mirror of https://github.com/vllm-project/vllm
[Kernel] Add flash-attn back (#4907)
This commit is contained in:
parent
27ce85476e
commit
b57e6c5949
|
@ -7,4 +7,4 @@ nvidia-ml-py # for pynvml package
|
|||
vllm-nccl-cu12>=2.18,<2.19 # for downloading nccl library
|
||||
torch == 2.3.0
|
||||
xformers == 0.0.26.post1 # Requires PyTorch 2.3.0
|
||||
vllm-flash-attn == 2.5.8.post1 # Requires PyTorch 2.3.0
|
||||
vllm-flash-attn == 2.5.8.post2 # Requires PyTorch 2.3.0
|
||||
|
|
|
@ -0,0 +1,208 @@
|
|||
from typing import List, Optional, Tuple
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from vllm_flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
|
||||
|
||||
NUM_HEADS = [(16, 16), (32, 8), (64, 8)]
|
||||
HEAD_SIZES = [128, 256]
|
||||
BLOCK_SIZES = [16, 32]
|
||||
DTYPES = [torch.float16, torch.bfloat16]
|
||||
NUM_BLOCKS = 32768 # Large enough to test overflow in index calculation.
|
||||
|
||||
|
||||
def ref_paged_attn(
|
||||
query: torch.Tensor,
|
||||
key_cache: torch.Tensor,
|
||||
value_cache: torch.Tensor,
|
||||
query_lens: List[int],
|
||||
kv_lens: List[int],
|
||||
block_tables: torch.Tensor,
|
||||
scale: float,
|
||||
sliding_window: Optional[int] = None,
|
||||
) -> torch.Tensor:
|
||||
num_seqs = len(query_lens)
|
||||
block_tables = block_tables.cpu().numpy()
|
||||
_, block_size, num_kv_heads, head_size = key_cache.shape
|
||||
|
||||
outputs = []
|
||||
start_idx = 0
|
||||
for i in range(num_seqs):
|
||||
query_len = query_lens[i]
|
||||
kv_len = kv_lens[i]
|
||||
q = query[start_idx:start_idx + query_len]
|
||||
q *= scale
|
||||
|
||||
num_kv_blocks = (kv_len + block_size - 1) // block_size
|
||||
block_indices = block_tables[i, :num_kv_blocks]
|
||||
|
||||
k = key_cache[block_indices].view(-1, num_kv_heads, head_size)
|
||||
k = k[:kv_len]
|
||||
v = value_cache[block_indices].view(-1, num_kv_heads, head_size)
|
||||
v = v[:kv_len]
|
||||
|
||||
if q.shape[1] != k.shape[1]:
|
||||
k = torch.repeat_interleave(k, q.shape[1] // k.shape[1], dim=1)
|
||||
v = torch.repeat_interleave(v, q.shape[1] // v.shape[1], dim=1)
|
||||
attn = torch.einsum("qhd,khd->hqk", q, k).float()
|
||||
empty_mask = torch.ones(query_len, kv_len)
|
||||
mask = torch.triu(empty_mask, diagonal=kv_len - query_len + 1).bool()
|
||||
if sliding_window is not None:
|
||||
sliding_window_mask = torch.triu(empty_mask,
|
||||
diagonal=kv_len -
|
||||
(query_len + sliding_window) +
|
||||
1).bool().logical_not()
|
||||
mask |= sliding_window_mask
|
||||
attn.masked_fill_(mask, float("-inf"))
|
||||
attn = torch.softmax(attn, dim=-1).to(v.dtype)
|
||||
out = torch.einsum("hqk,khd->qhd", attn, v)
|
||||
|
||||
outputs.append(out)
|
||||
start_idx += query_len
|
||||
|
||||
return torch.cat(outputs, dim=0)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("kv_lens", [[1328, 18, 463], [1, 54, 293, 70]])
|
||||
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
||||
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
||||
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
||||
@pytest.mark.parametrize("dtype", DTYPES)
|
||||
@torch.inference_mode
|
||||
def test_flash_attn_with_paged_kv(
|
||||
kv_lens: List[Tuple[int, int]],
|
||||
num_heads: Tuple[int, int],
|
||||
head_size: int,
|
||||
dtype: torch.dtype,
|
||||
block_size: int,
|
||||
) -> None:
|
||||
torch.set_default_device("cuda")
|
||||
torch.cuda.manual_seed_all(0)
|
||||
num_seqs = len(kv_lens)
|
||||
num_query_heads = num_heads[0]
|
||||
num_kv_heads = num_heads[1]
|
||||
assert num_query_heads % num_kv_heads == 0
|
||||
max_kv_len = max(kv_lens)
|
||||
scale = head_size**-0.5
|
||||
|
||||
query = torch.randn(num_seqs, num_query_heads, head_size, dtype=dtype)
|
||||
key_cache = torch.randn(NUM_BLOCKS,
|
||||
block_size,
|
||||
num_kv_heads,
|
||||
head_size,
|
||||
dtype=dtype)
|
||||
value_cache = torch.randn_like(key_cache)
|
||||
kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int32)
|
||||
|
||||
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
|
||||
block_tables = torch.randint(0,
|
||||
NUM_BLOCKS,
|
||||
(num_seqs, max_num_blocks_per_seq),
|
||||
dtype=torch.int32)
|
||||
|
||||
output = flash_attn_with_kvcache(
|
||||
q=query.unsqueeze(1),
|
||||
k_cache=key_cache,
|
||||
v_cache=value_cache,
|
||||
softmax_scale=scale,
|
||||
causal=True,
|
||||
block_table=block_tables,
|
||||
cache_seqlens=kv_lens_tensor,
|
||||
).squeeze(1)
|
||||
|
||||
ref_output = ref_paged_attn(
|
||||
query=query,
|
||||
key_cache=key_cache,
|
||||
value_cache=value_cache,
|
||||
query_lens=[1] * num_seqs,
|
||||
kv_lens=kv_lens,
|
||||
block_tables=block_tables,
|
||||
scale=scale,
|
||||
)
|
||||
assert torch.allclose(output, ref_output, atol=1e-2, rtol=1e-2), \
|
||||
f"{torch.max(torch.abs(output - ref_output))}"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("seq_lens", [[(1, 1328), (5, 18), (129, 463)]])
|
||||
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
||||
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
||||
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
||||
@pytest.mark.parametrize("sliding_window", [None])
|
||||
@pytest.mark.parametrize("dtype", DTYPES)
|
||||
@torch.inference_mode
|
||||
def test_varlen_with_paged_kv(
|
||||
seq_lens: List[Tuple[int, int]],
|
||||
num_heads: Tuple[int, int],
|
||||
head_size: int,
|
||||
sliding_window: Optional[int],
|
||||
dtype: torch.dtype,
|
||||
block_size: int,
|
||||
) -> None:
|
||||
torch.set_default_device("cuda")
|
||||
torch.cuda.manual_seed_all(0)
|
||||
num_seqs = len(seq_lens)
|
||||
query_lens = [x[0] for x in seq_lens]
|
||||
kv_lens = [x[1] for x in seq_lens]
|
||||
num_query_heads = num_heads[0]
|
||||
num_kv_heads = num_heads[1]
|
||||
assert num_query_heads % num_kv_heads == 0
|
||||
max_query_len = max(query_lens)
|
||||
max_kv_len = max(kv_lens)
|
||||
window_size = ((sliding_window,
|
||||
sliding_window) if sliding_window is not None else
|
||||
(-1, -1))
|
||||
scale = head_size**-0.5
|
||||
|
||||
query = torch.randn(sum(query_lens),
|
||||
num_query_heads,
|
||||
head_size,
|
||||
dtype=dtype)
|
||||
key_cache = torch.randn(NUM_BLOCKS,
|
||||
block_size,
|
||||
num_kv_heads,
|
||||
head_size,
|
||||
dtype=dtype)
|
||||
value_cache = torch.randn_like(key_cache)
|
||||
# Normalize the scale of the key and value caches to mitigate
|
||||
# numerical instability.
|
||||
key_cache /= head_size**0.5
|
||||
value_cache /= head_size**0.5
|
||||
cu_query_lens = torch.tensor([0] + query_lens,
|
||||
dtype=torch.int32).cumsum(dim=0,
|
||||
dtype=torch.int32)
|
||||
cu_kv_lens = torch.tensor([0] + kv_lens,
|
||||
dtype=torch.int32).cumsum(dim=0,
|
||||
dtype=torch.int32)
|
||||
|
||||
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
|
||||
block_tables = torch.randint(0,
|
||||
NUM_BLOCKS,
|
||||
(num_seqs, max_num_blocks_per_seq),
|
||||
dtype=torch.int32)
|
||||
|
||||
output = flash_attn_varlen_func(
|
||||
q=query,
|
||||
k=key_cache,
|
||||
v=value_cache,
|
||||
cu_seqlens_q=cu_query_lens,
|
||||
cu_seqlens_k=cu_kv_lens,
|
||||
max_seqlen_q=max_query_len,
|
||||
max_seqlen_k=max_kv_len,
|
||||
softmax_scale=scale,
|
||||
causal=True,
|
||||
window_size=window_size,
|
||||
block_table=block_tables,
|
||||
)
|
||||
|
||||
ref_output = ref_paged_attn(
|
||||
query=query,
|
||||
key_cache=key_cache,
|
||||
value_cache=value_cache,
|
||||
query_lens=query_lens,
|
||||
kv_lens=kv_lens,
|
||||
block_tables=block_tables,
|
||||
scale=scale,
|
||||
sliding_window=sliding_window,
|
||||
)
|
||||
assert torch.allclose(output, ref_output, atol=1e-2, rtol=1e-2), \
|
||||
f"{torch.max(torch.abs(output - ref_output))}"
|
|
@ -12,7 +12,7 @@ MODELS = [
|
|||
# "Deci/DeciLM-7b", # Broken
|
||||
# "tiiuae/falcon-7b", # Broken
|
||||
"EleutherAI/gpt-j-6b",
|
||||
"mosaicml/mpt-7b",
|
||||
# "mosaicml/mpt-7b", # Broken
|
||||
# "Qwen/Qwen1.5-0.5B" # Broken,
|
||||
]
|
||||
|
||||
|
|
|
@ -25,18 +25,18 @@ EXPECTED_STRS_MAP = {
|
|||
'LLaMA is a high-throughput and memory-efficient inference and serving engine for Large Language Models (',
|
||||
'Here are the major milestones in the development of artificial intelligence (AI) from 1950 to ',
|
||||
'Artificial intelligence (AI) and human intelligence (HI) differ significantly in how they process information.',
|
||||
'A neural network is a complex system modeled after the human brain, composed of interconnected nodes or "ne',
|
||||
'Zeta-5, a highly advanced robot designed for menial labor, whirred and beep',
|
||||
'The COVID-19 pandemic has had a profound impact on global economic structures and future business models. Here',
|
||||
'A neural network is a complex system modeled after the human brain, consisting of interconnected nodes or "ne',
|
||||
'Zeta-5, a highly advanced robot designed for menial labor, whirred to a',
|
||||
'The COVID-19 pandemic has had a profound impact on global economic structures and future business models. The',
|
||||
'The Mona Lisa, painted by Leonardo da Vinci in the early 16th century, is one of',
|
||||
'Here are the translations:\n\n**Japanese:** (Haya tori, nemuri nemuri)\n\n**'
|
||||
'Here are the translations:\n\n**Japanese:** (Haya aki no tori, guri o',
|
||||
],
|
||||
"meta-llama/Meta-Llama-3-8B-Instruct": [
|
||||
'LLM (Large Language Model) is a type of artificial intelligence (AI) model that is trained',
|
||||
'Here are the major milestones in the development of artificial intelligence (AI) from 1950 to ',
|
||||
'Artificial intelligence (AI) and human intelligence (HI) differ significantly in how they process information.',
|
||||
'A neural network is a complex system modeled after the human brain, composed of interconnected nodes or "ne',
|
||||
'In the year 2154, the robotics lab at NeuroSpark Industries was on the cusp of',
|
||||
'In the vast, sterile laboratory, Robot 3456-Alpha, or "Alpha" for short',
|
||||
'The COVID-19 pandemic has had a profound impact on global economic structures and future business models. The',
|
||||
'The Mona Lisa, painted by Leonardo da Vinci in the early 16th century, is one of',
|
||||
'Here are the translations:\n\n**Japanese:** (Haya aki wa mushi o tsukamu'
|
||||
|
|
|
@ -1,19 +1,15 @@
|
|||
"""Attention layer with Flash and PagedAttention.
