ret
def rand_slice_segments(x, x_lengths=None, segment_size=4):
b, d, t = x.size()
if x_lengths is None:
x_lengths = t
ids_str_max = x_lengths - segment_size + 1
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
ret = slice_segments(x, ids_str, segment_size)
return ret, ids_str
def subsequent_mask(length):
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
return mask
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def generate_path(duration, mask):
"""
duration: [b, 1, t_x]
mask: [b, 1, t_y, t_x]
"""
device = duration.device
b, _, t_y, t_x = mask.shape
cum_duration = torch.cumsum(duration, -1)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
path = path.view(b, t_x, t_y)
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
path = path.unsqueeze(1).transpose(2,3) * mask
return path

221
vits/hubert_model.py Normal file
View File

@ -0,0 +1,221 @@
import copy
from typing import Optional, Tuple
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
class Hubert(nn.Module):
def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
super().__init__()
self._mask = mask
self.feature_extractor = FeatureExtractor()
self.feature_projection = FeatureProjection()
self.positional_embedding = PositionalConvEmbedding()
self.norm = nn.LayerNorm(768)
self.dropout = nn.Dropout(0.1)
self.encoder = TransformerEncoder(
nn.TransformerEncoderLayer(
768, 12, 3072, activation="gelu", batch_first=True
),
12,
)
self.proj = nn.Linear(768, 256)
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
self.label_embedding = nn.Embedding(num_label_embeddings, 256)
def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
mask = None
if self.training and self._mask:
mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
x[mask] = self.masked_spec_embed.to(x.dtype)
return x, mask
def encode(
self, x: torch.Tensor, layer: Optional[int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
x = self.feature_extractor(x)
x = self.feature_projection(x.transpose(1, 2))
x, mask = self.mask(x)
x = x + self.positional_embedding(x)
x = self.dropout(self.norm(x))
x = self.encoder(x, output_layer=layer)
return x, mask
def logits(self, x: torch.Tensor) -> torch.Tensor:
logits = torch.cosine_similarity(
x.unsqueeze(2),
self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
dim=-1,
)
return logits / 0.1
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
x, mask = self.encode(x)
x = self.proj(x)
logits = self.logits(x)
return logits, mask
class HubertSoft(Hubert):
def __init__(self):
super().__init__()
@torch.inference_mode()
def units(self, wav: torch.Tensor) -> torch.Tensor:
wav = F.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
x, _ = self.encode(wav)
return self.proj(x)
class FeatureExtractor(nn.Module):
def __init__(self):
super().__init__()
self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
self.norm0 = nn.GroupNorm(512, 512)
self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.gelu(self.norm0(self.conv0(x)))
x = F.gelu(self.conv1(x))
x = F.gelu(self.conv2(x))
x = F.gelu(self.conv3(x))
x = F.gelu(self.conv4(x))
x = F.gelu(self.conv5(x))
x = F.gelu(self.conv6(x))
return x
class FeatureProjection(nn.Module):
def __init__(self):
super().__init__()
self.norm = nn.LayerNorm(512)
self.projection = nn.Linear(512, 768)
self.dropout = nn.Dropout(0.1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.norm(x)
x = self.projection(x)
x = self.dropout(x)
return x
class PositionalConvEmbedding(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv1d(
768,
768,
kernel_size=128,
padding=128 // 2,
groups=16,
)
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv(x.transpose(1, 2))
x = F.gelu(x[:, :, :-1])
return x.transpose(1, 2)
class TransformerEncoder(nn.Module):
def __init__(
self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
) -> None:
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList(
[copy.deepcopy(encoder_layer) for _ in range(num_layers)]
)
self.num_layers = num_layers
def forward(
self,
src: torch.Tensor,
mask: torch.Tensor = None,
src_key_padding_mask: torch.Tensor = None,
output_layer: Optional[int] = None,
) -> torch.Tensor:
output = src
for layer in self.layers[:output_layer]:
output = layer(
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
)
return output
def _compute_mask(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
device: torch.device,
min_masks: int = 0,
) -> torch.Tensor:
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
)
# compute number of masked spans in batch
num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
num_masked_spans = max(num_masked_spans, min_masks)
# make sure num masked indices <= sequence_length
if num_masked_spans * mask_length > sequence_length:
num_masked_spans = sequence_length // mask_length
# SpecAugment mask to fill
mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
# uniform distribution to sample from, make sure that offset samples are < sequence_length
uniform_dist = torch.ones(
(batch_size, sequence_length - (mask_length - 1)), device=device
)
# get random indices to mask
mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
# expand masked indices to masked spans
mask_indices = (
mask_indices.unsqueeze(dim=-1)
.expand((batch_size, num_masked_spans, mask_length))
.reshape(batch_size, num_masked_spans * mask_length)
)
offsets = (
torch.arange(mask_length, device=device)[None, None, :]
.expand((batch_size, num_masked_spans, mask_length))
.reshape(batch_size, num_masked_spans * mask_length)
)
mask_idxs = mask_indices + offsets
# scatter indices to mask
mask = mask.scatter(1, mask_idxs, True)
return mask
def hubert_soft(
path: str
) -> HubertSoft:
r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
Args:
path (str): path of a pretrained model
"""
hubert = HubertSoft()
checkpoint = torch.load(path)
consume_prefix_in_state_dict_if_present(checkpoint, "module.")
hubert.load_state_dict(checkpoint)
hubert.eval()
return hubert

349046
vits/jieba/dict.txt Normal file

File diff suppressed because it is too large Load Diff

101
vits/mel_processing.py Normal file
View File

@ -0,0 +1,101 @@
import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
MAX_WAV_VALUE = 32768.0
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
"""
PARAMS
------
C: compression factor
"""
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
"""
PARAMS
------
C: compression factor used to compress
"""
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global hann_window
dtype_device = str(y.dtype) + '_' + str(y.device)
wnsize_dtype_device = str(win_size) + '_' + dtype_device
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
global mel_basis
dtype_device = str(spec.dtype) + '_' + str(spec.device)
fmax_dtype_device = str(fmax) + '_' + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
spec = spectral_normalize_torch(spec)
return spec
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global mel_basis, hann_window
dtype_device = str(y.dtype) + '_' + str(y.device)
fmax_dtype_device = str(fmax) + '_' + dtype_device
wnsize_dtype_device = str(win_size) + '_' + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
center=center, pad_mode='reflect', normalized=False, onesided=True)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
spec = spectral_normalize_torch(spec)
return spec

