mirror of https://github.com/vllm-project/vllm
[Doc] Update the SkyPilot doc with serving and Llama-3 (#4276)
This commit is contained in:
parent
ad8d696a99
commit
ceaf4ed003
|
@ -1,7 +1,7 @@
|
|||
.. _on_cloud:
|
||||
|
||||
Running on clouds with SkyPilot
|
||||
===============================
|
||||
Deploying and scaling up with SkyPilot
|
||||
================================================
|
||||
|
||||
.. raw:: html
|
||||
|
||||
|
@ -9,51 +9,75 @@ Running on clouds with SkyPilot
|
|||
<img src="https://imgur.com/yxtzPEu.png" alt="vLLM"/>
|
||||
</p>
|
||||
|
||||
vLLM can be run on the cloud to scale to multiple GPUs with `SkyPilot <https://github.com/skypilot-org/skypilot>`__, an open-source framework for running LLMs on any cloud.
|
||||
vLLM can be **run and scaled to multiple service replicas on clouds and Kubernetes** with `SkyPilot <https://github.com/skypilot-org/skypilot>`__, an open-source framework for running LLMs on any cloud. More examples for various open models, such as Llama-3, Mixtral, etc, can be found in `SkyPilot AI gallery <https://skypilot.readthedocs.io/en/latest/gallery/index.html>`__.
|
||||
|
||||
To install SkyPilot and setup your cloud credentials, run:
|
||||
|
||||
Prerequisites
|
||||
-------------
|
||||
|
||||
- Go to the `HuggingFace model page <https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct>`__ and request access to the model :code:`meta-llama/Meta-Llama-3-8B-Instruct`.
|
||||
- Check that you have installed SkyPilot (`docs <https://skypilot.readthedocs.io/en/latest/getting-started/installation.html>`__).
|
||||
- Check that :code:`sky check` shows clouds or Kubernetes are enabled.
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ pip install skypilot
|
||||
$ sky check
|
||||
pip install skypilot-nightly
|
||||
sky check
|
||||
|
||||
|
||||
Run on a single instance
|
||||
------------------------
|
||||
|
||||
See the vLLM SkyPilot YAML for serving, `serving.yaml <https://github.com/skypilot-org/skypilot/blob/master/llm/vllm/serve.yaml>`__.
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
resources:
|
||||
accelerators: A100
|
||||
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
|
||||
use_spot: True
|
||||
disk_size: 512 # Ensure model checkpoints can fit.
|
||||
disk_tier: best
|
||||
ports: 8081 # Expose to internet traffic.
|
||||
|
||||
envs:
|
||||
MODEL_NAME: decapoda-research/llama-13b-hf
|
||||
TOKENIZER: hf-internal-testing/llama-tokenizer
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
|
||||
|
||||
setup: |
|
||||
conda create -n vllm python=3.9 -y
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
git clone https://github.com/vllm-project/vllm.git
|
||||
cd vllm
|
||||
pip install .
|
||||
pip install gradio
|
||||
|
||||
pip install vllm==0.4.0.post1
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
pip install flash-attn==2.5.7
|
||||
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.api_server \
|
||||
--model $MODEL_NAME \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
--tokenizer $TOKENIZER 2>&1 | tee api_server.log &
|
||||
python -u -m vllm.entrypoints.openai.api_server \
|
||||
--port 8081 \
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log &
|
||||
|
||||
echo 'Waiting for vllm api server to start...'
|
||||
while ! `cat api_server.log | grep -q 'Uvicorn running on'`; do sleep 1; done
|
||||
echo 'Starting gradio server...'
|
||||
python vllm/examples/gradio_webserver.py
|
||||
|
||||
Start the serving the LLaMA-13B model on an A100 GPU:
|
||||
echo 'Starting gradio server...'
