[CI/BUILD] enable intel queue for longer CPU tests (#4113)

This commit is contained in:
Yuan 2024-06-04 01:39:50 +08:00 committed by GitHub
parent cbb2f59cc8
commit cafb8e06c5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 138 additions and 90 deletions

View File

@ -10,5 +10,15 @@ remove_docker_container() { docker rm -f cpu-test || true; }
trap remove_docker_container EXIT
remove_docker_container
# Run the image and launch offline inference
docker run --network host --env VLLM_CPU_KVCACHE_SPACE=1 --name cpu-test cpu-test python3 vllm/examples/offline_inference.py
# Run the image
docker run -itd -v ~/.cache/huggingface:/root/.cache/huggingface --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --name cpu-test cpu-test
# offline inference
docker exec cpu-test bash -c "python3 examples/offline_inference.py"
# Run basic model test
docker exec cpu-test bash -c "cd tests;
pip install pytest Pillow protobuf
bash ../.buildkite/download-images.sh
cd ../
pytest -v -s tests/models --ignore=tests/models/test_llava.py --ignore=tests/models/test_embedding.py --ignore=tests/models/test_registry.py"

View File

@ -40,6 +40,8 @@ steps:
- label: "Intel Test"
depends_on: ~
agents:
queue: intel
command: bash .buildkite/run-cpu-test.sh
{% for step in steps %}

View File

@ -1,6 +1,6 @@
# This vLLM Dockerfile is used to construct image that can build and run vLLM on x86 CPU platform.
FROM ubuntu:22.04
FROM ubuntu:22.04 AS cpu-test-1
RUN apt-get update -y \
&& apt-get install -y git wget vim numactl gcc-12 g++-12 python3 python3-pip \
@ -9,6 +9,8 @@ RUN apt-get update -y \
RUN pip install --upgrade pip \
&& pip install wheel packaging ninja setuptools>=49.4.0 numpy
FROM cpu-test-1 AS build
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
@ -19,4 +21,6 @@ RUN VLLM_TARGET_DEVICE=cpu python3 setup.py install
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
CMD ["/bin/bash"]