404
vits/models.py Normal file
View File

@ -0,0 +1,404 @@
import math
import torch
from torch import nn
from torch.nn import functional as F
import commons
import modules
import attentions
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm
from commons import init_weights
class StochasticDurationPredictor(nn.Module):
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
super().__init__()
filter_channels = in_channels # it needs to be removed from future version.
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.n_flows = n_flows
self.gin_channels = gin_channels
self.log_flow = modules.Log()
self.flows = nn.ModuleList()
self.flows.append(modules.ElementwiseAffine(2))
for i in range(n_flows):
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
self.flows.append(modules.Flip())
self.post_pre = nn.Conv1d(1, filter_channels, 1)
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
self.post_flows = nn.ModuleList()
self.post_flows.append(modules.ElementwiseAffine(2))
for i in range(4):
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
self.post_flows.append(modules.Flip())
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
x = torch.detach(x)
x = self.pre(x)
if g is not None:
g = torch.detach(g)
x = x + self.cond(g)
x = self.convs(x, x_mask)
x = self.proj(x) * x_mask
if not reverse:
flows = self.flows
assert w is not None
logdet_tot_q = 0
h_w = self.post_pre(w)
h_w = self.post_convs(h_w, x_mask)
h_w = self.post_proj(h_w) * x_mask
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
z_q = e_q
for flow in self.post_flows:
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
logdet_tot_q += logdet_q
z_u, z1 = torch.split(z_q, [1, 1], 1)
u = torch.sigmoid(z_u) * x_mask
z0 = (w - u) * x_mask
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
logdet_tot = 0
z0, logdet = self.log_flow(z0, x_mask)
logdet_tot += logdet
z = torch.cat([z0, z1], 1)
for flow in flows:
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
logdet_tot = logdet_tot + logdet
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
return nll + logq # [b]
else:
flows = list(reversed(self.flows))
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
for flow in flows:
z = flow(z, x_mask, g=x, reverse=reverse)
z0, z1 = torch.split(z, [1, 1], 1)
logw = z0
return logw
class DurationPredictor(nn.Module):
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.gin_channels = gin_channels
self.drop = nn.Dropout(p_dropout)
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
self.norm_1 = modules.LayerNorm(filter_channels)
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
self.norm_2 = modules.LayerNorm(filter_channels)
self.proj = nn.Conv1d(filter_channels, 1, 1)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
def forward(self, x, x_mask, g=None):
x = torch.detach(x)
if g is not None:
g = torch.detach(g)
x = x + self.cond(g)
x = self.conv_1(x * x_mask)
x = torch.relu(x)
x = self.norm_1(x)
x = self.drop(x)
x = self.conv_2(x * x_mask)
x = torch.relu(x)
x = self.norm_2(x)
x = self.drop(x)
x = self.proj(x * x_mask)
return x * x_mask
class TextEncoder(nn.Module):
def __init__(self,
n_vocab,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
emotion_embedding):
super().__init__()
self.n_vocab = n_vocab
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.emotion_embedding = emotion_embedding
if self.n_vocab!=0:
self.emb = nn.Embedding(n_vocab, hidden_channels)
if emotion_embedding:
self.emo_proj = nn.Linear(1024, hidden_channels)
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
self.encoder = attentions.Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, emotion_embedding=None):
if self.n_vocab!=0:
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
if emotion_embedding is not None:
x = x + self.emo_proj(emotion_embedding.unsqueeze(1))
x = torch.transpose(x, 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.encoder(x * x_mask, x_mask)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return x, m, logs, x_mask
class ResidualCouplingBlock(nn.Module):
def __init__(self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
n_flows=4,
gin_channels=0):
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.n_flows = n_flows
self.gin_channels = gin_channels
self.flows = nn.ModuleList()
for i in range(n_flows):
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
self.flows.append(modules.Flip())
def forward(self, x, x_mask, g=None, reverse=False):
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
else:
for flow in reversed(self.flows):
x = flow(x, x_mask, g=g, reverse=reverse)
return x
class PosteriorEncoder(nn.Module):
def __init__(self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g=None):
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class Generator(torch.nn.Module):
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
k, u, padding=(k-u)//2)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel//(2**(i+1))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d))
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
self.ups.apply(init_weights)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x, g=None):
x = self.conv_pre(x)
if g is not None:
x = x + self.cond(g)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, modules.LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x)
else:
xs += self.resblocks[i*self.num_kernels+j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
class SynthesizerTrn(nn.Module):
"""
Synthesizer for Training
"""
def __init__(self,
n_vocab,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
n_speakers=0,
gin_channels=0,
use_sdp=True,
emotion_embedding=False,
**kwargs):
super().__init__()
self.n_vocab = n_vocab
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.use_sdp = use_sdp
self.enc_p = TextEncoder(n_vocab,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
emotion_embedding)
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
if use_sdp:
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
else:
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
if n_speakers > 1:
self.emb_g = nn.Embedding(n_speakers, gin_channels)
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None, emotion_embedding=None):
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, emotion_embedding)
if self.n_speakers > 0:
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
else:
g = None
if self.use_sdp:
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
else:
logw = self.dp(x, x_mask, g=g)
w = torch.exp(logw) * x_mask * length_scale
w_ceil = torch.ceil(w)
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
attn = commons.generate_path(w_ceil, attn_mask)
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
z = self.flow(z_p, y_mask, g=g, reverse=True)
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
return o, attn, y_mask, (z, z_p, m_p, logs_p)
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
g_src = self.emb_g(sid_src).unsqueeze(-1)
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
z_p = self.flow(z, y_mask, g=g_src)
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
return o_hat, y_mask, (z, z_p, z_hat)

387
vits/modules.py Normal file
View File

@ -0,0 +1,387 @@
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import Conv1d
from torch.nn.utils import weight_norm, remove_weight_norm
import commons
from commons import init_weights, get_padding
from transforms import piecewise_rational_quadratic_transform
LRELU_SLOPE = 0.1
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
class ConvReluNorm(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
assert n_layers > 1, "Number of layers should be larger than 0."
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.relu_drop = nn.Sequential(
nn.ReLU(),
nn.Dropout(p_dropout))
for _ in range(n_layers-1):
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask):
x_org = x
for i in range(self.n_layers):
x = self.conv_layers[i](x * x_mask)
x = self.norm_layers[i](x)
x = self.relu_drop(x)
x = x_org + self.proj(x)
return x * x_mask
class DDSConv(nn.Module):
"""
Dilated and Depth-Separable Convolution
"""
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
super().__init__()
self.channels = channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
self.drop = nn.Dropout(p_dropout)
self.convs_sep = nn.ModuleList()
self.convs_1x1 = nn.ModuleList()
self.norms_1 = nn.ModuleList()
self.norms_2 = nn.ModuleList()
for i in range(n_layers):
dilation = kernel_size ** i
padding = (kernel_size * dilation - dilation) // 2
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
groups=channels, dilation=dilation, padding=padding
))
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
self.norms_1.append(LayerNorm(channels))
self.norms_2.append(LayerNorm(channels))
def forward(self, x, x_mask, g=None):
if g is not None:
x = x + g
for i in range(self.n_layers):
y = self.convs_sep[i](x * x_mask)
y = self.norms_1[i](y)
y = F.gelu(y)
y = self.convs_1x1[i](y)
y = self.norms_2[i](y)
y = F.gelu(y)
y = self.drop(y)
x = x + y
return x * x_mask
class WN(torch.nn.Module):
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
super(WN, self).__init__()
assert(kernel_size % 2 == 1)
self.hidden_channels =hidden_channels
self.kernel_size = kernel_size,
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.p_dropout = p_dropout
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.drop = nn.Dropout(p_dropout)
if gin_channels != 0:
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
for i in range(n_layers):
dilation = dilation_rate ** i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
dilation=dilation, padding=padding)
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
self.in_layers.append(in_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * hidden_channels
else:
res_skip_channels = hidden_channels
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
self.res_skip_layers.append(res_skip_layer)
def forward(self, x, x_mask, g=None, **kwargs):
output = torch.zeros_like(x)
n_channels_tensor = torch.IntTensor([self.hidden_channels])
if g is not None:
g = self.cond_layer(g)
for i in range(self.n_layers):
x_in = self.in_layers[i](x)
if g is not None:
cond_offset = i * 2 * self.hidden_channels
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
else:
g_l = torch.zeros_like(x_in)
acts = commons.fused_add_tanh_sigmoid_multiply(
x_in,
g_l,
n_channels_tensor)
acts = self.drop(acts)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
res_acts = res_skip_acts[:,:self.hidden_channels,:]
x = (x + res_acts) * x_mask
output = output + res_skip_acts[:,self.hidden_channels:,:]
else:
output = output + res_skip_acts
return output * x_mask
def remove_weight_norm(self):
if self.gin_channels != 0:
torch.nn.utils.remove_weight_norm(self.cond_layer)
for l in self.in_layers:
torch.nn.utils.remove_weight_norm(l)
for l in self.res_skip_layers:
torch.nn.utils.remove_weight_norm(l)
class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
def forward(self, x, x_mask=None):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c2(xt)
x = xt + x
if x_mask is not None:
x = x * x_mask
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.convs = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
def forward(self, x, x_mask=None):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c(xt)
x = xt + x
if x_mask is not None:
x = x * x_mask
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class Log(nn.Module):
def forward(self, x, x_mask, reverse=False, **kwargs):
if not reverse:
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
logdet = torch.sum(-y, [1, 2])
return y, logdet
else:
x = torch.exp(x) * x_mask
return x
class Flip(nn.Module):
def forward(self, x, *args, reverse=False, **kwargs):
x = torch.flip(x, [1])
if not reverse:
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
return x, logdet
else:
return x
class ElementwiseAffine(nn.Module):
def __init__(self, channels):
super().__init__()
self.channels = channels
self.m = nn.Parameter(torch.zeros(channels,1))
self.logs = nn.Parameter(torch.zeros(channels,1))
def forward(self, x, x_mask, reverse=False, **kwargs):
if not reverse:
y = self.m + torch.exp(self.logs) * x
y = y * x_mask
logdet = torch.sum(self.logs * x_mask, [1,2])
return y, logdet
else:
x = (x - self.m) * torch.exp(-self.logs) * x_mask
return x
class ResidualCouplingLayer(nn.Module):
def __init__(self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
p_dropout=0,
gin_channels=0,
mean_only=False):
assert channels % 2 == 0, "channels should be divisible by 2"
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.half_channels = channels // 2
self.mean_only = mean_only
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
self.post.weight.data.zero_()
self.post.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
h = self.pre(x0) * x_mask
h = self.enc(h, x_mask, g=g)
stats = self.post(h) * x_mask
if not self.mean_only:
m, logs = torch.split(stats, [self.half_channels]*2, 1)
else:
m = stats
logs = torch.zeros_like(m)
if not reverse:
x1 = m + x1 * torch.exp(logs) * x_mask
x = torch.cat([x0, x1], 1)
logdet = torch.sum(logs, [1,2])
return x, logdet
else:
x1 = (x1 - m) * torch.exp(-logs) * x_mask
x = torch.cat([x0, x1], 1)
return x
class ConvFlow(nn.Module):
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.num_bins = num_bins
self.tail_bound = tail_bound
self.half_channels = in_channels // 2
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
h = self.pre(x0)
h = self.convs(h, x_mask, g=g)
h = self.proj(h) * x_mask
b, c, t = x0.shape
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
unnormalized_derivatives = h[..., 2 * self.num_bins:]
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=reverse,
tails='linear',
tail_bound=self.tail_bound
)
x = torch.cat([x0, x1], 1) * x_mask
logdet = torch.sum(logabsdet * x_mask, [1,2])
if not reverse:
return x, logdet
else:
return x