|
||||
git clone https://github.com/vllm-project/vllm.git || true
|
||||
python vllm/examples/gradio_openai_chatbot_webserver.py \
|
||||
-m $MODEL_NAME \
|
||||
--port 8811 \
|
||||
--model-url http://localhost:8081/v1 \
|
||||
--stop-token-ids 128009,128001
|
||||
|
||||
Start the serving the Llama-3 8B model on any of the candidate GPUs listed (L4, A10g, ...):
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ sky launch serving.yaml
|
||||
HF_TOKEN="your-huggingface-token" sky launch serving.yaml --env HF_TOKEN
|
||||
|
||||
Check the output of the command. There will be a shareable gradio link (like the last line of the following). Open it in your browser to use the LLaMA model to do the text completion.
|
||||
|
||||
|
@ -61,9 +85,226 @@ Check the output of the command. There will be a shareable gradio link (like the
|
|||
|
||||
(task, pid=7431) Running on public URL: https://<gradio-hash>.gradio.live
|
||||
|
||||
**Optional**: Serve the 65B model instead of the default 13B and use more GPU:
|
||||
**Optional**: Serve the 70B model instead of the default 8B and use more GPU:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
sky launch -c vllm-serve-new -s serve.yaml --gpus A100:8 --env MODEL_NAME=decapoda-research/llama-65b-hf
|
||||
HF_TOKEN="your-huggingface-token" sky launch serving.yaml --gpus A100:8 --env HF_TOKEN --env MODEL_NAME=meta-llama/Meta-Llama-3-70B-Instruct
|
||||
|
||||
|
||||
Scale up to multiple replicas
|
||||
-----------------------------
|
||||
|
||||
SkyPilot can scale up the service to multiple service replicas with built-in autoscaling, load-balancing and fault-tolerance. You can do it by adding a services section to the YAML file.
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
service:
|
||||
replicas: 2
|
||||
# An actual request for readiness probe.
|
||||
readiness_probe:
|
||||
path: /v1/chat/completions
|
||||
post_data:
|
||||
model: $MODEL_NAME
|
||||
messages:
|
||||
- role: user
|
||||
content: Hello! What is your name?
|
||||
max_tokens: 1
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<details>
|
||||
<summary>Click to see the full recipe YAML</summary>
|
||||
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
service:
|
||||
replicas: 2
|
||||
# An actual request for readiness probe.
|
||||
readiness_probe:
|
||||
path: /v1/chat/completions
|
||||
post_data:
|
||||
model: $MODEL_NAME
|
||||
messages:
|
||||
- role: user
|
||||
content: Hello! What is your name?
|
||||
max_tokens: 1
|
||||
|
||||
resources:
|
||||
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
|
||||
use_spot: True
|
||||
disk_size: 512 # Ensure model checkpoints can fit.
|
||||
disk_tier: best
|
||||
ports: 8081 # Expose to internet traffic.
|
||||
|
||||
envs:
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
|
||||
|
||||
setup: |
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
|
||||
pip install vllm==0.4.0.post1
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
pip install flash-attn==2.5.7
|
||||
|
||||
run: |
|
||||
conda activate vllm
|
||||
echo 'Starting vllm api server...'
|
||||
python -u -m vllm.entrypoints.openai.api_server \
|
||||
--port 8081 \
|
||||
--model $MODEL_NAME \
|
||||
--trust-remote-code \
|
||||
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
|
||||
2>&1 | tee api_server.log &
|
||||
|
||||
echo 'Waiting for vllm api server to start...'
|
||||
while ! `cat api_server.log | grep -q 'Uvicorn running on'`; do sleep 1; done
|
||||
|
||||
echo 'Starting gradio server...'
