vllm/csrc/torch_bindings.cpp

451 lines
18 KiB
C++

#include "cache.h"
#include "cuda_utils.h"
#include "ops.h"
#include "core/registration.h"
#include <torch/library.h>
// Note on op signatures:
// The X_meta signatures are for the meta functions corresponding to op X.
// They must be kept in sync with the signature for X. Generally, only
// functions that return Tensors require a meta function.
//
// See the following links for detailed docs on op registration and function
// schemas.
// https://docs.google.com/document/d/1_W62p8WJOQQUzPsJYa7s701JXt0qf2OfLub2sbkHOaU/edit#heading=h.ptttacy8y1u9
// https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/README.md#annotations
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// vLLM custom ops
ops.def("weak_ref_tensor(Tensor input) -> Tensor");
ops.impl("weak_ref_tensor", torch::kCUDA, &weak_ref_tensor);
// Attention ops
// Compute the attention between an input query and the cached
// keys/values using PagedAttention.
ops.def(
"paged_attention_v1("
" Tensor! out, Tensor query, Tensor key_cache,"
" Tensor value_cache, int num_kv_heads, float scale,"
" Tensor block_tables, Tensor seq_lens, int block_size,"
" int max_seq_len, Tensor? alibi_slopes,"
" str kv_cache_dtype, float k_scale, float v_scale,"
" int tp_rank, int blocksparse_local_blocks,"
" int blocksparse_vert_stride, int blocksparse_block_size,"
" int blocksparse_head_sliding_step) -> ()");
ops.impl("paged_attention_v1", torch::kCUDA, &paged_attention_v1);
// PagedAttention V2.
ops.def(
"paged_attention_v2("
" Tensor! out, Tensor! exp_sums, Tensor! max_logits,"
" Tensor! tmp_out, Tensor query, Tensor key_cache,"
" Tensor value_cache, int num_kv_heads, float scale,"
" Tensor block_tables, Tensor seq_lens, int block_size,"
" int max_seq_len, Tensor? alibi_slopes,"
" str kv_cache_dtype, float k_scale, float v_scale,"
" int tp_rank, int blocksparse_local_blocks,"
" int blocksparse_vert_stride, int blocksparse_block_size,"
" int blocksparse_head_sliding_step) -> ()");
ops.impl("paged_attention_v2", torch::kCUDA, &paged_attention_v2);
// Activation ops
// Activation function used in SwiGLU.
ops.def("silu_and_mul(Tensor! out, Tensor input) -> ()");
ops.impl("silu_and_mul", torch::kCUDA, &silu_and_mul);
// Activation function used in GeGLU with `none` approximation.
ops.def("gelu_and_mul(Tensor! out, Tensor input) -> ()");
ops.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul);
// Activation function used in GeGLU with `tanh` approximation.
ops.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()");
ops.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul);
// FATReLU implementation.
ops.def("fatrelu_and_mul(Tensor! out, Tensor input, float threshold) -> ()");
ops.impl("fatrelu_and_mul", torch::kCUDA, &fatrelu_and_mul);
// GELU implementation used in GPT-2.
ops.def("gelu_new(Tensor! out, Tensor input) -> ()");
ops.impl("gelu_new", torch::kCUDA, &gelu_new);
// Approximate GELU implementation.
ops.def("gelu_fast(Tensor! out, Tensor input) -> ()");
ops.impl("gelu_fast", torch::kCUDA, &gelu_fast);
// Quick GELU implementation.
