mirror of https://github.com/vllm-project/vllm
[AMD][Hardware][Misc][Bugfix] xformer cleanup and light navi logic and CI fixes and refactoring (#4129)
This commit is contained in:
parent
a37d815b83
commit
95e5b087cf
|
@ -15,10 +15,8 @@ steps:
|
|||
commands:
|
||||
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=ROCM_FLASH pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
- VLLM_ATTENTION_BACKEND=ROCM_FLASH pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
|
||||
- label: Core Test
|
||||
command: pytest -v -s core
|
||||
|
|
|
@ -14,7 +14,7 @@ RUN echo "Base image is $BASE_IMAGE"
|
|||
ARG FA_GFX_ARCHS="gfx90a;gfx942"
|
||||
RUN echo "FA_GFX_ARCHS is $FA_GFX_ARCHS"
|
||||
|
||||
ARG FA_BRANCH="3d2b6f5"
|
||||
ARG FA_BRANCH="ae7928c"
|
||||
RUN echo "FA_BRANCH is $FA_BRANCH"
|
||||
|
||||
# whether to build flash-attention
|
||||
|
@ -92,13 +92,10 @@ RUN if [ "$BUILD_TRITON" = "1" ]; then \
|
|||
COPY ./ /app/vllm
|
||||
|
||||
RUN python3 -m pip install --upgrade pip numba
|
||||
RUN python3 -m pip install xformers==0.0.23 --no-deps
|
||||
|
||||
RUN cd /app \
|
||||
&& cd vllm \
|
||||
&& pip install -U -r requirements-rocm.txt \
|
||||
&& if [ "$BUILD_FA" = "1" ]; then \
|
||||
bash patch_xformers.rocm.sh; fi \
|
||||
&& patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h /app/vllm/rocm_patch/rocm_bf16.patch \
|
||||
&& python3 setup.py install \
|
||||
&& cd ..
|
||||
|
|
|
@ -1,33 +0,0 @@
|
|||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
XFORMERS_VERSION="0.0.23"
|
||||
|
||||
export XFORMERS_INSTALLED_VERSION=$(python -c 'import xformers; print(xformers.__version__)')
|
||||
|
||||
if [ "$XFORMERS_INSTALLED_VERSION" != "$XFORMERS_VERSION" ]; then
|
||||
echo "ERROR: xformers version must be ${XFORMERS_VERSION}. ${XFORMERS_INSTALLED_VERSION} is installed"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
export XFORMERS_FMHA_FLASH_PATH=$(python -c 'from xformers import ops as xops; print(xops.fmha.flash.__file__)')
|
||||
export XFORMERS_FMHA_COMMON_PATH=$(python -c 'from xformers import ops as xops; print(xops.fmha.common.__file__)')
|
||||
|
||||
echo "XFORMERS_FMHA_FLASH_PATH = ${XFORMERS_FMHA_FLASH_PATH}"
|
||||
echo "XFORMERS_FMHA_COMMON_PATH = ${XFORMERS_FMHA_COMMON_PATH}"
|
||||
|
||||
if ! patch -R -p0 -s -f --dry-run $XFORMERS_FMHA_FLASH_PATH "./rocm_patch/flashpy_xformers-${XFORMERS_VERSION}.rocm.patch"; then
|
||||
echo "Applying patch to ${XFORMERS_FMHA_FLASH_PATH}"
|
||||
patch -p0 $XFORMERS_FMHA_FLASH_PATH "./rocm_patch/flashpy_xformers-${XFORMERS_VERSION}.rocm.patch"
|
||||
echo "Successfully patch ${XFORMERS_FMHA_FLASH_PATH}"
|
||||
else
|
||||
echo "${XFORMERS_FMHA_FLASH_PATH} was patched before"
|
||||
fi
|
||||
|
||||
if ! patch -R -p0 -s -f --dry-run $XFORMERS_FMHA_COMMON_PATH "./rocm_patch/commonpy_xformers-${XFORMERS_VERSION}.rocm.patch"; then
|
||||
echo "Applying patch to ${XFORMERS_FMHA_COMMON_PATH}"
|
||||
patch -p0 $XFORMERS_FMHA_COMMON_PATH "./rocm_patch/commonpy_xformers-${XFORMERS_VERSION}.rocm.patch"
|
||||
echo "Successfully patch ${XFORMERS_FMHA_COMMON_PATH}"