19
vits/requirements.txt Normal file
View File

@ -0,0 +1,19 @@
numba
librosa
numpy==1.22.0
scipy
torch
unidecode
openjtalk>=0.3.0.dev2
jamo
pypinyin
jieba
protobuf
cn2an
inflect
eng_to_ipa
ko_pron
indic_transliteration
num_thai
opencc
audonnx

19
vits/text/LICENSE Normal file
View File

@ -0,0 +1,19 @@
Copyright (c) 2017 Keith Ito
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

32
vits/text/__init__.py Normal file
View File

@ -0,0 +1,32 @@
""" from https://github.com/keithito/tacotron """
from text import cleaners
def text_to_sequence(text, symbols, cleaner_names):
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
Args:
text: string to convert to a sequence
cleaner_names: names of the cleaner functions to run the text through
Returns:
List of integers corresponding to the symbols in the text
'''
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
sequence = []
clean_text = _clean_text(text, cleaner_names)
for symbol in clean_text:
if symbol not in _symbol_to_id.keys():
continue
symbol_id = _symbol_to_id[symbol]
sequence += [symbol_id]
return sequence
def _clean_text(text, cleaner_names):
for name in cleaner_names:
cleaner = getattr(cleaners, name)
if not cleaner:
raise Exception('Unknown cleaner: %s' % name)
text = cleaner(text)
return text

59
vits/text/cantonese.py Normal file
View File

@ -0,0 +1,59 @@
import re
import cn2an
import opencc
converter = opencc.OpenCC('jyutjyu')
# List of (Latin alphabet, ipa) pairs:
_latin_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
('A', 'ei˥'),
('B', 'biː˥'),
('C', 'siː˥'),
('D', 'tiː˥'),
('E', 'iː˥'),
('F', 'e˥fuː˨˩'),
('G', 'tsiː˥'),
('H', 'ɪk̚˥tsʰyː˨˩'),
('I', 'ɐi˥'),
('J', 'tsei˥'),
('K', 'kʰei˥'),
('L', 'e˥llou˨˩'),
('M', 'ɛː'),
('N', 'ɛː'),
('O', 'ou˥'),
('P', 'pʰiː˥'),
('Q', 'kʰiː'),
('R', 'aː˥lou˨˩'),
('S', 'ɛː˥siː˨˩'),
('T', 'tʰiː˥'),
('U', 'juː˥'),
('V', 'wiː˥'),
('W', 'tʊk̚˥piː˥juː˥'),
('X', 'ɪk̚˥siː˨˩'),
('Y', 'waː'),
('Z', 'iː˨sɛːt̚˥')
]]
def number_to_cantonese(text):
return re.sub(r'\d+(?:\.?\d+)?', lambda x: cn2an.an2cn(x.group()), text)
def latin_to_ipa(text):
for regex, replacement in _latin_to_ipa:
text = re.sub(regex, replacement, text)
return text
def cantonese_to_ipa(text):
text = number_to_cantonese(text.upper())
text = converter.convert(text).replace('-','').replace('$',' ')
text = re.sub(r'[A-Z]', lambda x: latin_to_ipa(x.group())+' ', text)
text = re.sub(r'[、;:]', '', text)
text = re.sub(r'\s*\s*', ', ', text)
text = re.sub(r'\s*。\s*', '. ', text)
text = re.sub(r'\s*\s*', '? ', text)
text = re.sub(r'\s*\s*', '! ', text)
text = re.sub(r'\s*$', '', text)
return text

145
vits/text/cleaners.py Normal file
View File

@ -0,0 +1,145 @@
import re
def japanese_cleaners(text):
from text.japanese import japanese_to_romaji_with_accent
text = japanese_to_romaji_with_accent(text)
text = re.sub(r'([A-Za-z])$', r'\1.', text)
return text
def japanese_cleaners2(text):
return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '')
def korean_cleaners(text):
'''Pipeline for Korean text'''
from text.korean import latin_to_hangul, number_to_hangul, divide_hangul
text = latin_to_hangul(text)
text = number_to_hangul(text)
text = divide_hangul(text)
text = re.sub(r'([\u3131-\u3163])$', r'\1.', text)
return text
def chinese_cleaners(text):
'''Pipeline for Chinese text'''
from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo
text = number_to_chinese(text)
text = chinese_to_bopomofo(text)
text = latin_to_bopomofo(text)
text = re.sub(r'([ˉˊˇˋ˙])$', r'\1。', text)
return text
def zh_ja_mixture_cleaners(text):
from text.mandarin import chinese_to_romaji
from text.japanese import japanese_to_romaji_with_accent
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
lambda x: chinese_to_romaji(x.group(1))+' ', text)
text = re.sub(r'\[JA\](.*?)\[JA\]', lambda x: japanese_to_romaji_with_accent(
x.group(1)).replace('ts', 'ʦ').replace('u', 'ɯ').replace('...', '')+' ', text)
text = re.sub(r'\s+$', '', text)
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
return text
def sanskrit_cleaners(text):
text = text.replace('', '').replace('', 'ओम्')
text = re.sub(r'([^।])$', r'\1।', text)
return text
def cjks_cleaners(text):
from text.mandarin import chinese_to_lazy_ipa
from text.japanese import japanese_to_ipa
from text.korean import korean_to_lazy_ipa
from text.sanskrit import devanagari_to_ipa
from text.english import english_to_lazy_ipa
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
lambda x: chinese_to_lazy_ipa(x.group(1))+' ', text)
text = re.sub(r'\[JA\](.*?)\[JA\]',
lambda x: japanese_to_ipa(x.group(1))+' ', text)
text = re.sub(r'\[KO\](.*?)\[KO\]',
lambda x: korean_to_lazy_ipa(x.group(1))+' ', text)
text = re.sub(r'\[SA\](.*?)\[SA\]',
lambda x: devanagari_to_ipa(x.group(1))+' ', text)
text = re.sub(r'\[EN\](.*?)\[EN\]',
lambda x: english_to_lazy_ipa(x.group(1))+' ', text)
text = re.sub(r'\s+$', '', text)
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
return text
def cjke_cleaners(text):
from text.mandarin import chinese_to_lazy_ipa
from text.japanese import japanese_to_ipa
from text.korean import korean_to_ipa
from text.english import english_to_ipa2
text = re.sub(r'\[ZH\](.*?)\[ZH\]', lambda x: chinese_to_lazy_ipa(x.group(1)).replace(
'ʧ', '').replace('ʦ', 'ts').replace('ɥan', 'ɥæn')+' ', text)
text = re.sub(r'\[JA\](.*?)\[JA\]', lambda x: japanese_to_ipa(x.group(1)).replace('ʧ', '').replace(
'ʦ', 'ts').replace('ɥan', 'ɥæn').replace('ʥ', 'dz')+' ', text)
text = re.sub(r'\[KO\](.*?)\[KO\]',
lambda x: korean_to_ipa(x.group(1))+' ', text)
text = re.sub(r'\[EN\](.*?)\[EN\]', lambda x: english_to_ipa2(x.group(1)).replace('ɑ', 'a').replace(
'ɔ', 'o').replace('ɛ', 'e').replace('ɪ', 'i').replace('ʊ', 'u')+' ', text)
text = re.sub(r'\s+$', '', text)
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
return text
def cjke_cleaners2(text):
from text.mandarin import chinese_to_ipa
from text.japanese import japanese_to_ipa2
from text.korean import korean_to_ipa
from text.english import english_to_ipa2
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
lambda x: chinese_to_ipa(x.group(1))+' ', text)
text = re.sub(r'\[JA\](.*?)\[JA\]',
lambda x: japanese_to_ipa2(x.group(1))+' ', text)
text = re.sub(r'\[KO\](.*?)\[KO\]',
lambda x: korean_to_ipa(x.group(1))+' ', text)
text = re.sub(r'\[EN\](.*?)\[EN\]',
lambda x: english_to_ipa2(x.group(1))+' ', text)
text = re.sub(r'\s+$', '', text)
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
return text
def thai_cleaners(text):
from text.thai import num_to_thai, latin_to_thai
text = num_to_thai(text)
text = latin_to_thai(text)
return text
def shanghainese_cleaners(text):
from text.shanghainese import shanghainese_to_ipa
text = shanghainese_to_ipa(text)
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
return text
def chinese_dialect_cleaners(text):
from text.mandarin import chinese_to_ipa2
from text.japanese import japanese_to_ipa3
from text.shanghainese import shanghainese_to_ipa
from text.cantonese import cantonese_to_ipa
from text.english import english_to_lazy_ipa2
from text.ngu_dialect import ngu_dialect_to_ipa
text = re.sub(r'\[ZH\](.*?)\[ZH\]',
lambda x: chinese_to_ipa2(x.group(1))+' ', text)
text = re.sub(r'\[JA\](.*?)\[JA\]',
lambda x: japanese_to_ipa3(x.group(1)).replace('Q', 'ʔ')+' ', text)
text = re.sub(r'\[SH\](.*?)\[SH\]', lambda x: shanghainese_to_ipa(x.group(1)).replace('1', '˥˧').replace('5',
'˧˧˦').replace('6', '˩˩˧').replace('7', '˥').replace('8', '˩˨').replace('', 'ɐ').replace('', 'e')+' ', text)
text = re.sub(r'\[GD\](.*?)\[GD\]',
lambda x: cantonese_to_ipa(x.group(1))+' ', text)
text = re.sub(r'\[EN\](.*?)\[EN\]',
lambda x: english_to_lazy_ipa2(x.group(1))+' ', text)
text = re.sub(r'\[([A-Z]{2})\](.*?)\[\1\]', lambda x: ngu_dialect_to_ipa(x.group(2), x.group(
1)).replace('ʣ', 'dz').replace('ʥ', '').replace('ʦ', 'ts').replace('ʨ', '')+' ', text)
text = re.sub(r'\s+$', '', text)
text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
return text