View File

@ -21,7 +21,57 @@ void rotary_embedding_impl(
constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num();
const int embed_dim = rot_dim / 2;
TORCH_CHECK(embed_dim % VEC_ELEM_NUM == 0);
bool flag = (embed_dim % VEC_ELEM_NUM == 0);
const int loop_upper = flag ? embed_dim : embed_dim - VEC_ELEM_NUM;
auto compute_loop = [&](const int64_t token_head, const scalar_t* cache_ptr,
scalar_t* qk) {
int j = 0;
for (; j < loop_upper; j += VEC_ELEM_NUM) {
const int rot_offset = j;
const int x_index = rot_offset;
const int y_index = embed_dim + rot_offset;
const int64_t out_x = token_head + x_index;
const int64_t out_y = token_head + y_index;
const scalar_vec_t cos(cache_ptr + x_index);
const scalar_vec_t sin(cache_ptr + y_index);
const scalar_vec_t q_x(qk + out_x);
const scalar_vec_t q_y(qk + out_y);
vec_op::FP32Vec8 fp32_cos(cos);
vec_op::FP32Vec8 fp32_sin(sin);
vec_op::FP32Vec8 fp32_q_x(q_x);
vec_op::FP32Vec8 fp32_q_y(q_y);
auto out1 = fp32_q_x * fp32_cos - fp32_q_y * fp32_sin;
scalar_vec_t(out1).save(qk + out_x);
auto out2 = fp32_q_y * fp32_cos + fp32_q_x * fp32_sin;
scalar_vec_t(out2).save(qk + out_y);
}
if (!flag) {
for (; j < embed_dim; ++j) {
const int x_index = j;
const int y_index = embed_dim + j;
const int64_t out_x = token_head + x_index;
const int64_t out_y = token_head + y_index;
const float fp32_cos = cache_ptr[x_index];
const float fp32_sin = cache_ptr[y_index];
const float fp32_q_x = qk[out_x];
const float fp32_q_y = qk[out_y];
qk[out_x] = fp32_q_x * fp32_cos - fp32_q_y * fp32_sin;
qk[out_y] = fp32_q_y * fp32_cos + fp32_q_x * fp32_sin;
}
}
};
#pragma omp parallel for
for (int token_idx = 0; token_idx < num_tokens; ++token_idx) {
@ -32,62 +82,13 @@ void rotary_embedding_impl(
const int head_idx = i;
const int64_t token_head =
token_idx * query_stride + head_idx * head_size;
for (int j = 0; j < embed_dim; j += VEC_ELEM_NUM) {
const int rot_offset = j;
const int x_index = rot_offset;
const int y_index = embed_dim + rot_offset;
const int64_t out_x = token_head + x_index;
const int64_t out_y = token_head + y_index;
const scalar_vec_t cos(cache_ptr + x_index);
const scalar_vec_t sin(cache_ptr + y_index);
const scalar_vec_t q_x(query + out_x);
const scalar_vec_t q_y(query + out_y);
vec_op::FP32Vec8 fp32_cos(cos);
vec_op::FP32Vec8 fp32_sin(sin);
vec_op::FP32Vec8 fp32_q_x(q_x);
vec_op::FP32Vec8 fp32_q_y(q_y);
auto out1 = fp32_q_x * fp32_cos - fp32_q_y * fp32_sin;
scalar_vec_t(out1).save(query + out_x);
auto out2 = fp32_q_y * fp32_cos + fp32_q_x * fp32_sin;
scalar_vec_t(out2).save(query + out_y);
}
compute_loop(token_head, cache_ptr, query);
}
for (int i = 0; i < num_kv_heads; ++i) {
const int head_idx = i;
const int64_t token_head = token_idx * key_stride + head_idx * head_size;
for (int j = 0; j < embed_dim; j += VEC_ELEM_NUM) {
const int rot_offset = j;
const int x_index = rot_offset;
const int y_index = embed_dim + rot_offset;
const int64_t out_x = token_head + x_index;
const int64_t out_y = token_head + y_index;
const scalar_vec_t cos(cache_ptr + x_index);
const scalar_vec_t sin(cache_ptr + y_index);
const scalar_vec_t k_x(key + out_x);
const scalar_vec_t k_y(key + out_y);
vec_op::FP32Vec8 fp32_cos(cos);
vec_op::FP32Vec8 fp32_sin(sin);
vec_op::FP32Vec8 fp32_k_x(k_x);
vec_op::FP32Vec8 fp32_k_y(k_y);
auto out1 = fp32_k_x * fp32_cos - fp32_k_y * fp32_sin;
scalar_vec_t(out1).save(key + out_x);
auto out2 = fp32_k_y * fp32_cos + fp32_k_x * fp32_sin;
scalar_vec_t(out2).save(key + out_y);
}
compute_loop(token_head, cache_ptr, key);
}
}
}