|
||||
git clone https://github.com/vllm-project/vllm.git || true
|
||||
python vllm/examples/gradio_openai_chatbot_webserver.py \
|
||||
-m $MODEL_NAME \
|
||||
--port 8811 \
|
||||
--model-url http://localhost:8081/v1 \
|
||||
--stop-token-ids 128009,128001
|
||||
|
||||
.. raw:: html
|
||||
|
||||
</details>
|
||||
|
||||
Start the serving the Llama-3 8B model on multiple replicas:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
HF_TOKEN="your-huggingface-token" sky serve up -n vllm serving.yaml --env HF_TOKEN
|
||||
|
||||
|
||||
Wait until the service is ready:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
watch -n10 sky serve status vllm
|
||||
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<details>
|
||||
<summary>Example outputs:</summary>
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
Services
|
||||
NAME VERSION UPTIME STATUS REPLICAS ENDPOINT
|
||||
vllm 1 35s READY 2/2 xx.yy.zz.100:30001
|
||||
|
||||
Service Replicas
|
||||
SERVICE_NAME ID VERSION IP LAUNCHED RESOURCES STATUS REGION
|
||||
vllm 1 1 xx.yy.zz.121 18 mins ago 1x GCP({'L4': 1}) READY us-east4
|
||||
vllm 2 1 xx.yy.zz.245 18 mins ago 1x GCP({'L4': 1}) READY us-east4
|
||||
|
||||
.. raw:: html
|
||||
|
||||
</details>
|
||||
|
||||
After the service is READY, you can find a single endpoint for the service and access the service with the endpoint:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
ENDPOINT=$(sky serve status --endpoint 8081 vllm)
|
||||
curl -L http://$ENDPOINT/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Who are you?"
|
||||
}
|
||||
],
|
||||
"stop_token_ids": [128009, 128001]
|
||||
}'
|
||||
|
||||
To enable autoscaling, you could specify additional configs in `services`:
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
services:
|
||||
replica_policy:
|
||||
min_replicas: 0
|
||||
max_replicas: 3
|
||||
target_qps_per_replica: 2
|
||||
|
||||
This will scale the service up to when the QPS exceeds 2 for each replica.
|
||||
|
||||
|
||||
**Optional**: Connect a GUI to the endpoint
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
|
||||
It is also possible to access the Llama-3 service with a separate GUI frontend, so the user requests send to the GUI will be load-balanced across replicas.
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<details>
|
||||
<summary>Click to see the full GUI YAML</summary>
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
envs:
|
||||
MODEL_NAME: meta-llama/Meta-Llama-3-70B-Instruct
|
||||
ENDPOINT: x.x.x.x:3031 # Address of the API server running vllm.
|
||||
|
||||
resources:
|
||||
cpus: 2
|
||||
|
||||
setup: |
|
||||
conda activate vllm
|
||||
if [ $? -ne 0 ]; then
|
||||
conda create -n vllm python=3.10 -y
|
||||
conda activate vllm
|
||||
fi
|
||||
|
||||
# Install Gradio for web UI.
|
||||
pip install gradio openai
|
||||
|
||||
run: |
|
||||
conda activate vllm
|
||||
export PATH=$PATH:/sbin
|
||||
WORKER_IP=$(hostname -I | cut -d' ' -f1)
|
||||
CONTROLLER_PORT=21001
|
||||
WORKER_PORT=21002
|
||||
|
||||
echo 'Starting gradio server...'
|
||||
git clone https://github.com/vllm-project/vllm.git || true
|
||||
python vllm/examples/gradio_openai_chatbot_webserver.py \
|
||||
-m $MODEL_NAME \
|
||||
--port 8811 \
|
||||
--model-url http://$ENDPOINT/v1 \
|
||||
--stop-token-ids 128009,128001 | tee ~/gradio.log
|
||||
|
||||
.. raw:: html
|
||||
|
||||
</details>
|
||||
|
||||
1. Start the chat web UI:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
sky launch -c gui ./gui.yaml --env ENDPOINT=$(sky serve status --endpoint vllm)
|
||||
|
||||
|
||||
2. Then, we can access the GUI at the returned gradio link:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
| INFO | stdout | Running on public URL: https://6141e84201ce0bb4ed.gradio.live
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue