mirror of https://github.com/vllm-project/vllm
Add StableLM3B model (#2372)
This commit is contained in:
parent
8cd5a992bf
commit
e1957c6ebd
|
@ -77,6 +77,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
|
|||
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
|
||||
- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)
|
||||
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
|
||||
- StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.)
|
||||
- Yi (`01-ai/Yi-6B`, `01-ai/Yi-34B`, etc.)
|
||||
|
||||
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
|
||||
|
|
|
@ -68,6 +68,9 @@ Alongside each architecture, we include some popular models that use it.
|
|||
* - :code:`QWenLMHeadModel`
|
||||
- Qwen
|
||||
- :code:`Qwen/Qwen-7B`, :code:`Qwen/Qwen-7B-Chat`, etc.
|
||||
* - :code:`StableLMEpochForCausalLM`
|
||||
- StableLM
|
||||
- :code:`stabilityai/stablelm-3b-4e1t/` , :code:`stabilityai/stablelm-base-alpha-7b-v2`, etc.
|
||||
* - :code:`YiForCausalLM`
|
||||
- Yi
|
||||
- :code:`01-ai/Yi-6B`, :code:`01-ai/Yi-34B`, etc.
|
||||
|
|
|
@ -5,18 +5,11 @@ Run `pytest tests/models/test_models.py --forked`.
|
|||
import pytest
|
||||
|
||||
MODELS = [
|
||||
"facebook/opt-125m",
|
||||
"meta-llama/Llama-2-7b-hf",
|
||||
"mistralai/Mistral-7B-v0.1",
|
||||
"Deci/DeciLM-7b",
|
||||
"tiiuae/falcon-7b",
|
||||
"gpt2",
|
||||
"bigcode/tiny_starcoder_py",
|
||||
"EleutherAI/gpt-j-6b",
|
||||
"EleutherAI/pythia-70m",
|
||||
"bigscience/bloom-560m",
|
||||
"mosaicml/mpt-7b",
|
||||
"microsoft/phi-2",
|
||||
"facebook/opt-125m", "meta-llama/Llama-2-7b-hf",
|
||||
"mistralai/Mistral-7B-v0.1", "Deci/DeciLM-7b", "tiiuae/falcon-7b", "gpt2",
|
||||
"bigcode/tiny_starcoder_py", "EleutherAI/gpt-j-6b",
|
||||
"EleutherAI/pythia-70m", "bigscience/bloom-560m", "mosaicml/mpt-7b",
|
||||
"microsoft/phi-2", "stabilityai/stablelm-3b-4e1t"
|
||||
]
|
||||
|
||||
|
||||
|
|
|
@ -36,7 +36,8 @@ _MODELS = {
|
|||
"PhiForCausalLM": ("phi", "PhiForCausalLM"),
|
||||
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
|
||||
"RWForCausalLM": ("falcon", "FalconForCausalLM"),
|
||||
"YiForCausalLM": ("yi", "YiForCausalLM"),
|
||||
"StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"),
|
||||
"YiForCausalLM": ("yi", "YiForCausalLM")
|
||||
}
|
||||
|
||||
# Models not supported by ROCm.
|
||||
|
|
|
@ -0,0 +1,299 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# This code is based off the following work:
|
||||
# https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/modeling_stablelm_epoch.py
|
||||
# https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/config.json
|
||||
"""Inference-only StabeLM (https://github.com/Stability-AI/StableLM) model compatible with HuggingFace weights."""
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding, ParallelLMHead)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.sequence import SamplerOutput
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class StablelmMLP(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size
|
||||
self.intermediate_size = config.intermediate_size
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
config.hidden_size, [config.intermediate_size] * 2,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.down_proj = RowParallelLinear(config.intermediate_size,
|
||||
config.hidden_size,
|
||||
bias=False)
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class StablelmAttention(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = config.num_attention_heads
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
|
||||
self.total_num_key_value_heads = config.num_key_value_heads
|
||||
if self.total_num_key_value_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_key_value_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_key_value_heads == 0
|
||||
self.num_key_value_heads = max(
|
||||
1, self.total_num_key_value_heads // tp_size)
|
||||
self.head_dim = self.hidden_size // self.total_num_heads
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_key_value_heads * self.head_dim
|
||||
|
||||
if (self.head_dim * self.num_heads) != self.hidden_size:
|
||||
raise ValueError(
|
||||
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||||
f" and `num_heads`: {self.num_heads}).")
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(self.hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_key_value_heads,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.rotary_ndims,
|
||||
max_position=self.config.max_position_embeddings,
|
||||
base=self.config.rope_theta,
|
||||
)
|
||||
self.attn = PagedAttention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_key_value_heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class StablelmDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.self_attn = StablelmAttention(config)
|
||||
self.mlp = StablelmMLP(config, linear_method)
|
||||
self.input_layernorm = nn.LayerNorm(config.hidden_size,
|
||||
eps=config.norm_eps)
|
||||
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
|
||||
eps=config.norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class StableLMEpochModel(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None) -> None:
|
||||
super().__init__()
|
||||
# self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
StablelmDecoderLayer(config, linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
)
|
||||
hidden_states = self.norm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class StablelmForCausalLM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.linear_method = linear_method
|
||||
self.model = StableLMEpochModel(config, linear_method)
|
||||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
load_format: str = "auto",
|
||||
revision: Optional[str] = None):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
if ("rotary_emb.cos_cached" in name
|
||||
or "rotary_emb.sin_cached" in name):
|
||||
# Models trained using ColossalAI may include these tensors in
|
||||
# the checkpoint. Skip them.
|
||||
continue
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
Loading…
Reference in New Issue