ops.def("gelu_quick(Tensor! out, Tensor input) -> ()");
ops.impl("gelu_quick", torch::kCUDA, &gelu_quick);
// prepare_inputs advance_step
ops.def(
"advance_step_flashattn(int num_seqs, int num_queries, int block_size, "
"Tensor! input_tokens, Tensor sampled_token_ids, "
"Tensor! input_positions, Tensor! seq_lens, Tensor! slot_mapping, "
"Tensor block_tables) -> ()");
ops.impl("advance_step_flashattn", torch::kCUDA, &advance_step_flashattn);
ops.def(
"advance_step_flashinfer("
" int num_seqs, int num_queries, int block_size,"
" Tensor! input_tokens, Tensor sampled_token_ids,"
" Tensor! input_positions, Tensor! seq_lens, Tensor! slot_mapping,"
" Tensor block_tables, Tensor! paged_kv_indices,"
" Tensor! paged_kv_indptr, Tensor! paged_kv_last_page_len,"
" Tensor! block_table_bounds"
") -> ()");
ops.impl("advance_step_flashinfer", torch::kCUDA, &advance_step_flashinfer);
// Layernorm
// Apply Root Mean Square (RMS) Normalization to the input tensor.
ops.def(
"rms_norm(Tensor! result, Tensor input, Tensor weight, float epsilon) -> "
"()");
ops.impl("rms_norm", torch::kCUDA, &rms_norm);
// In-place fused Add and RMS Normalization.
ops.def(
"fused_add_rms_norm(Tensor! input, Tensor! residual, Tensor weight, "
"float epsilon) -> ()");
ops.impl("fused_add_rms_norm", torch::kCUDA, &fused_add_rms_norm);
// Layernorm-quant
// Apply Root Mean Square (RMS) Normalization to the input tensor.
ops.def(
"rms_norm_static_fp8_quant(Tensor! result, Tensor input, Tensor weight, "
"Tensor scale, float epsilon) -> "
"()");
ops.impl("rms_norm_static_fp8_quant", torch::kCUDA,
&rms_norm_static_fp8_quant);
// In-place fused Add and RMS Normalization.
ops.def(
"fused_add_rms_norm_static_fp8_quant(Tensor! result, Tensor input, "
"Tensor! residual, Tensor weight, "
"Tensor scale, float epsilon) -> ()");
ops.impl("fused_add_rms_norm_static_fp8_quant", torch::kCUDA,
&fused_add_rms_norm_static_fp8_quant);
// Rotary embedding
// Apply GPT-NeoX or GPT-J style rotary embedding to query and key.
ops.def(
"rotary_embedding(Tensor positions, Tensor! query,"
" Tensor! key, int head_size,"
" Tensor cos_sin_cache, bool is_neox) -> ()");
ops.impl("rotary_embedding", torch::kCUDA, &rotary_embedding);
// Apply GPT-NeoX or GPT-J style rotary embedding to query and key
// (supports multiple loras).
ops.def(
"batched_rotary_embedding(Tensor positions, Tensor! query,"
" Tensor! key, int head_size,"
" Tensor cos_sin_cache, bool is_neox,"
" int rot_dim,"
" Tensor cos_sin_cache_offsets) -> ()");
ops.impl("batched_rotary_embedding", torch::kCUDA, &batched_rotary_embedding);
// Quantization ops
#ifndef USE_ROCM
// Quantized GEMM for AQLM.
ops.def(
"aqlm_gemm(Tensor input, Tensor codes, Tensor codebooks, "
"Tensor scales, int[] codebook_partition_sizes, Tensor? bias) "
"-> Tensor");
ops.impl("aqlm_gemm", torch::kCUDA, &aqlm_gemm);
// Decompression method for AQLM.
ops.def(
"aqlm_dequant(Tensor codes, Tensor codebooks, "
"int[] codebook_partition_sizes) -> Tensor");
ops.impl("aqlm_dequant", torch::kCUDA, &aqlm_dequant);
// Quantized GEMM for AWQ.
ops.def(
"awq_gemm(Tensor _in_feats, Tensor _kernel, Tensor _scaling_factors, "
"Tensor _zeros, SymInt split_k_iters) -> Tensor");
ops.impl("awq_gemm", torch::kCUDA, &awq_gemm);
// Dequantization for AWQ.
ops.def(
"awq_dequantize(Tensor _kernel, Tensor _scaling_factors, "
"Tensor _zeros, SymInt split_k_iters, int thx, int thy) -> Tensor");
ops.impl("awq_dequantize", torch::kCUDA, &awq_dequantize);
// Note about marlin kernel 'workspace' arguments:
// Technically these should be mutable since they are modified by the kernel.