|
||||
else
|
||||
echo "${XFORMERS_FMHA_COMMON_PATH} was patched before"
|
||||
fi
|
|
@ -1,13 +0,0 @@
|
|||
--- /opt/conda/envs/py_3.10/lib/python3.10/site-packages/xformers/ops/fmha/common.py 2023-11-29 03:17:03.930103539 +0000
|
||||
+++ common.py 2023-11-28 16:14:19.846233146 +0000
|
||||
@@ -298,8 +298,8 @@
|
||||
dtype = d.query.dtype
|
||||
if device_type not in cls.SUPPORTED_DEVICES:
|
||||
reasons.append(f"device={device_type} (supported: {cls.SUPPORTED_DEVICES})")
|
||||
- if device_type == "cuda" and not _built_with_cuda:
|
||||
- reasons.append("xFormers wasn't build with CUDA support")
|
||||
+ #if device_type == "cuda" and not _built_with_cuda:
|
||||
+ # reasons.append("xFormers wasn't build with CUDA support")
|
||||
if device_type == "cuda":
|
||||
device_capability = torch.cuda.get_device_capability(d.device)
|
||||
if device_capability < cls.CUDA_MINIMUM_COMPUTE_CAPABILITY:
|
|
@ -1,152 +0,0 @@
|
|||
--- flash_ori.py 2023-12-13 05:43:31.530752623 +0000
|
||||
+++ flash_patch.py 2023-12-13 06:00:45.962403104 +0000
|
||||
@@ -36,44 +36,44 @@
|
||||
|
||||
FLASH_VERSION = "0.0.0"
|
||||
try:
|
||||
- try:
|
||||
- from ... import _C_flashattention # type: ignore[attr-defined]
|
||||
- from ..._cpp_lib import _build_metadata
|
||||
-
|
||||
- if _build_metadata is not None:
|
||||
- FLASH_VERSION = _build_metadata.flash_version
|
||||
- except ImportError:
|
||||
- import flash_attn
|
||||
- from flash_attn.flash_attn_interface import flash_attn_cuda as _C_flashattention
|
||||
-
|
||||
- FLASH_VERSION = flash_attn.__version__
|
||||
- flash_ver_parsed = tuple(int(s) for s in FLASH_VERSION.split(".")[:3])
|
||||
- if (
|
||||
- flash_ver_parsed != (2, 3, 6)
|
||||
- and os.environ.get("XFORMERS_IGNORE_FLASH_VERSION_CHECK", "0") != "1"
|
||||
- ):
|
||||
- raise ImportError("Requires Flash attention 2.3.6 for varlen_fwd api")
|
||||
+ #try:
|
||||
+ # from ... import _C_flashattention # type: ignore[attr-defined]
|
||||
+ # from ..._cpp_lib import _build_metadata
|
||||
+
|
||||
+ # if _build_metadata is not None:
|
||||
+ # FLASH_VERSION = _build_metadata.flash_version
|
||||
+ #except ImportError:
|
||||
+ import flash_attn
|
||||
+ from flash_attn.flash_attn_interface import flash_attn_cuda as _C_flashattention
|
||||
+
|
||||
+ FLASH_VERSION = flash_attn.__version__
|
||||
+ # flash_ver_parsed = tuple(int(s) for s in FLASH_VERSION.split(".")[:3])
|
||||
+ # if (
|
||||
+ # flash_ver_parsed != (2, 3, 6)
|
||||
+ # and os.environ.get("XFORMERS_IGNORE_FLASH_VERSION_CHECK", "0") != "1"
|
||||
+ # ):
|
||||
+ # raise ImportError("Requires Flash attention 2.3.6 for varlen_fwd api")
|
||||
|
||||
# create library so that flash-attn goes through the PyTorch Dispatcher
|
||||
- _flash_lib = torch.library.Library("xformers_flash", "DEF")
|
||||
-
|
||||
- _flash_lib.define(
|
||||
- "flash_fwd(Tensor query, Tensor key, Tensor value, "
|
||||
- "Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, Tensor? seqused_k, "
|
||||
- "int max_seqlen_q, int max_seqlen_k, "
|
||||
- "float p, float softmax_scale, "
