mirror of https://github.com/vllm-project/vllm
[MISC] Dump model runner inputs when crashing (#8305)
This commit is contained in:
parent
3fd2b0d21c
commit
a65cb16067
|
@ -30,6 +30,15 @@ body:
|
|||
</details>
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Model Input Dumps
|
||||
description: |
|
||||
If you are facing crashing due to illegal memory access or other issues with model execution, vLLM may dump the problematic input of the model. In this case, you will see the message `Error in model execution (input dumped to /tmp/err_xxx.pkl)`. If you see this message, please zip the file (because GitHub doesn't support .pkl file format) and upload it here. This will help us to reproduce the issue and facilitate the debugging process.
|
||||
placeholder: |
|
||||
Upload the dumped input file.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: 🐛 Describe the bug
|
||||
|
|
|
@ -3,12 +3,16 @@
|
|||
Run `pytest tests/basic_correctness/test_basic_correctness.py`.
|
||||
"""
|
||||
import os
|
||||
import pickle
|
||||
import re
|
||||
import weakref
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm import LLM
|
||||
from vllm.utils import is_hip
|
||||
from vllm.worker.model_runner import ModelInputForGPUWithSamplingMetadata
|
||||
|
||||
from ..models.utils import check_outputs_equal
|
||||
|
||||
|
@ -64,3 +68,29 @@ def test_models(
|
|||
name_0="hf",
|
||||
name_1="vllm",
|
||||
)
|
||||
|
||||
|
||||
def test_model_with_failure(vllm_runner) -> None:
|
||||
try:
|
||||
with patch("vllm.model_executor.models.opt.OPTForCausalLM.forward",
|
||||
side_effect=ValueError()):
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
vllm_runner("facebook/opt-125m",
|
||||
dtype="half",
|
||||
enforce_eager=False,
|
||||
gpu_memory_utilization=0.7)
|
||||
matches = re.search(r"input dumped to (.+).pkl",
|
||||
str(exc_info.value))
|
||||
assert matches is not None
|
||||
filename = f"{matches.group(1)}.pkl"
|
||||
|
||||
with open(filename, "rb") as filep:
|
||||
inputs = pickle.load(filep)
|
||||
|
||||
if any(key not in inputs for key in ("arg_1", "arg_2", "arg_3")):
|
||||
raise AssertionError("Missing keys in dumped inputs. Dumped keys: "
|
||||
f"{list(inputs.keys())}")
|
||||
assert isinstance(inputs["arg_1"],
|
||||
ModelInputForGPUWithSamplingMetadata)
|
||||
finally:
|
||||
os.remove(filename)
|
||||
|
|
|
@ -53,7 +53,7 @@ from vllm.worker.model_runner_base import (
|
|||
_add_attn_metadata_broadcastable_dict,
|
||||
_add_sampling_metadata_broadcastable_dict,
|
||||
_init_attn_metadata_from_tensor_dict,
|
||||
_init_sampling_metadata_from_tensor_dict)
|
||||
_init_sampling_metadata_from_tensor_dict, dump_input_when_exception)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vllm.attention.backends.abstract import AttentionBackend
|
||||
|
@ -1489,6 +1489,7 @@ class ModelRunner(GPUModelRunnerBase[ModelInputForGPUWithSamplingMetadata]):
|
|||
virtual_engine=virtual_engine)
|
||||
|
||||
@torch.inference_mode()
|
||||
@dump_input_when_exception(exclude_args=[0], exclude_kwargs=["self"])
|
||||
def execute_model(
|
||||
self,
|
||||
model_input: ModelInputForGPUWithSamplingMetadata,
|
||||
|
|
|
@ -1,5 +1,8 @@
|
|||
import dataclasses
|
||||
import pickle
|
||||
from abc import ABC, abstractmethod
|
||||
from datetime import datetime
|
||||
from functools import wraps
|
||||
from typing import (TYPE_CHECKING, Any, Dict, Generic, List, Optional, Type,
|
||||
TypeVar)
|
||||
|
||||
|
@ -98,6 +101,37 @@ def _init_frozen_model_input_from_tensor_dict(
|
|||
return tensor_dict
|
||||
|
||||
|
||||
def dump_input_when_exception(exclude_args: Optional[List[int]] = None,
|
||||
exclude_kwargs: Optional[List[str]] = None):
|
||||
|
||||
def _inner(func):
|
||||
|
||||
@wraps(func)
|
||||
def _wrapper(*args, **kwargs):
|
||||
try:
|
||||
return func(*args, **kwargs)
|
||||
except Exception as err:
|
||||
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
filename = f"/tmp/err_{func.__name__}_input_{timestamp}.pkl"
|
||||
with open(filename, "wb") as filep:
|
||||
dumped_inputs = {
|
||||
k: v
|
||||
for k, v in kwargs.items()
|
||||
if k not in (exclude_kwargs or [])
|
||||
}
|
||||
for i, arg in enumerate(args):
|
||||
if i not in (exclude_args or []):
|
||||
dumped_inputs[f"arg_{i}"] = arg
|
||||
pickle.dump(dumped_inputs, filep)
|
||||
raise type(err)(
|
||||
f"Error in model execution (input dumped to {filename}): "
|
||||
f"{str(err)}") from err
|
||||
|
||||
return _wrapper
|
||||
|
||||
return _inner
|
||||
|
||||
|
||||
class BroadcastableModelInput(ABC):
|
||||
|
||||
@abstractmethod
|
||||
|
|
Loading…
Reference in New Issue