vllm/Dockerfile

137 lines
4.6 KiB
Docker

# The vLLM Dockerfile is used to construct vLLM image that can be directly used
# to run the OpenAI compatible server.
# Please update any changes made here to
# docs/source/dev/dockerfile/dockerfile.rst and
# docs/source/assets/dev/dockerfile-stages-dependency.png
#################### BASE BUILD IMAGE ####################
# prepare basic build environment
FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 AS dev
RUN apt-get update -y \
&& apt-get install -y python3-pip git
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.4/compat/
WORKDIR /workspace
# install build and runtime dependencies
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-cuda.txt
# install development dependencies
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
# explicitly set the list to avoid issues with torch 2.2
# see https://github.com/pytorch/pytorch/pull/123243
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
#################### BASE BUILD IMAGE ####################
#################### WHEEL BUILD IMAGE ####################
FROM dev AS build
# install build dependencies
COPY requirements-build.txt requirements-build.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-build.txt
# install compiler cache to speed up compilation leveraging local or remote caching
RUN apt-get update -y && apt-get install -y ccache
# files and directories related to build wheels
COPY csrc csrc
COPY setup.py setup.py
COPY cmake cmake
COPY CMakeLists.txt CMakeLists.txt
COPY requirements-common.txt requirements-common.txt
COPY requirements-cuda.txt requirements-cuda.txt
COPY pyproject.toml pyproject.toml
COPY vllm vllm
# max jobs used by Ninja to build extensions
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
# number of threads used by nvcc
ARG nvcc_threads=8
ENV NVCC_THREADS=$nvcc_threads
# make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/root/.cache/pip \
python3 setup.py bdist_wheel --dist-dir=dist
# check the size of the wheel, we cannot upload wheels larger than 100MB
COPY .buildkite/check-wheel-size.py check-wheel-size.py
RUN python3 check-wheel-size.py dist
#################### EXTENSION Build IMAGE ####################
#################### vLLM installation IMAGE ####################
# image with vLLM installed
FROM nvidia/cuda:12.4.1-base-ubuntu22.04 AS vllm-base
WORKDIR /vllm-workspace
RUN apt-get update -y \
&& apt-get install -y python3-pip git vim
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.4/compat/
# install vllm wheel first, so that torch etc will be installed
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/pip \
pip install dist/*.whl --verbose
#################### vLLM installation IMAGE ####################
#################### TEST IMAGE ####################
# image to run unit testing suite
# note that this uses vllm installed by `pip`
FROM vllm-base AS test
ADD . /vllm-workspace/
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
# doc requires source code
# we hide them inside `test_docs/` , so that this source code
# will not be imported by other tests
RUN mkdir test_docs
RUN mv docs test_docs/
RUN mv vllm test_docs/
#################### TEST IMAGE ####################
#################### OPENAI API SERVER ####################
# openai api server alternative
FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer modelscope
ENV VLLM_USAGE_SOURCE production-docker-image
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
#################### OPENAI API SERVER ####################