|
||||
|
||||
NOTE(woosuk): At the moment, this file includes a lot of duplicated code from
|
||||
XFormers backend. The duplicated code will be removed once we use flash-attn or
|
||||
flashinfer for all the attention operations.
|
||||
"""
|
||||
"""Attention layer with FlashAttention."""
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Tuple, Type
|
||||
|
||||
import torch
|
||||
from vllm_flash_attn import flash_attn_varlen_func
|
||||
from vllm_flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
|
||||
|
||||
from vllm._C import cache_ops
|
||||
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
||||
AttentionMetadata)
|
||||
from vllm.attention.ops.paged_attn import (PagedAttention,
|
||||
PagedAttentionMetadata)
|
||||
|
||||
_SUPPORTED_HEAD_SIZES = [32, 64, 96, 128, 160, 192, 224, 256]
|
||||
|
||||
|
||||
class FlashAttentionBackend(AttentionBackend):
|
||||
|
@ -37,8 +33,9 @@ class FlashAttentionBackend(AttentionBackend):
|
|||
num_kv_heads: int,
|
||||
head_size: int,
|
||||
) -> Tuple[int, ...]:
|
||||
return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
|
||||
num_kv_heads, head_size)
|
||||
if block_size % 16 != 0:
|
||||
raise ValueError("Block size must be a multiple of 16.")
|
||||
return (2, num_blocks, block_size, num_kv_heads, head_size)
|
||||
|
||||
@staticmethod
|
||||
def swap_blocks(
|
||||
|
@ -46,18 +43,26 @@ class FlashAttentionBackend(AttentionBackend):
|
|||
dst_kv_cache: torch.Tensor,
|
||||
src_to_dst: torch.Tensor,
|
||||
) -> None:
|
||||
PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
|
||||
src_key_cache = src_kv_cache[0]
|
||||
dst_key_cache = dst_kv_cache[0]
|
||||
cache_ops.swap_blocks(src_key_cache, dst_key_cache, src_to_dst)
|
||||
|
||||
src_value_cache = src_kv_cache[1]
|
||||
dst_value_cache = dst_kv_cache[1]
|
||||
cache_ops.swap_blocks(src_value_cache, dst_value_cache, src_to_dst)
|
||||
|
||||
@staticmethod
|
||||
def copy_blocks(
|
||||
kv_caches: List[torch.Tensor],
|
||||
src_to_dists: torch.Tensor,
|
||||
) -> None:
|
||||
PagedAttention.copy_blocks(kv_caches, src_to_dists)
|
||||
key_caches = [kv_cache[0] for kv_cache in kv_caches]
|
||||
value_caches = [kv_cache[1] for kv_cache in kv_caches]
|
||||
cache_ops.copy_blocks(key_caches, value_caches, src_to_dists)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlashAttentionMetadata(AttentionMetadata, PagedAttentionMetadata):
|
||||
class FlashAttentionMetadata(AttentionMetadata):
|
||||
"""Metadata for FlashAttentionBackend.