|
||||
- "bool is_causal, int window_left, "
|
||||
- "int window_right, bool return_softmax) -> (Tensor, Tensor, Tensor)"
|
||||
- )
|
||||
+ #_flash_lib = torch.library.Library("xformers_flash", "DEF")
|
||||
|
||||
- _flash_lib.define(
|
||||
- "flash_bwd(Tensor dout, Tensor query, Tensor key, Tensor value, "
|
||||
- "Tensor out, Tensor softmax_lse_, Tensor dq, Tensor dk, Tensor dv, "
|
||||
- "Tensor cu_seqlens_q, Tensor cu_seqlens_k, "
|
||||
- "int max_seqlen_q, int max_seqlen_k, "
|
||||
- "float p, float softmax_scale, bool is_causal, "
|
||||
- "int window_left, int window_right, Tensor rng_state) -> (Tensor, Tensor, Tensor)"
|
||||
- )
|
||||
+ #_flash_lib.define(
|
||||
+ # "flash_fwd(Tensor query, Tensor key, Tensor value, "
|
||||
+ # "Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, Tensor? seqused_k, "
|
||||
+ # "int max_seqlen_q, int max_seqlen_k, "
|
||||
+ # "float p, float softmax_scale, "
|
||||
+ # "bool is_causal, int window_left, "
|
||||
+ # "int window_right, bool return_softmax) -> (Tensor, Tensor, Tensor)"
|
||||
+ #)
|
||||
+
|
||||
+ #_flash_lib.define(
|
||||
+ # "flash_bwd(Tensor dout, Tensor query, Tensor key, Tensor value, "
|
||||
+ # "Tensor out, Tensor softmax_lse_, Tensor dq, Tensor dk, Tensor dv, "
|
||||
+ # "Tensor cu_seqlens_q, Tensor cu_seqlens_k, "
|
||||
+ # "int max_seqlen_q, int max_seqlen_k, "
|
||||
+ # "float p, float softmax_scale, bool is_causal, "
|
||||
+ # "int window_left, int window_right, Tensor rng_state) -> (Tensor, Tensor, Tensor)"
|
||||
+ #)
|
||||
|
||||
def _flash_fwd(
|
||||
query,
|
||||
@@ -111,8 +111,8 @@
|
||||
p,
|
||||
softmax_scale,
|
||||
is_causal,
|
||||
- window_left, # window_size_left
|
||||
- window_right, # window_size_right
|
||||
+ # window_left, # window_size_left
|
||||
+ # window_right, # window_size_right
|
||||
return_softmax,
|
||||
None, # rng
|
||||
)
|
||||
@@ -134,15 +134,15 @@
|
||||
out,
|
||||
cu_seq_lens_q,
|
||||
cu_seq_lens_k,
|
||||
- seqused_k,
|
||||
+ # seqused_k,
|
||||
max_seq_len_q,
|
||||
max_seq_len_k,
|
||||
p,
|
||||
softmax_scale,
|
||||
False,
|
||||
is_causal,
|
||||
- window_left,
|
||||
- window_right,
|
||||
+ # window_left,
|
||||
+ # window_right,
|
||||
return_softmax,
|
||||
None,
|
||||
)
|
||||
@@ -184,8 +184,8 @@
|
||||
p,
|
||||
softmax_scale,
|
||||
is_causal,
|
||||
- window_left,
|
||||
- window_right,
|
||||
+ # window_left,
|
||||
+ # window_right,
|
||||
None,
|
||||
rng_state,
|
||||
)
|
||||
@@ -208,15 +208,15 @@
|
||||
softmax_scale,
|
||||
False, # zero_tensors
|
||||
is_causal,
|
||||
- window_left,
|
||||
- window_right,
|
||||
+ # window_left,
|
||||
+ # window_right,
|
||||
None,
|
||||
rng_state,
|
||||
)
|
||||
return dq, dk, dv
|
||||
|
||||
- _flash_lib.impl("flash_fwd", _flash_fwd, "CUDA")
|
||||
- _flash_lib.impl("flash_bwd", _flash_bwd, "CUDA")
|
||||
+ #_flash_lib.impl("flash_fwd", _flash_fwd, "CUDA")
|
||||
+ #_flash_lib.impl("flash_bwd", _flash_bwd, "CUDA")
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
@@ -400,7 +400,7 @@
|
||||
implementation.