188
vits/text/english.py Normal file
View File

@ -0,0 +1,188 @@
""" from https://github.com/keithito/tacotron """
'''
Cleaners are transformations that run over the input text at both training and eval time.
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
1. "english_cleaners" for English text
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
the symbols in symbols.py to match your data).
'''
# Regular expression matching whitespace:
import re
import inflect
from unidecode import unidecode
import eng_to_ipa as ipa
_inflect = inflect.engine()
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
_number_re = re.compile(r'[0-9]+')
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
('mrs', 'misess'),
('mr', 'mister'),
('dr', 'doctor'),
('st', 'saint'),
('co', 'company'),
('jr', 'junior'),
('maj', 'major'),
('gen', 'general'),
('drs', 'doctors'),
('rev', 'reverend'),
('lt', 'lieutenant'),
('hon', 'honorable'),
('sgt', 'sergeant'),
('capt', 'captain'),
('esq', 'esquire'),
('ltd', 'limited'),
('col', 'colonel'),
('ft', 'fort'),
]]
# List of (ipa, lazy ipa) pairs:
_lazy_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
('r', 'ɹ'),
('æ', 'e'),
('ɑ', 'a'),
('ɔ', 'o'),
('ð', 'z'),
('θ', 's'),
('ɛ', 'e'),
('ɪ', 'i'),
('ʊ', 'u'),
('ʒ', 'ʥ'),
('ʤ', 'ʥ'),
('ˈ', ''),
]]
# List of (ipa, lazy ipa2) pairs:
_lazy_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
('r', 'ɹ'),
('ð', 'z'),
('θ', 's'),
('ʒ', 'ʑ'),
('ʤ', ''),
('ˈ', ''),
]]
# List of (ipa, ipa2) pairs
_ipa_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
('r', 'ɹ'),
('ʤ', ''),
('ʧ', '')
]]
def expand_abbreviations(text):
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def collapse_whitespace(text):
return re.sub(r'\s+', ' ', text)
def _remove_commas(m):
return m.group(1).replace(',', '')
def _expand_decimal_point(m):
return m.group(1).replace('.', ' point ')
def _expand_dollars(m):
match = m.group(1)
parts = match.split('.')
if len(parts) > 2:
return match + ' dollars' # Unexpected format
dollars = int(parts[0]) if parts[0] else 0
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
if dollars and cents:
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
cent_unit = 'cent' if cents == 1 else 'cents'
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
elif dollars:
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
return '%s %s' % (dollars, dollar_unit)
elif cents:
cent_unit = 'cent' if cents == 1 else 'cents'
return '%s %s' % (cents, cent_unit)
else:
return 'zero dollars'
def _expand_ordinal(m):
return _inflect.number_to_words(m.group(0))
def _expand_number(m):
num = int(m.group(0))
if num > 1000 and num < 3000:
if num == 2000:
return 'two thousand'
elif num > 2000 and num < 2010:
return 'two thousand ' + _inflect.number_to_words(num % 100)
elif num % 100 == 0:
return _inflect.number_to_words(num // 100) + ' hundred'
else:
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
else:
return _inflect.number_to_words(num, andword='')
def normalize_numbers(text):
text = re.sub(_comma_number_re, _remove_commas, text)
text = re.sub(_pounds_re, r'\1 pounds', text)
text = re.sub(_dollars_re, _expand_dollars, text)
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
text = re.sub(_ordinal_re, _expand_ordinal, text)
text = re.sub(_number_re, _expand_number, text)
return text
def mark_dark_l(text):
return re.sub(r'l([^aeiouæɑɔəɛɪʊ ]*(?: |$))', lambda x: 'ɫ'+x.group(1), text)
def english_to_ipa(text):
text = unidecode(text).lower()
text = expand_abbreviations(text)
text = normalize_numbers(text)
phonemes = ipa.convert(text)
phonemes = collapse_whitespace(phonemes)
return phonemes
def english_to_lazy_ipa(text):
text = english_to_ipa(text)
for regex, replacement in _lazy_ipa:
text = re.sub(regex, replacement, text)
return text
def english_to_ipa2(text):
text = english_to_ipa(text)
text = mark_dark_l(text)
for regex, replacement in _ipa_to_ipa2:
text = re.sub(regex, replacement, text)
return text.replace('...', '')
def english_to_lazy_ipa2(text):
text = english_to_ipa(text)
for regex, replacement in _lazy_ipa2:
text = re.sub(regex, replacement, text)
return text