// But since they are set back to zero once the kernel is finished we can
// hand wave and say that they have no net effect.
//
// The reason to mark 'workspace' as immutable is so that they don't interfere
// with using ScalarType arguments in the ops. If they are marked as mutable,
// pytorch throws an assert in
// 'torch._higher_order_ops._register_effectful_op' that prevents these
// kernels from being torch.compile'd.
// See the following document for more info on custom types and ops that use
// custom types:
// https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA
// Marlin (Dense) Optimized Quantized GEMM for GPTQ.
ops.def(
"marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, "
"Tensor! workspace, SymInt size_m, SymInt size_n, SymInt size_k) -> "
"Tensor");
// conditionally compiled so impl in source file
// Marlin_24 (Sparse) Optimized Quantized GEMM for GPTQ.
ops.def(
"gptq_marlin_24_gemm(Tensor a, Tensor b_q_weight, Tensor b_meta, "
"Tensor b_scales, Tensor workspace, "
"int b_q_type, "
"SymInt size_m, SymInt size_n, SymInt size_k) -> Tensor");
// conditionally compiled so impl in source file
// Machete (Dense) Optimized Mixed Precision GEMM for Hopper.
ops.def("machete_supported_schedules(int btype) -> str[]");
ops.def(
"machete_gemm(Tensor A, Tensor B, int btype, "
" Tensor? scales, Tensor? zeros, int? group_size, "
" Tensor? C, float? alpha, float? beta, str? schedule)"
"-> Tensor");
ops.def("machete_prepack_B(Tensor B, int btype) -> Tensor");
// conditionally compiled so impl registration is in source file
ops.def("permute_cols(Tensor A, Tensor perm) -> Tensor");
ops.impl("permute_cols", torch::kCUDA, &permute_cols);
// gptq_marlin Optimized Quantized GEMM for GPTQ.
ops.def(
"gptq_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, "
"Tensor b_zeros, Tensor g_idx, Tensor perm, Tensor workspace, "
"int b_q_type, "
"SymInt size_m, SymInt size_n, SymInt size_k, bool is_k_full, "
"bool has_zp, bool use_fp32_reduce) -> Tensor");
// conditionally compiled so impl registration is in source file
// gptq_marlin repack from GPTQ.
ops.def(
"gptq_marlin_repack(Tensor b_q_weight, Tensor perm, "
"SymInt size_k, SymInt size_n, int num_bits) -> Tensor");
// conditionally compiled so impl registrations are in source file
// awq_marlin repack from AWQ.
ops.def(
"awq_marlin_repack(Tensor b_q_weight, SymInt size_k, "
"SymInt size_n, int num_bits) -> Tensor");
// conditionally compiled so impl registrations are in source file
// Dequantization for GGML.
ops.def("ggml_dequantize(Tensor W, int type, SymInt m, SymInt n) -> Tensor");
ops.impl("ggml_dequantize", torch::kCUDA, &ggml_dequantize);
// mmvq kernel for GGML.
ops.def(
"ggml_mul_mat_vec_a8(Tensor W, Tensor X, int type, SymInt row) "
"-> Tensor");
ops.impl("ggml_mul_mat_vec_a8", torch::kCUDA, &ggml_mul_mat_vec_a8);
// mmq kernel for GGML.
ops.def(
"ggml_mul_mat_a8(Tensor W, Tensor X, int type, SymInt row) -> Tensor");
ops.impl("ggml_mul_mat_a8", torch::kCUDA, &ggml_mul_mat_a8);
// fp8_marlin Optimized Quantized GEMM for FP8 weight-only.
ops.def(
"fp8_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, "
"Tensor! workspace, int num_bits, SymInt size_m, SymInt size_n, "
"SymInt size_k) -> Tensor");
// conditionally compiled so impl registration is in source file
// marlin_qqq_gemm for QQQ.