|
||||
"""
|
||||
|
||||
- OPERATOR = get_operator("xformers_flash", "flash_fwd")
|
||||
+ OPERATOR = _flash_fwd # get_operator("xformers_flash", "flash_fwd")
|
||||
SUPPORTED_DEVICES: Set[str] = {"cuda"}
|
||||
CUDA_MINIMUM_COMPUTE_CAPABILITY = (8, 0)
|
||||
SUPPORTED_DTYPES: Set[torch.dtype] = {torch.half, torch.bfloat16}
|
|
@ -154,25 +154,30 @@ class ROCmFlashAttentionImpl(AttentionImpl):
|
|||
f"Head size {head_size} is not supported by PagedAttention. "
|
||||
f"Supported head sizes are: {suppored_head_sizes}.")
|
||||
|
||||
self.use_naive_attn = torch.cuda.get_device_capability()[0] != 9
|
||||
self.use_naive_attn = False
|
||||
# NOTE: Allow for switching between Triton and CK. Defaulting to triton.
|
||||
self.use_triton_flash_attn = (os.environ.get(
|
||||
"VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in ("true", "1"))
|
||||
if self.use_naive_attn:
|
||||
# AMD Radeon 7900 series (gfx1100) currently does not support
|
||||
# xFormers nor FlashAttention. As a temporary workaround, we use
|
||||
# naive PyTorch implementation of attention.
|
||||
self.attn_fuc = _naive_attention
|
||||
logger.debug("Using naive attention in ROCmBackend")
|
||||
elif self.use_triton_flash_attn:
|
||||
if self.use_triton_flash_attn:
|
||||
from vllm.attention.ops.triton_flash_attention import ( # noqa: F401
|
||||
triton_attention)
|
||||
self.attn_func = triton_attention
|
||||
logger.debug("Using Triton FA in ROCmBackend")
|
||||
else:
|
||||
from flash_attn import flash_attn_varlen_func # noqa: F401
|
||||
self.attn_func = flash_attn_varlen_func
|
||||
logger.debug("Using CK FA in ROCmBackend")
|
||||
# if not using triton, navi3x not use flash-attn either
|
||||
if torch.cuda.get_device_capability()[0] == 11:
|
||||
self.use_naive_attn = True
|
||||
else:
|
||||
try:
|
||||
from flash_attn import flash_attn_varlen_func # noqa: F401
|
||||
self.attn_func = flash_attn_varlen_func
|
||||
logger.debug("Using CK FA in ROCmBackend")
|
||||
except ModuleNotFoundError:
|
||||
self.use_naive_attn = True
|
||||
|
||||
if self.use_naive_attn:
|
||||
self.attn_func = _naive_attention
|
||||
logger.debug("Using naive attention in ROCmBackend")
|
||||
|
||||
def repeat_kv(self, x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
"""torch.repeat_interleave(x, dim=1, repeats=n_rep)"""
|
||||
|
@ -247,13 +252,13 @@ class ROCmFlashAttentionImpl(AttentionImpl):
|
|||
# triton attention
|
||||
# When block_tables are not filled, it means q and k are the
|
||||
# prompt, and they have the same length.
|
||||
if self.use_naive_attn or self.use_triton_flash_attn:
|
||||
if self.use_triton_flash_attn or self.use_naive_attn:
|
||||
if self.num_kv_heads != self.num_heads:
|
||||
# Interleave for MQA workaround.
|
||||
key = self.repeat_kv(key, self.num_queries_per_kv)
|
||||
value = self.repeat_kv(value, self.num_queries_per_kv)
|
||||
if self.use_naive_attn:
|
||||
out = self.attn_fuc(
|
||||
out = self.attn_func(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
|
|
Loading…
Reference in New Issue