View File

@ -18,6 +18,7 @@ from vllm.logger import init_logger
from vllm.multimodal import MultiModalData
from vllm.multimodal.image import ImageFeatureData, ImagePixelData
from vllm.sequence import SampleLogprobs
from vllm.utils import is_cpu
logger = init_logger(__name__)
@ -58,7 +59,8 @@ def cleanup():
with contextlib.suppress(AssertionError):
torch.distributed.destroy_process_group()
gc.collect()
torch.cuda.empty_cache()
if not is_cpu():
torch.cuda.empty_cache()
@pytest.fixture()
@ -151,6 +153,12 @@ _EMBEDDING_MODELS = [
class HfRunner:
def wrap_device(self, input: any):
if not is_cpu():
return input.to("cuda")
else:
return input.to("cpu")
def __init__(
self,
model_name: str,
@ -164,16 +172,18 @@ class HfRunner:
if model_name in _EMBEDDING_MODELS:
# Lazy init required for AMD CI
from sentence_transformers import SentenceTransformer
self.model = SentenceTransformer(
model_name,
device="cpu",
).to(dtype=torch_dtype).cuda()
self.model = self.wrap_device(
SentenceTransformer(
model_name,
device="cpu",
).to(dtype=torch_dtype))
else:
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch_dtype,
trust_remote_code=True,
).cuda()
self.model = self.wrap_device(
AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch_dtype,
trust_remote_code=True,
))
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
@ -214,7 +224,7 @@ class HfRunner:
inputs = self.processor(**processor_kwargs)
output_ids = self.model.generate(
**inputs.to("cuda"),
**self.wrap_device(inputs),
use_cache=True,
**kwargs,
)
@ -271,7 +281,7 @@ class HfRunner:
for prompt in prompts:
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
output = self.model.generate(
input_ids.cuda(),
self.wrap_device(input_ids),
use_cache=True,
do_sample=False,
max_new_tokens=max_tokens,
@ -306,7 +316,7 @@ class HfRunner:
for prompt in prompts:
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
output = self.model.generate(
input_ids.cuda(),
self.wrap_device(input_ids),
use_cache=True,
do_sample=False,
max_new_tokens=max_tokens,

View File

@ -8,10 +8,13 @@ import torch
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
aqlm_not_supported = (capability <
QUANTIZATION_METHODS["aqlm"].get_min_capability())
aqlm_not_supported = True
if torch.cuda.is_available():
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
aqlm_not_supported = (capability <
QUANTIZATION_METHODS["aqlm"].get_min_capability())
# In this test we hardcode prompts and generations for the model so we don't
# need to require the AQLM package as a dependency

View File

@ -5,6 +5,7 @@ This tests bigger models and use half precision.
Run `pytest tests/models/test_big_models.py`.
"""
import pytest
import torch
MODELS = [
"meta-llama/Llama-2-7b-hf",
@ -16,9 +17,14 @@ MODELS = [
# "Qwen/Qwen1.5-0.5B" # Broken,
]
#TODO: remove this after CPU float16 support ready
target_dtype = "float"
if torch.cuda.is_available():
target_dtype = "half"
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [32])
def test_models(
hf_runner,
@ -46,7 +52,7 @@ def test_models(
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("dtype", [target_dtype])
def test_model_print(
vllm_runner,
model: str,

View File

@ -67,10 +67,13 @@ EXPECTED_STRS_MAP = {
},
}
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
fp8_not_supported = (capability <
QUANTIZATION_METHODS["fp8"].get_min_capability())
fp8_not_supported = True
if torch.cuda.is_available():
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
fp8_not_supported = (capability <
QUANTIZATION_METHODS["fp8"].get_min_capability())
@pytest.mark.skipif(fp8_not_supported,

View File

@ -22,10 +22,13 @@ os.environ["TOKENIZERS_PARALLELISM"] = "true"
MAX_MODEL_LEN = 1024
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
gptq_marlin_not_supported = (
capability < QUANTIZATION_METHODS["gptq_marlin"].get_min_capability())
gptq_marlin_not_supported = True
if torch.cuda.is_available():
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
gptq_marlin_not_supported = (
capability < QUANTIZATION_METHODS["gptq_marlin"].get_min_capability())
MODELS = [
# act_order==False, group_size=channelwise

View File

@ -14,10 +14,13 @@ import torch
from tests.models.utils import check_logprobs_close
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
marlin_not_supported = (capability <
QUANTIZATION_METHODS["marlin"].get_min_capability())
marlin_not_supported = True
if torch.cuda.is_available():
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
marlin_not_supported = (
capability < QUANTIZATION_METHODS["marlin"].get_min_capability())
@dataclass

View File

@ -19,10 +19,13 @@ from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from .utils import check_logprobs_close
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
marlin_not_supported = (capability <
QUANTIZATION_METHODS["marlin"].get_min_capability())
marlin_not_supported = True
if torch.cuda.is_available():
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
marlin_not_supported = (
capability < QUANTIZATION_METHODS["marlin"].get_min_capability())
@dataclass