153
vits/text/japanese.py Normal file
View File

@ -0,0 +1,153 @@
import re
from unidecode import unidecode
import pyopenjtalk
# Regular expression matching Japanese without punctuation marks:
_japanese_characters = re.compile(
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
# Regular expression matching non-Japanese characters or punctuation marks:
_japanese_marks = re.compile(
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
# List of (symbol, Japanese) pairs for marks:
_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
('', 'パーセント')
]]
# List of (romaji, ipa) pairs for marks:
_romaji_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
('ts', 'ʦ'),
('u', 'ɯ'),
('j', 'ʥ'),
('y', 'j'),
('ni', 'n^i'),
('nj', 'n^'),
('hi', 'çi'),
('hj', 'ç'),
('f', 'ɸ'),
('I', 'i*'),
('U', 'ɯ*'),
('r', 'ɾ')
]]
# List of (romaji, ipa2) pairs for marks:
_romaji_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
('u', 'ɯ'),
('ʧ', ''),
('j', ''),
('y', 'j'),
('ni', 'n^i'),
('nj', 'n^'),
('hi', 'çi'),
('hj', 'ç'),
('f', 'ɸ'),
('I', 'i*'),
('U', 'ɯ*'),
('r', 'ɾ')
]]
# List of (consonant, sokuon) pairs:
_real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
(r'Q([↑↓]*[kg])', r'k#\1'),
(r'Q([↑↓]*[tdjʧ])', r't#\1'),
(r'Q([↑↓]*[sʃ])', r's\1'),
(r'Q([↑↓]*[pb])', r'p#\1')
]]
# List of (consonant, hatsuon) pairs:
_real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
(r'N([↑↓]*[pbm])', r'm\1'),
(r'N([↑↓]*[ʧʥj])', r'n^\1'),
(r'N([↑↓]*[tdn])', r'n\1'),
(r'N([↑↓]*[kg])', r'ŋ\1')
]]
def symbols_to_japanese(text):
for regex, replacement in _symbols_to_japanese:
text = re.sub(regex, replacement, text)
return text
def japanese_to_romaji_with_accent(text):
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
text = symbols_to_japanese(text)
sentences = re.split(_japanese_marks, text)
marks = re.findall(_japanese_marks, text)
text = ''
for i, sentence in enumerate(sentences):
if re.match(_japanese_characters, sentence):
if text != '':
text += ' '
labels = pyopenjtalk.extract_fullcontext(sentence)
for n, label in enumerate(labels):
phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
if phoneme not in ['sil', 'pau']:
text += phoneme.replace('ch', 'ʧ').replace('sh',
'ʃ').replace('cl', 'Q')
else:
continue
# n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
a3 = int(re.search(r"\+(\d+)/", label).group(1))
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
a2_next = -1
else:
a2_next = int(
re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
# Accent phrase boundary
if a3 == 1 and a2_next == 1:
text += ' '
# Falling
elif a1 == 0 and a2_next == a2 + 1:
text += ''
# Rising
elif a2 == 1 and a2_next == 2:
text += ''
if i < len(marks):
text += unidecode(marks[i]).replace(' ', '')
return text
def get_real_sokuon(text):
for regex, replacement in _real_sokuon:
text = re.sub(regex, replacement, text)
return text
def get_real_hatsuon(text):
for regex, replacement in _real_hatsuon:
text = re.sub(regex, replacement, text)
return text
def japanese_to_ipa(text):
text = japanese_to_romaji_with_accent(text).replace('...', '')
text = re.sub(
r'([aiueo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
text = get_real_sokuon(text)
text = get_real_hatsuon(text)
for regex, replacement in _romaji_to_ipa:
text = re.sub(regex, replacement, text)
return text
def japanese_to_ipa2(text):
text = japanese_to_romaji_with_accent(text).replace('...', '')
text = get_real_sokuon(text)
text = get_real_hatsuon(text)
for regex, replacement in _romaji_to_ipa2:
text = re.sub(regex, replacement, text)
return text
def japanese_to_ipa3(text):
text = japanese_to_ipa2(text).replace('n^', 'ȵ').replace(
'ʃ', 'ɕ').replace('*', '\u0325').replace('#', '\u031a')
text = re.sub(
r'([aiɯeo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
text = re.sub(r'((?:^|\s)(?:ts|tɕ|[kpt]))', r'\', text)
return text

210
vits/text/korean.py Normal file
View File

@ -0,0 +1,210 @@
import re
from jamo import h2j, j2hcj
import ko_pron
# This is a list of Korean classifiers preceded by pure Korean numerals.
_korean_classifiers = '군데 권 개 그루 닢 대 두 마리 모 모금 뭇 발 발짝 방 번 벌 보루 살 수 술 시 쌈 움큼 정 짝 채 척 첩 축 켤레 톨 통'
# List of (hangul, hangul divided) pairs:
_hangul_divided = [(re.compile('%s' % x[0]), x[1]) for x in [
('', 'ㄱㅅ'),
('', 'ㄴㅈ'),
('', 'ㄴㅎ'),
('', 'ㄹㄱ'),
('', 'ㄹㅁ'),
('', 'ㄹㅂ'),
('', 'ㄹㅅ'),
('', 'ㄹㅌ'),
('', 'ㄹㅍ'),
('', 'ㄹㅎ'),
('', 'ㅂㅅ'),
('', 'ㅗㅏ'),
('', 'ㅗㅐ'),
('', 'ㅗㅣ'),
('', 'ㅜㅓ'),
('', 'ㅜㅔ'),
('', 'ㅜㅣ'),
('', 'ㅡㅣ'),
('', 'ㅣㅏ'),
('', 'ㅣㅐ'),
('', 'ㅣㅓ'),
('', 'ㅣㅔ'),
('', 'ㅣㅗ'),
('', 'ㅣㅜ')
]]
# List of (Latin alphabet, hangul) pairs:
_latin_to_hangul = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
('a', '에이'),
('b', ''),
('c', ''),
('d', ''),
('e', ''),
('f', '에프'),
('g', ''),
('h', '에이치'),
('i', '아이'),
('j', '제이'),
('k', '케이'),
('l', ''),
('m', ''),
('n', ''),
('o', ''),
('p', ''),
('q', ''),
('r', '아르'),
('s', '에스'),
('t', ''),
('u', ''),
('v', '브이'),
('w', '더블유'),
('x', '엑스'),
('y', '와이'),
('z', '제트')
]]
# List of (ipa, lazy ipa) pairs:
_ipa_to_lazy_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
('t͡ɕ','ʧ'),
('d͡ʑ','ʥ'),
('ɲ','n^'),
('ɕ','ʃ'),
('ʷ','w'),
('ɭ','l`'),
('ʎ','ɾ'),
('ɣ','ŋ'),
('ɰ','ɯ'),
('ʝ','j'),
('ʌ','ə'),
('ɡ','g'),
('\u031a','#'),
('\u0348','='),
('\u031e',''),
('\u0320',''),
('\u0339','')
]]
def latin_to_hangul(text):
for regex, replacement in _latin_to_hangul:
text = re.sub(regex, replacement, text)
return text
def divide_hangul(text):
text = j2hcj(h2j(text))
for regex, replacement in _hangul_divided:
text = re.sub(regex, replacement, text)
return text
def hangul_number(num, sino=True):
'''Reference https://github.com/Kyubyong/g2pK'''
num = re.sub(',', '', num)
if num == '0':
return ''
if not sino and num == '20':
return '스무'
digits = '123456789'
names = '일이삼사오육칠팔구'
digit2name = {d: n for d, n in zip(digits, names)}
modifiers = '한 두 세 네 다섯 여섯 일곱 여덟 아홉'
decimals = '열 스물 서른 마흔 쉰 예순 일흔 여든 아흔'
digit2mod = {d: mod for d, mod in zip(digits, modifiers.split())}
digit2dec = {d: dec for d, dec in zip(digits, decimals.split())}
spelledout = []
for i, digit in enumerate(num):
i = len(num) - i - 1
if sino:
if i == 0:
name = digit2name.get(digit, '')
elif i == 1:
name = digit2name.get(digit, '') + ''
name = name.replace('일십', '')
else:
if i == 0:
name = digit2mod.get(digit, '')
elif i == 1:
name = digit2dec.get(digit, '')
if digit == '0':
if i % 4 == 0:
last_three = spelledout[-min(3, len(spelledout)):]
if ''.join(last_three) == '':
spelledout.append('')
continue
else:
spelledout.append('')
continue
if i == 2:
name = digit2name.get(digit, '') + ''
name = name.replace('일백', '')
elif i == 3:
name = digit2name.get(digit, '') + ''
name = name.replace('일천', '')
elif i == 4:
name = digit2name.get(digit, '') + ''
name = name.replace('일만', '')
elif i == 5:
name = digit2name.get(digit, '') + ''
name = name.replace('일십', '')
elif i == 6:
name = digit2name.get(digit, '') + ''
name = name.replace('일백', '')
elif i == 7:
name = digit2name.get(digit, '') + ''
name = name.replace('일천', '')
elif i == 8:
name = digit2name.get(digit, '') + ''
elif i == 9:
name = digit2name.get(digit, '') + ''
elif i == 10:
name = digit2name.get(digit, '') + ''
elif i == 11:
name = digit2name.get(digit, '') + ''
elif i == 12:
name = digit2name.get(digit, '') + ''
elif i == 13:
name = digit2name.get(digit, '') + ''
elif i == 14:
name = digit2name.get(digit, '') + ''
elif i == 15:
name = digit2name.get(digit, '') + ''
spelledout.append(name)
return ''.join(elem for elem in spelledout)
def number_to_hangul(text):
'''Reference https://github.com/Kyubyong/g2pK'''
tokens = set(re.findall(r'(\d[\d,]*)([\uac00-\ud71f]+)', text))
for token in tokens:
num, classifier = token
if classifier[:2] in _korean_classifiers or classifier[0] in _korean_classifiers:
spelledout = hangul_number(num, sino=False)
else:
spelledout = hangul_number(num, sino=True)
text = text.replace(f'{num}{classifier}', f'{spelledout}{classifier}')
# digit by digit for remaining digits
digits = '0123456789'
names = '영일이삼사오육칠팔구'
for d, n in zip(digits, names):
text = text.replace(d, n)
return text
def korean_to_lazy_ipa(text):
text = latin_to_hangul(text)
text = number_to_hangul(text)
text=re.sub('[\uac00-\ud7af]+',lambda x:ko_pron.romanise(x.group(0),'ipa').split('] ~ [')[0],text)
for regex, replacement in _ipa_to_lazy_ipa:
text = re.sub(regex, replacement, text)
return text
def korean_to_ipa(text):
text = korean_to_lazy_ipa(text)
return text.replace('ʧ','').replace('ʥ','')

330
vits/text/mandarin.py Normal file
View File

@ -0,0 +1,330 @@
import os
import sys
import re
from pypinyin import lazy_pinyin, BOPOMOFO
import jieba
import cn2an
import logging
logging.getLogger('jieba').setLevel(logging.WARNING)
jieba.set_dictionary(os.path.dirname(sys.argv[0])+'/jieba/dict.txt')
jieba.initialize()
# List of (Latin alphabet, bopomofo) pairs:
_latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
('a', 'ㄟˉ'),
('b', 'ㄅㄧˋ'),
('c', 'ㄙㄧˉ'),
('d', 'ㄉㄧˋ'),
('e', 'ㄧˋ'),
('f', 'ㄝˊㄈㄨˋ'),
('g', 'ㄐㄧˋ'),
('h', 'ㄝˇㄑㄩˋ'),
('i', 'ㄞˋ'),
('j', 'ㄐㄟˋ'),
('k', 'ㄎㄟˋ'),
('l', 'ㄝˊㄛˋ'),
('m', 'ㄝˊㄇㄨˋ'),
('n', 'ㄣˉ'),
('o', 'ㄡˉ'),
('p', 'ㄆㄧˉ'),
('q', 'ㄎㄧㄡˉ'),
('r', 'ㄚˋ'),
('s', 'ㄝˊㄙˋ'),
('t', 'ㄊㄧˋ'),
('u', 'ㄧㄡˉ'),
('v', 'ㄨㄧˉ'),
('w', 'ㄉㄚˋㄅㄨˋㄌㄧㄡˋ'),
('x', 'ㄝˉㄎㄨˋㄙˋ'),
('y', 'ㄨㄞˋ'),
('z', 'ㄗㄟˋ')
]]
# List of (bopomofo, romaji) pairs:
_bopomofo_to_romaji = [(re.compile('%s' % x[0]), x[1]) for x in [
('ㄅㄛ', 'p⁼wo'),
('ㄆㄛ', 'pʰwo'),
('ㄇㄛ', 'mwo'),
('ㄈㄛ', 'fwo'),
('', 'p⁼'),
('', ''),
('', 'm'),
('', 'f'),
('', 't⁼'),
('', ''),
('', 'n'),
('', 'l'),
('', 'k⁼'),
('', ''),
('', 'h'),
('', 'ʧ⁼'),
('', 'ʧʰ'),
('', 'ʃ'),
('', 'ʦ`⁼'),
('', 'ʦ`ʰ'),
('', 's`'),
('', 'ɹ`'),
('', 'ʦ⁼'),
('', 'ʦʰ'),
('', 's'),
('', 'a'),
('', 'o'),
('', 'ə'),
('', 'e'),
('', 'ai'),
('', 'ei'),
('', 'au'),
('', 'ou'),
('ㄧㄢ', 'yeNN'),
('', 'aNN'),
('ㄧㄣ', 'iNN'),
('', 'əNN'),
('', 'aNg'),
('ㄧㄥ', 'iNg'),
('ㄨㄥ', 'uNg'),
('ㄩㄥ', 'yuNg'),
('', 'əNg'),
('', 'əɻ'),
('', 'i'),
('', 'u'),
('', 'ɥ'),
('ˉ', ''),
('ˊ', ''),
('ˇ', '↓↑'),
('ˋ', ''),
('˙', ''),
('', ','),
('', '.'),
('', '!'),
('', '?'),
('', '-')
]]
# List of (romaji, ipa) pairs:
_romaji_to_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
('ʃy', 'ʃ'),
('ʧʰy', 'ʧʰ'),
('ʧ⁼y', 'ʧ⁼'),
('NN', 'n'),
('Ng', 'ŋ'),
('y', 'j'),
('h', 'x')
]]
# List of (bopomofo, ipa) pairs:
_bopomofo_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
('ㄅㄛ', 'p⁼wo'),
('ㄆㄛ', 'pʰwo'),
('ㄇㄛ', 'mwo'),
('ㄈㄛ', 'fwo'),
('', 'p⁼'),
('', ''),
('', 'm'),
('', 'f'),
('', 't⁼'),
('', ''),
('', 'n'),
('', 'l'),
('', 'k⁼'),
('', ''),
('', 'x'),
('', 'tʃ⁼'),
('', 'tʃʰ'),
('', 'ʃ'),
('', 'ts`⁼'),
('', 'ts`ʰ'),
('', 's`'),
('', 'ɹ`'),
('', 'ts⁼'),
('', 'tsʰ'),
('', 's'),
('', 'a'),
('', 'o'),
('', 'ə'),
('', 'ɛ'),
('', 'aɪ'),
('', 'eɪ'),
('', 'ɑʊ'),
('', ''),
('ㄧㄢ', 'jɛn'),
('ㄩㄢ', 'ɥæn'),
('', 'an'),
('ㄧㄣ', 'in'),
('ㄩㄣ', 'ɥn'),
('', 'ən'),
('', 'ɑŋ'),
('ㄧㄥ', ''),
('ㄨㄥ', 'ʊŋ'),
('ㄩㄥ', 'jʊŋ'),
('', 'əŋ'),
('', 'əɻ'),
('', 'i'),
('', 'u'),
('', 'ɥ'),
('ˉ', ''),
('ˊ', ''),
('ˇ', '↓↑'),
('ˋ', ''),
('˙', ''),
('', ','),
('', '.'),
('', '!'),
('', '?'),
('', '-')
]]
# List of (bopomofo, ipa2) pairs:
_bopomofo_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
('ㄅㄛ', 'pwo'),
('ㄆㄛ', 'pʰwo'),
('ㄇㄛ', 'mwo'),
('ㄈㄛ', 'fwo'),
('', 'p'),
('', ''),
('', 'm'),
('', 'f'),
('', 't'),
('', ''),
('', 'n'),
('', 'l'),
('', 'k'),
('', ''),
('', 'h'),
('', ''),
('', 'tɕʰ'),
('', 'ɕ'),
('', ''),
('', 'tʂʰ'),
('', 'ʂ'),
('', 'ɻ'),
('', 'ts'),
('', 'tsʰ'),
('', 's'),
('', 'a'),
('', 'o'),
('', 'ɤ'),
('', 'ɛ'),
('', 'aɪ'),
('', 'eɪ'),
('', 'ɑʊ'),
('', ''),
('ㄧㄢ', 'jɛn'),
('ㄩㄢ', 'yæn'),
('', 'an'),
('ㄧㄣ', 'in'),
('ㄩㄣ', 'yn'),
('', 'ən'),
('', 'ɑŋ'),
('ㄧㄥ', ''),
('ㄨㄥ', 'ʊŋ'),
('ㄩㄥ', 'jʊŋ'),
('', 'ɤŋ'),
('', 'əɻ'),
('', 'i'),
('', 'u'),
('', 'y'),
('ˉ', '˥'),
('ˊ', '˧˥'),
('ˇ', '˨˩˦'),
('ˋ', '˥˩'),
('˙', ''),
('', ','),
('', '.'),
('', '!'),
('', '?'),
('', '-')
]]
def number_to_chinese(text):
numbers = re.findall(r'\d+(?:\.?\d+)?', text)
for number in numbers:
text = text.replace(number, cn2an.an2cn(number), 1)
return text
def chinese_to_bopomofo(text):
text = text.replace('', '').replace('', '').replace('', '')
words = jieba.lcut(text, cut_all=False)
text = ''
for word in words:
bopomofos = lazy_pinyin(word, BOPOMOFO)
if not re.search('[\u4e00-\u9fff]', word):
text += word
continue
for i in range(len(bopomofos)):
bopomofos[i] = re.sub(r'([\u3105-\u3129])$', r'\', bopomofos[i])
if text != '':
text += ' '
text += ''.join(bopomofos)
return text
def latin_to_bopomofo(text):
for regex, replacement in _latin_to_bopomofo:
text = re.sub(regex, replacement, text)
return text
def bopomofo_to_romaji(text):
for regex, replacement in _bopomofo_to_romaji:
text = re.sub(regex, replacement, text)
return text
def bopomofo_to_ipa(text):
for regex, replacement in _bopomofo_to_ipa:
text = re.sub(regex, replacement, text)
return text
def bopomofo_to_ipa2(text):
for regex, replacement in _bopomofo_to_ipa2:
text = re.sub(regex, replacement, text)
return text
def chinese_to_romaji(text):
text = number_to_chinese(text)
text = chinese_to_bopomofo(text)
text = latin_to_bopomofo(text)
text = bopomofo_to_romaji(text)
text = re.sub('i([aoe])', r'y\1', text)
text = re.sub('u([aoəe])', r'w\1', text)
text = re.sub('([ʦsɹ]`[⁼ʰ]?)([→↓↑ ]+|$)',
r'\1ɹ`\2', text).replace('ɻ', 'ɹ`')
text = re.sub('([ʦs][⁼ʰ]?)([→↓↑ ]+|$)', r'\\2', text)
return text
def chinese_to_lazy_ipa(text):
text = chinese_to_romaji(text)
for regex, replacement in _romaji_to_ipa:
text = re.sub(regex, replacement, text)
return text
def chinese_to_ipa(text):
text = number_to_chinese(text)
text = chinese_to_bopomofo(text)
text = latin_to_bopomofo(text)
text = bopomofo_to_ipa(text)
text = re.sub('i([aoe])', r'j\1', text)
text = re.sub('u([aoəe])', r'w\1', text)
text = re.sub('([sɹ]`[⁼ʰ]?)([→↓↑ ]+|$)',
r'\1ɹ`\2', text).replace('ɻ', 'ɹ`')
text = re.sub('([s][⁼ʰ]?)([→↓↑ ]+|$)', r'\\2', text)
return text
def chinese_to_ipa2(text):
text = number_to_chinese(text)
text = chinese_to_bopomofo(text)
text = latin_to_bopomofo(text)
text = bopomofo_to_ipa2(text)
text = re.sub(r'i([aoe])', r'j\1', text)
text = re.sub(r'u([aoəe])', r'w\1', text)
text = re.sub(r'([ʂɹ]ʰ?)([˩˨˧˦˥ ]+|$)', r'\\2', text)
text = re.sub(r'(sʰ?)([˩˨˧˦˥ ]+|$)', r'\1ɿ\2', text)
return text

30
vits/text/ngu_dialect.py Normal file
View File

@ -0,0 +1,30 @@
import re
import opencc
dialects = {'SZ': 'suzhou', 'WX': 'wuxi', 'CZ': 'changzhou', 'HZ': 'hangzhou',
'SX': 'shaoxing', 'NB': 'ningbo', 'JJ': 'jingjiang', 'YX': 'yixing',
'JD': 'jiading', 'ZR': 'zhenru', 'PH': 'pinghu', 'TX': 'tongxiang',
'JS': 'jiashan', 'HN': 'xiashi', 'LP': 'linping', 'XS': 'xiaoshan',
'FY': 'fuyang', 'RA': 'ruao', 'CX': 'cixi', 'SM': 'sanmen',
'TT': 'tiantai', 'WZ': 'wenzhou', 'SC': 'suichang', 'YB': 'youbu'}
converters = {}
for dialect in dialects.values():
try:
converters[dialect] = opencc.OpenCC(dialect)
except:
pass
def ngu_dialect_to_ipa(text, dialect):
dialect = dialects[dialect]
text = converters[dialect].convert(text).replace('-','').replace('$',' ')
text = re.sub(r'[、;:]', '', text)
text = re.sub(r'\s*\s*', ', ', text)
text = re.sub(r'\s*。\s*', '. ', text)
text = re.sub(r'\s*\s*', '? ', text)
text = re.sub(r'\s*\s*', '! ', text)
text = re.sub(r'\s*$', '', text)
return text

62
vits/text/sanskrit.py Normal file
View File

@ -0,0 +1,62 @@
import re
from indic_transliteration import sanscript
# List of (iast, ipa) pairs:
_iast_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
('a', 'ə'),
('ā', 'aː'),
('ī', 'iː'),
('ū', 'uː'),
('', 'ɹ`'),
('', 'ɹ`ː'),
('', 'l`'),
('', 'l`ː'),
('e', 'eː'),
('o', 'oː'),
('k', 'k⁼'),
('k⁼h', ''),
('g', 'g⁼'),
('g⁼h', ''),
('', 'ŋ'),
('c', 'ʧ⁼'),
('ʧ⁼h', 'ʧʰ'),
('j', 'ʥ⁼'),
('ʥ⁼h', 'ʥʰ'),
('ñ', 'n^'),
('', 't`⁼'),
('t`⁼h', 't`ʰ'),
('', 'd`⁼'),
('d`⁼h', 'd`ʰ'),
('', 'n`'),
('t', 't⁼'),
('t⁼h', ''),
('d', 'd⁼'),
('d⁼h', ''),
('p', 'p⁼'),
('p⁼h', ''),
('b', 'b⁼'),
('b⁼h', ''),
('y', 'j'),
('ś', 'ʃ'),
('', 's`'),
('r', 'ɾ'),
('', 'l`'),
('h', 'ɦ'),
("'", ''),
('~', '^'),
('', '^')
]]
def devanagari_to_ipa(text):
text = text.replace('', 'ओम्')
text = re.sub(r'\s*।\s*$', '.', text)
text = re.sub(r'\s*।\s*', ', ', text)
text = re.sub(r'\s*॥', '.', text)
text = sanscript.transliterate(text, sanscript.DEVANAGARI, sanscript.IAST)
for regex, replacement in _iast_to_ipa:
text = re.sub(regex, replacement, text)
text = re.sub('(.)[`ː]*ḥ', lambda x: x.group(0)
[:-1]+'h'+x.group(1)+'*', text)
return text

64
vits/text/shanghainese.py Normal file
View File

@ -0,0 +1,64 @@
import re
import cn2an
import opencc
converter = opencc.OpenCC('zaonhe')
# List of (Latin alphabet, ipa) pairs:
_latin_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
('A', ''),
('B', 'bi'),
('C', 'si'),
('D', 'di'),
('E', 'i'),
('F', 'ᴇf'),
('G', 'dʑi'),
('H', 'ᴇtɕʰ'),
('I', 'ᴀi'),
('J', 'dʑᴇ'),
('K', 'kʰᴇ'),
('L', 'ᴇl'),
('M', 'ᴇm'),
('N', 'ᴇn'),
('O', 'o'),
('P', 'pʰi'),
('Q', 'kʰiu'),
('R', 'ᴀl'),
('S', 'ᴇs'),
('T', 'tʰi'),
('U', 'ɦiu'),
('V', 'vi'),
('W', 'dᴀbɤliu'),
('X', 'ᴇks'),
('Y', 'uᴀi'),
('Z', 'zᴇ')
]]
def _number_to_shanghainese(num):
num = cn2an.an2cn(num).replace('一十','').replace('二十', '廿').replace('', '')
return re.sub(r'((?:^|[^三四五六七八九])十|廿)两', r'\1二', num)
def number_to_shanghainese(text):
return re.sub(r'\d+(?:\.?\d+)?', lambda x: _number_to_shanghainese(x.group()), text)
def latin_to_ipa(text):
for regex, replacement in _latin_to_ipa:
text = re.sub(regex, replacement, text)
return text
def shanghainese_to_ipa(text):
text = number_to_shanghainese(text.upper())
text = converter.convert(text).replace('-','').replace('$',' ')
text = re.sub(r'[A-Z]', lambda x: latin_to_ipa(x.group())+' ', text)
text = re.sub(r'[、;:]', '', text)
text = re.sub(r'\s*\s*', ', ', text)
text = re.sub(r'\s*。\s*', '. ', text)
text = re.sub(r'\s*\s*', '? ', text)
text = re.sub(r'\s*\s*', '! ', text)
text = re.sub(r'\s*$', '', text)
return text

44
vits/text/thai.py Normal file
View File

@ -0,0 +1,44 @@
import re
from num_thai.thainumbers import NumThai
num = NumThai()
# List of (Latin alphabet, Thai) pairs:
_latin_to_thai = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
('a', 'เอ'),
('b','บี'),
('c','ซี'),
('d','ดี'),
('e','อี'),
('f','เอฟ'),
('g','จี'),
('h','เอช'),
('i','ไอ'),
('j','เจ'),
('k','เค'),
('l','แอล'),
('m','เอ็ม'),
('n','เอ็น'),
('o','โอ'),
('p','พี'),
('q','คิว'),
('r','แอร์'),
('s','เอส'),
('t','ที'),
('u','ยู'),
('v','วี'),
('w','ดับเบิลยู'),
('x','เอ็กซ์'),
('y','วาย'),
('z','ซี')
]]
def num_to_thai(text):
return re.sub(r'(?:\d+(?:,?\d+)?)+(?:\.\d+(?:,?\d+)?)?', lambda x: ''.join(num.NumberToTextThai(float(x.group(0).replace(',', '')))), text)
def latin_to_thai(text):
for regex, replacement in _latin_to_thai:
text = re.sub(regex, replacement, text)
return text

193
vits/transforms.py Normal file
View File

@ -0,0 +1,193 @@
import torch
from torch.nn import functional as F
import numpy as np
DEFAULT_MIN_BIN_WIDTH = 1e-3
DEFAULT_MIN_BIN_HEIGHT = 1e-3
DEFAULT_MIN_DERIVATIVE = 1e-3
def piecewise_rational_quadratic_transform(inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=False,
tails=None,
tail_bound=1.,
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
min_derivative=DEFAULT_MIN_DERIVATIVE):
if tails is None:
spline_fn = rational_quadratic_spline
spline_kwargs = {}
else:
spline_fn = unconstrained_rational_quadratic_spline
spline_kwargs = {
'tails': tails,
'tail_bound': tail_bound
}
outputs, logabsdet = spline_fn(
inputs=inputs,
unnormalized_widths=unnormalized_widths,
unnormalized_heights=unnormalized_heights,
unnormalized_derivatives=unnormalized_derivatives,
inverse=inverse,
min_bin_width=min_bin_width,
min_bin_height=min_bin_height,
min_derivative=min_derivative,
**spline_kwargs
)
return outputs, logabsdet
def searchsorted(bin_locations, inputs, eps=1e-6):
bin_locations[..., -1] += eps
return torch.sum(
inputs[..., None] >= bin_locations,
dim=-1
) - 1
def unconstrained_rational_quadratic_spline(inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=False,
tails='linear',
tail_bound=1.,
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
min_derivative=DEFAULT_MIN_DERIVATIVE):
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
outside_interval_mask = ~inside_interval_mask
outputs = torch.zeros_like(inputs)
logabsdet = torch.zeros_like(inputs)
if tails == 'linear':
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
constant = np.log(np.exp(1 - min_derivative) - 1)
unnormalized_derivatives[..., 0] = constant
unnormalized_derivatives[..., -1] = constant
outputs[outside_interval_mask] = inputs[outside_interval_mask]
logabsdet[outside_interval_mask] = 0
else:
raise RuntimeError('{} tails are not implemented.'.format(tails))
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
inputs=inputs[inside_interval_mask],
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
inverse=inverse,
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
min_bin_width=min_bin_width,
min_bin_height=min_bin_height,
min_derivative=min_derivative
)
return outputs, logabsdet
def rational_quadratic_spline(inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=False,
left=0., right=1., bottom=0., top=1.,
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
min_derivative=DEFAULT_MIN_DERIVATIVE):
if torch.min(inputs) < left or torch.max(inputs) > right:
raise ValueError('Input to a transform is not within its domain')
num_bins = unnormalized_widths.shape[-1]
if min_bin_width * num_bins > 1.0:
raise ValueError('Minimal bin width too large for the number of bins')
if min_bin_height * num_bins > 1.0:
raise ValueError('Minimal bin height too large for the number of bins')
widths = F.softmax(unnormalized_widths, dim=-1)
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
cumwidths = torch.cumsum(widths, dim=-1)
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
cumwidths = (right - left) * cumwidths + left
cumwidths[..., 0] = left
cumwidths[..., -1] = right
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
heights = F.softmax(unnormalized_heights, dim=-1)
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
cumheights = torch.cumsum(heights, dim=-1)
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
cumheights = (top - bottom) * cumheights + bottom
cumheights[..., 0] = bottom
cumheights[..., -1] = top
heights = cumheights[..., 1:] - cumheights[..., :-1]
if inverse:
bin_idx = searchsorted(cumheights, inputs)[..., None]
else:
bin_idx = searchsorted(cumwidths, inputs)[..., None]
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
delta = heights / widths
input_delta = delta.gather(-1, bin_idx)[..., 0]
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
input_heights = heights.gather(-1, bin_idx)[..., 0]
if inverse:
a = (((inputs - input_cumheights) * (input_derivatives
+ input_derivatives_plus_one
- 2 * input_delta)
+ input_heights * (input_delta - input_derivatives)))
b = (input_heights * input_derivatives
- (inputs - input_cumheights) * (input_derivatives
+ input_derivatives_plus_one
- 2 * input_delta))
c = - input_delta * (inputs - input_cumheights)
discriminant = b.pow(2) - 4 * a * c
assert (discriminant >= 0).all()
root = (2 * c) / (-b - torch.sqrt(discriminant))
outputs = root * input_bin_widths + input_cumwidths
theta_one_minus_theta = root * (1 - root)
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
* theta_one_minus_theta)
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
+ 2 * input_delta * theta_one_minus_theta
+ input_derivatives * (1 - root).pow(2))
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, -logabsdet
else:
theta = (inputs - input_cumwidths) / input_bin_widths
theta_one_minus_theta = theta * (1 - theta)
numerator = input_heights * (input_delta * theta.pow(2)
+ input_derivatives * theta_one_minus_theta)
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
* theta_one_minus_theta)
outputs = input_cumheights + numerator / denominator
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
+ 2 * input_delta * theta_one_minus_theta
+ input_derivatives * (1 - theta).pow(2))
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, logabsdet

75
vits/utils.py Normal file
View File

@ -0,0 +1,75 @@
import logging
from json import loads
from torch import load, FloatTensor
from numpy import float32
import librosa
class HParams():
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()
def load_checkpoint(checkpoint_path, model):
checkpoint_dict = load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
saved_state_dict = checkpoint_dict['model']
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict= {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
logging.info("%s is not in the checkpoint" % k)
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
logging.info("Loaded checkpoint '{}' (iteration {})" .format(
checkpoint_path, iteration))
return
def get_hparams_from_file(config_path):
with open(config_path, "r") as f:
data = f.read()
config = loads(data)
hparams = HParams(**config)
return hparams
def load_audio_to_torch(full_path, target_sampling_rate):
audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True)
return FloatTensor(audio.astype(float32))

View File

@ -0,0 +1,55 @@
{
"train": {
"log_interval": 200,
"eval_interval": 1000,
"seed": 1234,
"epochs": 10000,
"learning_rate": 2e-4,
"betas": [0.8, 0.99],
"eps": 1e-9,
"batch_size": 32,
"fp16_run": true,
"lr_decay": 0.999875,
"segment_size": 8192,
"init_lr_ratio": 1,
"warmup_epochs": 0,
"c_mel": 45,
"c_kl": 1.0
},
"data": {
"training_files":"filelists/xiaoke_train.txt.cleaned",
"validation_files":"filelists/xiaoke_val.txt.cleaned",
"text_cleaners":["zh_ja_mixture_cleaners"],
"max_wav_value": 32768.0,
"sampling_rate": 22050,
"filter_length": 1024,
"hop_length": 256,
"win_length": 1024,
"n_mel_channels": 80,
"mel_fmin": 0.0,
"mel_fmax": null,
"add_blank": true,
"n_speakers": 804,
"cleaned_text": true
},
"model": {
"inter_channels": 192,
"hidden_channels": 192,
"filter_channels": 768,
"n_heads": 2,
"n_layers": 6,
"kernel_size": 3,
"p_dropout": 0.1,
"resblock": "1",
"resblock_kernel_sizes": [3,7,11],
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
"upsample_rates": [8,8,2,2],
"upsample_initial_channel": 512,
"upsample_kernel_sizes": [16,16,4,4],
"n_layers_q": 3,
"use_spectral_norm": false,
"gin_channels": 256
},
"speakers": ["\u963f\u55b5\u55b5"],
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
}