ops.def(
"marlin_qqq_gemm(Tensor a, Tensor b_q_weight, "
"Tensor s_tok, Tensor s_ch, Tensor s_group, "
"Tensor! workspace, SymInt size_m, SymInt size_n, "
"SymInt size_k) -> Tensor");
// conditionally compiled so impl registration is in source file
// CUTLASS w8a8 GEMM, supporting symmetric per-tensor or per-row/column
// quantization, as well as bias
ops.def(
"cutlass_scaled_mm(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm", torch::kCUDA, &cutlass_scaled_mm);
// CUTLASS w8a8 GEMM, supporting asymmetric per-tensor or per-row/column
// quantization.
ops.def(
"cutlass_scaled_mm_azp(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor azp_adj,"
" Tensor? azp, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm_azp", torch::kCUDA, &cutlass_scaled_mm_azp);
// Check if cutlass scaled_mm is supported for CUDA devices of the given
// capability
ops.def("cutlass_scaled_mm_supports_fp8(int cuda_device_capability) -> bool");
ops.impl("cutlass_scaled_mm_supports_fp8", &cutlass_scaled_mm_supports_fp8);
// Mamba selective scan kernel
ops.def(
"selective_scan_fwd(Tensor! u, Tensor! delta,"
"Tensor! A, Tensor! B, Tensor! C,"
"Tensor? D_, Tensor!? z_, Tensor? delta_bias_,"
"bool delta_softplus,"
"Tensor? query_start_loc,"
"Tensor? cache_indices,"
"Tensor? has_initial_state,"
"Tensor! ssm_states,"
"int pad_slot_id) -> ()");
ops.impl("selective_scan_fwd", torch::kCUDA, &selective_scan_fwd);
ops.def(
"causal_conv1d_update(Tensor! x,"
"Tensor! conv_state,"
"Tensor! weight,"
"Tensor? bias_,"
"bool silu_activation,"
"Tensor? cache_seqlens_,"
"Tensor? conv_state_indices,"
"int pad_slot_id) -> ()");
ops.impl("causal_conv1d_update", torch::kCUDA, &causal_conv1d_update);
ops.def(
"causal_conv1d_fwd(Tensor! x, Tensor! weight,"
"Tensor? bias_,"
"Tensor!? conv_states,"
"Tensor? query_start_loc,"
"Tensor? cache_indices,"
"Tensor? has_initial_state,"
"bool silu_activation,"
"int pad_slot_id) -> ()");
ops.impl("causal_conv1d_fwd", torch::kCUDA, &causal_conv1d_fwd);
#endif
// Quantized GEMM for GPTQ.
// Note: even though the C++ inferred schema is correct for this op, it seems
// to prevent the meta function registry.
ops.def(
"gptq_gemm(Tensor a, Tensor b_q_weight, Tensor b_gptq_qzeros, "
"Tensor b_gptq_scales, Tensor b_g_idx, bool use_exllama, int bit) "
"-> Tensor");
ops.impl("gptq_gemm", torch::kCUDA, &gptq_gemm);
// Post processing for GPTQ.
ops.def("gptq_shuffle(Tensor! q_weight, Tensor q_perm, int bit) -> ()");
ops.impl("gptq_shuffle", torch::kCUDA, &gptq_shuffle);
// Compute FP8 quantized tensor for given scaling factor.
ops.def(
"static_scaled_fp8_quant(Tensor! result, Tensor input, Tensor scale) -> "
"()");
ops.impl("static_scaled_fp8_quant", torch::kCUDA, &static_scaled_fp8_quant);
// Compute dynamic-per-tensor FP8 quantized tensor and scaling factor.
ops.def(
"dynamic_scaled_fp8_quant(Tensor! result, Tensor input, Tensor! scale) "
"-> "
"()");
ops.impl("dynamic_scaled_fp8_quant", torch::kCUDA, &dynamic_scaled_fp8_quant);
// Compute dynamic-per-token FP8 quantized tensor and scaling factor.