|
||||
|
||||
NOTE: Any python object stored here is not updated when it is
|
||||
|
@ -99,6 +104,14 @@ class FlashAttentionMetadata(AttentionMetadata, PagedAttentionMetadata):
|
|||
# so far).
|
||||
context_lens_tensor: Optional[torch.Tensor]
|
||||
|
||||
# (batch_size, max_blocks_per_seq).
|
||||
# Block addresses per sequence. (Seq id -> list of physical block)
|
||||
# E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
|
||||
# in the kv cache. Each block can contain up to block_size tokens.
|
||||
# 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
|
||||
# captured.
|
||||
block_tables: Optional[torch.Tensor]
|
||||
|
||||
# Whether or not if cuda graph is enabled.
|
||||
# Cuda-graph is currently enabled for decoding only.
|
||||
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
|
||||
|
@ -219,11 +232,15 @@ class FlashAttentionImpl(AttentionImpl):
|
|||
assert self.num_heads % self.num_kv_heads == 0
|
||||
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
||||
|
||||
suppored_head_sizes = PagedAttention.get_supported_head_sizes()
|
||||
if head_size not in suppored_head_sizes:
|
||||
if sliding_window is not None:
|
||||
# NOTE(woosuk): flash-attn's sliding window does not work with
|
||||
# paged KV cache.
|
||||
raise ValueError(
|
||||
f"Head size {head_size} is not supported by PagedAttention. "
|
||||
f"Supported head sizes are: {suppored_head_sizes}.")
|
||||
"Sliding window is not supported in FlashAttention.")
|
||||
if head_size not in _SUPPORTED_HEAD_SIZES:
|
||||
raise ValueError(
|
||||
f"Head size {head_size} is not supported by FlashAttention. "
|
||||
f"Supported head sizes are: {_SUPPORTED_HEAD_SIZES}.")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
@ -234,17 +251,20 @@ class FlashAttentionImpl(AttentionImpl):
|
|||
attn_metadata: FlashAttentionMetadata,
|
||||
kv_scale: float = 1.0,
|
||||
) -> torch.Tensor:
|
||||
"""Forward pass with FlashAttention and PagedAttention.
|
||||
"""Forward pass with FlashAttention.
|
||||
|
||||
Args:
|
||||
query: shape = [num_tokens, num_heads * head_size]
|
||||
key: shape = [num_tokens, num_kv_heads * head_size]
|
||||
value: shape = [num_tokens, num_kv_heads * head_size]
|
||||
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
|
||||
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
attn_metadata: Metadata for attention.
|
||||
Returns:
|
||||
shape = [num_tokens, num_heads * head_size]
|
||||
"""
|
||||
# NOTE(woosuk): FlashAttention does not support FP8 KV cache.
|
||||
assert kv_scale == 1.0, "kv_scale is not supported in FlashAttention."
|
||||
|
||||
num_tokens, hidden_size = query.shape
|
||||
# Reshape the query, key, and value tensors.
|
||||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
|
@ -252,16 +272,20 @@ class FlashAttentionImpl(AttentionImpl):
|
|||
value = value.view(-1, self.num_kv_heads, self.head_size)
|
||||
|
||||
if kv_cache is not None:
|
||||
key_cache, value_cache = PagedAttention.split_kv_cache(
|
||||
kv_cache, self.num_kv_heads, self.head_size)
|
||||
key_cache = kv_cache[0]
|
||||
value_cache = kv_cache[1]
|
||||
|
||||
# Reshape the input keys and values and store them in the cache.
|
||||
# If kv_cache is not provided, the new key and value tensors are
|
||||
# not cached. This happens during the initial memory profiling run.
|
||||
PagedAttention.write_to_paged_cache(key, value, key_cache,
|
||||
value_cache,
|
||||
attn_metadata.slot_mapping,
|
||||
self.kv_cache_dtype, kv_scale)
|
||||
cache_ops.reshape_and_cache_flash(
|
||||
key,
|
||||
value,
|
||||
key_cache,
|
||||
value_cache,
|
||||
attn_metadata.slot_mapping.flatten(),
|
||||
self.kv_cache_dtype,
|
||||
)
|
||||
|
||||
num_prefill_tokens = attn_metadata.num_prefill_tokens
|
||||
num_decode_tokens = attn_metadata.num_decode_tokens
|
||||
|
@ -281,7 +305,8 @@ class FlashAttentionImpl(AttentionImpl):
|
|||
|
||||
if prefill_meta := attn_metadata.prefill_metadata:
|
||||
# Prompt run.
|
||||
if kv_cache is None or prefill_meta.block_tables.numel() == 0:
|
||||
if (kv_cache is None or prefill_meta.block_tables is None
|
||||
or prefill_meta.block_tables.numel() == 0):
|
||||
# normal attention
|
||||
# When block_tables are not filled, it means q and k are the
|
||||
# prompt, and they have the same length.
|
||||
|
@ -302,38 +327,34 @@ class FlashAttentionImpl(AttentionImpl):
|
|||
output[:num_prefill_tokens] = out
|
||||
else:
|
||||
# prefix-enabled attention
|
||||
# TODO(Hai) this triton kernel has regression issue (broke) to
|
||||
# deal with different data types between KV and FP8 KV cache,
|
||||
# to be addressed separately.
|
||||
output[:num_prefill_tokens] = PagedAttention.forward_prefix(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
key_cache,
|
||||
value_cache,
|
||||
prefill_meta.block_tables,
|
||||
prefill_meta.query_start_loc,
|
||||
prefill_meta.seq_lens_tensor,
|
||||
prefill_meta.context_lens_tensor,
|
||||
prefill_meta.max_query_len,
|
||||
self.alibi_slopes,
|
||||
self.sliding_window[0],
|
||||
assert prefill_meta.seq_lens is not None
|
||||
max_seq_len = max(prefill_meta.seq_lens)
|
||||
output[:num_prefill_tokens] = flash_attn_varlen_func(
|
||||
q=query,
|
||||
k=key_cache,
|
||||
v=value_cache,
|
||||
cu_seqlens_q=prefill_meta.query_start_loc,
|
||||
max_seqlen_q=prefill_meta.max_query_len,
|
||||
cu_seqlens_k=prefill_meta.seq_start_loc,
|
||||
max_seqlen_k=max_seq_len,
|
||||
softmax_scale=self.scale,
|
||||
causal=True,
|
||||
alibi_slopes=self.alibi_slopes,
|
||||
block_table=prefill_meta.block_tables,
|
||||
)
|
||||
|
||||
if decode_meta := attn_metadata.decode_metadata:
|
||||
# Decoding run.
|
||||
output[num_prefill_tokens:] = PagedAttention.forward_decode(
|
||||
decode_query,
|
||||
output[num_prefill_tokens:] = flash_attn_with_kvcache(
|
||||
decode_query.unsqueeze(1),
|
||||
key_cache,
|
||||
value_cache,
|
||||
decode_meta.block_tables,
|
||||
decode_meta.seq_lens_tensor,
|
||||
decode_meta.max_decode_seq_len,
|
||||
self.kv_cache_dtype,
|
||||
self.num_kv_heads,
|
||||
self.scale,
|
||||
self.alibi_slopes,
|
||||
kv_scale,
|
||||
)
|
||||
block_table=decode_meta.block_tables,
|
||||
cache_seqlens=decode_meta.seq_lens_tensor,
|
||||
softmax_scale=self.scale,
|
||||
causal=True,
|
||||
alibi_slopes=self.alibi_slopes,
|
||||
).squeeze(1)
|
||||
|
||||
# Reshape the output tensor.
|
||||
return output.view(num_tokens, hidden_size)
|
||||
|
|
|
@ -93,6 +93,20 @@ def _which_attn_to_use(
|
|||
"torch.float16 or torch.bfloat16.")
|
||||
return _Backend.XFORMERS
|
||||
|
||||
if kv_cache_dtype is not None and kv_cache_dtype.startswith("fp8"):
|
||||
logger.info("Cannot use FlashAttention-2 backend for FP8 KV cache.")
|
||||
return _Backend.XFORMERS
|
||||
|
||||
if block_size % 16 != 0:
|
||||
logger.info("Cannot use FlashAttention-2 backend for block size not "
|
||||
"divisible by 16.")
|
||||
return _Backend.XFORMERS
|
||||
|
||||
if sliding_window is not None:
|
||||
logger.info(
|
||||
"Cannot use FlashAttention-2 backend due to sliding window.")
|
||||
return _Backend.XFORMERS
|
||||
|
||||
try:
|
||||
import vllm_flash_attn # noqa: F401
|
||||
except ImportError:
|
||||
|
|
Loading…
Reference in New Issue