ops.def(
"dynamic_per_token_scaled_fp8_quant(Tensor! result, Tensor input, "
"Tensor! scale, Tensor? scale_ub) -> "
"()");
ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA,
&dynamic_per_token_scaled_fp8_quant);
// Compute int8 quantized tensor for given scaling factor.
ops.def(
"static_scaled_int8_quant(Tensor! result, Tensor input, Tensor scale,"
"Tensor? azp) -> ()");
ops.impl("static_scaled_int8_quant", torch::kCUDA, &static_scaled_int8_quant);
// Compute int8 quantized tensor and scaling factor
ops.def(
"dynamic_scaled_int8_quant(Tensor! result, Tensor input, Tensor! scale, "
"Tensor!? azp) -> ()");
ops.impl("dynamic_scaled_int8_quant", torch::kCUDA,
&dynamic_scaled_int8_quant);
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
// Cache ops
// Swap in (out) the cache blocks from src to dst.
cache_ops.def(
"swap_blocks(Tensor src, Tensor! dst, Tensor block_mapping) -> ()");
cache_ops.impl("swap_blocks", torch::kCUDA, &swap_blocks);
// Copy the cache blocks from src to dst.
cache_ops.def(
"copy_blocks(Tensor(a!)[] key_caches, Tensor[](b!) value_caches, "
"Tensor block_mapping) -> ()");
cache_ops.impl("copy_blocks", torch::kCUDA, &copy_blocks);
// Reshape the key and value tensors and cache them.
cache_ops.def(
"reshape_and_cache(Tensor key, Tensor value,"
" Tensor! key_cache, Tensor! value_cache,"
" Tensor slot_mapping,"
" str kv_cache_dtype,"
" float k_scale, float v_scale) -> ()");
cache_ops.impl("reshape_and_cache", torch::kCUDA, &reshape_and_cache);
// Reshape the key and value tensors and cache them.
cache_ops.def(
"reshape_and_cache_flash(Tensor key, Tensor value,"
" Tensor! key_cache,"
" Tensor! value_cache,"
" Tensor slot_mapping,"
" str kv_cache_dtype,"
" float k_scale, float v_scale) -> ()");
cache_ops.impl("reshape_and_cache_flash", torch::kCUDA,
&reshape_and_cache_flash);
// Convert the key and value cache to fp8 data type.
cache_ops.def(
"convert_fp8(Tensor! dst_cache, Tensor src_cache, float scale, "
"str kv_cache_dtype) -> ()");
cache_ops.impl("convert_fp8", torch::kCUDA, &convert_fp8);
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) {
// Cuda utils
// Gets the specified device attribute.
cuda_utils.def("get_device_attribute(int attribute, int device_id) -> int");
cuda_utils.impl("get_device_attribute", &get_device_attribute);
// Gets the maximum shared memory per block device attribute.
cuda_utils.def(
"get_max_shared_memory_per_block_device_attribute(int device_id) -> int");
cuda_utils.impl("get_max_shared_memory_per_block_device_attribute",
&get_max_shared_memory_per_block_device_attribute);
}
#ifndef USE_ROCM
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _custom_ar), custom_ar) {
// Custom all-reduce kernels
custom_ar.def(
"init_custom_ar(int[] ipc_tensors, Tensor rank_data, "
"int rank, bool full_nvlink) -> int");
custom_ar.impl("init_custom_ar", torch::kCUDA, &init_custom_ar);
custom_ar.def(
"all_reduce(int fa, Tensor inp, Tensor! out, int reg_buffer, "
"int reg_buffer_sz_bytes) -> ()");
custom_ar.impl("all_reduce", torch::kCUDA, &all_reduce);
custom_ar.def("dispose", &dispose);
custom_ar.def("meta_size", &meta_size);
custom_ar.def("register_buffer", &register_buffer);
custom_ar.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta);
custom_ar.def("register_graph_buffers", &register_graph_buffers);
}
#endif
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)